用户名: 密码: 验证码:
铅锌污染对土壤微生物多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西南地区铅锌矿资源十分丰富,虽然矿产资源的开发为我国经济发展做出了巨大贡献,然而大量土壤遭到采矿破坏或重金属污染退化,造成土壤生态系统的严重破坏,由此产生的土壤重金属污染已成为当前面临的最严重的环境问题之一。在环境中,重金属单一污染是很少的,绝大多数污染是多种重金属造成的复合污染。
     本文通过对四川省汉源县富泉乡万顺铅锌矿区的土壤进行了采集,研究了自然状态下重金属复合污染对土壤微生物数量、结构、活性的影响,旨在探索重金属复合污染对土壤微生物多样性的影响,为重金属污染土壤的修复、环境质量评价提供有益的参考。本研究取得如下结果:
     1.铅锌矿区土壤中Zn、Pb、Cd、Cu几种重金属含量明显高于非矿区土壤,且其基本理化性质相应变差。
     2.重金属复合污染对土壤微生物主要类群的生长数量影响表现为抑制作用。八个采样区微生物多样性指数大小不一致,非矿区土壤的多样性指数最大,重金属越高的地区,多样性指数越小。土壤重金属有效量与微生物数量呈一定程度的负相关趋势。
     3.铅锌矿污染最重和污染较轻的区域在各自细菌优势菌属构成上有相似之处,矿区土壤中出现频率较高为芽孢杆菌属(Bacillus)、微球菌属(Micrococcaceae)和棒状杆菌属(Corynebacterium),说明这三种菌对铅锌矿的耐性较好。不管是矿区土壤与非矿区土壤之间,还是矿区不同污染程度之间,放线菌类群组成上差别较大,说明放线菌比细菌和真菌对铅锌矿更敏感。矿区土壤与非矿区土壤之间,在真菌优势菌属构成上有所不同,而矿区土壤中真菌优势种属构成有相似性,木霉(Trichoderma)、曲霉(Aspergillus)、镰刀霉(Fusarium)是矿区土壤中出现频率最高的真菌种属,说明它们对铅锌矿耐性较好。
     4.土壤中重金属的积累导致了微生物活动的反常性,抑制了微生物的生命活动,使微生物生物量碳、纤维素分解作用的值降低,从而引起土壤肥力的减弱。处于这种逆境中,微生物为了维持其正常的生命活动,就会加大其代谢强度,表现为土壤基础呼吸随着重金属Zn、Pb、Cd、Cu含量的增加而增加。有效Zn、Pb与微生物生物量碳、纤维素分解作用呈显著负相关,与土壤基础呼吸呈显著正相关。
     5.Zn、Pb、Cd、Cu胁迫对不同土壤酶活性的影响存在一定差异,土壤脲酶、碱性磷酸酶、多酚氧化酶对铅锌矿较为敏感,是能反映重金属污染状况的灵敏生物学指标,而蔗糖酶和过氧化氢酶受到的抑制作用不明显。本研究表明脲酶、碱性磷酸酶、多酚氧化酶的活性可以作为同类矿区污染的生物学评价指标。
Zinc-lead mine resources are very rich in the southwest of china, although the development of mineral resources for economic development in our country has made tremendous contributions, however, mining was a large number of soil damage or degradation of heavy metals pollution, causing soil ecosystem damage seriously, the resulting soil heavy metals pollution has now become the most serious environmental problems. In the environment, few contamination of heavy metals is solitary, which are combined in most cases.
     This research collected soil polluted by heavy metals, studied the influence of combined pollution of heavy metals to biomass, structure, and activities of soil microorganisms in natural state. This research was focused on effects of soil microbial diversity by combined heavy metals contamination, which was supposed to support the ecological remediation of contaminated by heavy metals. The conclusions are as following:
     1. Zn, Pb, Cd, Cu content of zinc-lead mine in the soil was significantly higher than that of non-mining, and their basic physical and chemical properties were corresponding varied.
     2. From the test result, we can find that combined pollution of heavy metals influence on the growth quantity of the chiefly kind of soil microorganisms is main restrictive. The microbial diversity index of eight sampling areas was inconsistent, non-mining diversity index of soil was greatest, the higher heavy metals in regions, the smaller the diversity index. Available dose of heavy metals in soils and the number of microorganisms were to some extent the trend of negative correlation.
     3. Most polluted and less polluted regions of zinc-lead mine in their respective species composition of bacteria is quite similar. Bacillus, micrococcaceae and corynebacterium are the highest frequency of occurrence of mine soil, that they have good patience with zinc-lead mine. Between mine soil and non-mining soil, and between different pollution levels of mining, the composition of actinomyce is different larger than that bacteria and fungi, so they are more sensitive to zinc-lead mine. Between mine soil and non-mining soil, the composition of advantages fungi species is different, and the advantages fungi species mine soil have a similar composition. Trichoderma, aspergillus, fusarium are the highest frequency of occurrence of mine soil, that they have good patience with zinc-lead mine.
     4. The accumulation of the heavy metals has caused biological activity abnormal in the soil, life activation suppressed, and microbial carbon and cellulose decomposition reduced. Thus it causes of soil fertility subsided. In order to maintain its normal life activity in adverse circumstance, the microorganisms can strengthen metabolizing intensity. Available Zn, Pb and microbial biomass carbon, cellulose decomposition was negatively correlated with soil respiration based on a significant positive correlation.
     5. Zn, Pb, Cd, Cu stress on different soil enzyme activities there are certain differences, soil urease, alkaline phosphatase, polyphenol oxidase on the zinc-lead mine were more sensitive, and invertase, catalase were not obvious by inhibition. Activities of urease, alkaline phosphatase, polyphenol oxidase can be effective biochemical evaluation indexes to indicate pollution degree of heavy metals.
引文
[1]陈怀满.土壤—植物系统中的重金属污染[M].北京:科学出版社,1996.
    [2]杨正亮.土壤重金属的生物学效应研究[D].西北农林科技大学硕士学位论文,2002.
    [3]陈承利.重金属Cd、Pb、Hg污染对土壤微生物及其活性影响研究[D].浙江大学硕士学位论文,2006.
    [4]陈文新.土壤和环境微生物学[M].北京:北京农业大学出版社,1990.
    [5]Giller K E.,Witter E.,McGrath S P.Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils.Soil Biology and Biochemistry,1998,30:1389-1414.
    [6]张薇,魏海雷,高洪文等.土壤微生物多样性及其环境影响因子研究进展[J].生态学杂志,2005,24(1):48-52.
    [7]孙波,赵其国,张桃林等.土壤质量与持续环境Ⅲ.土壤质量评价的生物学指标[J].土壤,1997,29(5):225-234.
    [8]Hiroki M.Decomposition of organic matter with Previous cadmium adsorption in soils.Soil Science and Plant Nutrition,1994,42(2):745-752.
    [9]Kuperman R G.,Carreiro M M.Soil heavy metal concentrations,microbial biomass and enzyme activities in a contaminated grassland ecosystem.Soil Biology and Biochemistry,1997,29:179-190.
    [10]Fliebbach A.,Wagner-Dobler L.Deteetion of Ploychlotinated biohenly degradation genes in pollutted sediments by direct DNA extraction and polymerase chain reaction.Applied and Environmental Microbial,1993,59(12):4065-4073.
    [11]滕应,黄昌勇.重金属污染土壤的微生物生态效应及其修复研究进展[J].土壤与环境,2002,11(1):85-89.
    [12]龚平,孙铁珩,李培军.重金属对微生物的生态效应[J].应用生态学报,1997,8(2):218-224.
    [13]杨晔,陈英旭,孙振世.重金属胁迫下根际效应的研究进展[J].农业环境保护,2001,20(1):55-58.
    [14]施晓东,常学秀.重金属污染土壤的微生物响应[J].生态环境,2003,12(4):498-499.
    [15]Kelly J J.,Tate R L.Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter.Journal of Environmental quality,1998,27(3):609-617.
    [16]Frostegard A.,Tunlid A.,Baath E.Phospholipid fatty acid composition,biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals[J]. Applied and Environmental Microbial,1993,59(12):3605-3617.
    [17]腾应,黄昌勇,骆永明等.重金属复合污染下土壤微生物群落功能多样性动力学特征[J].土壤学报,2004,41(5):735-741.
    [18]腾应,黄昌勇,龙健等.矿区侵蚀土壤的微生物活性及群落功能多样性研究[J].水土保持学报,2003,17(1):115-119.
    [19]腾应,黄昌勇,骆永明等.铅锌银尾矿区土壤微生物活性及其群落功能多样性研究[J].土壤学报,2004,41(1):113-119.
    [20]赵祥伟,骆永明,滕应等.重金属复合污染农田土壤的微生物群落遗传多样性研究[J].环境科学学报,2005,25(2):186-191.
    [21]蒋先军,骆永明,赵其国.重金属污染土壤的微生物学评价[J].土壤,2000,32(3):130-134.
    [22]王嘉,王仁卿,郭卫华.重金属污染对土壤微生物学影响的研究进展[J].山东农业科学,2006,1:101-104.
    [23]蒋先军,骆永明,赵其国.重金属污染生物修复机制及研究进展[J].土壤,2000,3:130-134.
    [24]王新,周启星.重金属与土壤微生物的相互作用及污染土壤修复[J].环境污染治理技术与设备,2004,11(5):1-5.
    [25]陈安磊,王凯荣,谢小立.施肥制度与养分循环对稻田土壤微生物生物量碳氮磷的影响[J].农业环境科学学报.2005,24(6):1094-1099.
    [26]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤.1997(2):61-69.
    [27]何振立.土壤微生物量的测定方法:现状和展望[J].土壤学进展.1994,22(4):36-44.
    [28]Dar G H.Impact of lead and sewage sludge on soil microbial biomass and carbon and nitrogen mineralization.Environmental Contamination Toxicology,1997,58:234-240.
    [29]Brookes P C.,McGrath S P.Effects of metal toxicity on the size of the soil microbial biomass.Journal of Soil Science,1984,35:341-346.
    [30]Mcgrath S P.,Chaudri A M.,Giller K E.Long-term effects of metals in sewage on soils,microorganisms and plant.Journal of Industrial Microbiology,1995,14:94-101.
    [31]Kandeler E.,Luftenegger G,Schwarz S.Influence of heavy metals on the functional diversity of soil microbial communities[J].Biology and Fertility of Soils,1997,23:299-306.
    [32]Brookes P C.,McGrath S P.Adenylate energy charge in metal contaminated soil.Soil Biology and Biochemistry,1987,19:219-220.
    [33]Patra D D.,Subrahmanyam K.,Singh D V.Effect of Pb,Cd,and Hg on N-mineralization and microbial biomass in soil.Biological Sciences,1991,57:159-163.
    [34]杨济龙,祖艳群.蔬菜土壤微生物种群数量与土坡重金属含量的关系[J].生态环境,2003,12(3):281-284.
    [35]杨元根.城市土坡中重金属元索积累及微生物效应[J].环境科学,2001,22(17):44-48.
    [36]Kuperman R G.,Carreiro M M.Soil heavy metal concentrations,Microbial biomass and enzyme activities in a contaminated grassland ecosystem.Soil Biology and Biochemistry,1997,29(2):179-190.
    [37]Haanstra L.,Doelman P.Glutamic acid decomposition as a sensitive measure of heavy metal pollution in soil.Soil Biology and Biochemistry,1984,16(6):595-600.
    [38]王秀丽,徐建民,谢正苗等.重金属铜和锌污染对土壤环境质量生物学指标的影响[J].浙江大学学报,2002,28(2):190-194.
    [39]孙波,赵其国,张桃林等.土壤质量评价的生物学指标[J].土壤,1997,29(5):225-234.
    [40]杨元根.重金属铜的土壤微生物毒性研究[J].土壤通报,2002,33(2):55-60.
    [41]Fliebbach A.,Martens R.,Reber H.Soil microbial biomass and activity in soils treated with heavy metal contaminated sewage sludge.Soil Biology and Biochemistry,1994,26:1201-1205.
    [42]Chander K.,Brookes P C.Synthesis of microbial biomass from added glucose in metal -contaminated and non-contaminated soils following repeated fumigation.Soil Biology and Biochemistry,1992,24:613-614.
    [43]张玲,叶正钱,李廷强等.铅锌矿区污染土壤微生物活性研究[J].水土保持学报,2006,20(3):136-140.
    [44]徐进.土壤酶在环境中的应用[J].今日科技,1996,4:7-8.
    [45]杨华,刘树庆,李博文.重金属与土壤酶活性关系的探讨[J].河北环境科学,2004,4:16-20.
    [46]Marzador C.,et al.Effects of lead pollution on different soil enzyme activities[J].Biology and Fertility of soils,1996,22:53-58.
    [47]严昶升.土壤肥力研究方法[M].北京:农业出版社,1998.
    [48]许炼峰,郝兴仁,刘腾辉等.重金属Cd和Pb对土壤生物活性影响的初步研究[J].热带亚热带土壤科学,1995,4(4):216-220.
    [49]沈桂琴,廖瑞章.重金属非重金属矿物油对土壤酶活性的影响[J].农业环境保护,1987,6(3):24-27.
    [50]杨志新,刘树庆.Cd、Zn、Pb单因素及复合污染对土壤酶活性的影响[J].土壤与环境,2000, 9(1):15-18.
    [51]龚平,孙珩铁,李培军.重金属对土壤微生物的生态效应[J].应用生态学报,1997,8(2):218-224.
    [52]Berg B.,Ekbohm G.,Soderstrom B.,et al.Reduction of decomposition rates of Scots pine needle litter due to heavy-metal pollution.Water,Air and Soil Pollution,1991,59:165-177.
    [53]Wilke B M.Long-term effects of different inorganic pollutants on nitrogen transformations in a sandy cambisol.Biology and Fertility of Soils,1989,7:254-258.
    [54]Rother J A.Seasonal fluctuations in nitrogen fixation by free living bacteria in soils contaminated with cadmium,lead and zinc[J].Journal of Soil Science,1982,33:101-113.
    [55]Brookes P C.The use of microbial parameters in monitoring soil pollution by heavy metals.Biology and Fertility of soils,1995,19:269-279.
    [56]王淑芳,胡连生,纪有海等.重金属污染黑土中固氮菌及反硝化菌作用强度的测定[J].应用生态学报,1991,2(2):174-177.
    [57]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000.
    [58]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [59]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1983.
    [60]中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985.
    [61]土壤微生物研究会(日).土壤微生物实验法[M].北京:科学出版社,1983.
    [62]李阜棣,喻子牛,何绍江.农业微生物学实验技术[M].北京:中国农业出版社,1996.
    [63]赵斌,何绍江.微生物学实验[M].北京:科学出版社,2002.
    [64]唐丽杰,马波,刘玉芬.微生物学实验[M].哈尔滨:哈尔滨工业大学出版社,1996.
    [65]凌丽俐,卿人韦,傅华龙等.藻类对土壤肥力的影响[J].四川大学学报(自然科学版),2003,40(1):135~138.
    [66]宁应之,沈韫芬.珞珈山森林土壤原生动物生态学研究及土壤原生动物定量方法探讨探[J].动物学杂志,1996,17(3):225-232.
    [67]中国科学院微生物研究所细菌分类组.一般细菌常用鉴定方法[M].北京:科学出版社,1978.
    [68]阮继生.放线菌分类基础[M].北京:科学出版社,1973.
    [69]魏景超.真菌鉴定手册[M].上海:上海科学技术出版社,1979.
    [70]林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志,1999,18(2):63-66.
    [71]许光辉,郑洪元.土壤微生物分析方法手册[M].上海:上海科学技术出版社,1986.
    [72]姚槐应,黄昌勇等.土壤微生物生态学及其实验技术[M].北京:科学出版社,2006.
    [73]周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [74]张从.环境评价教程[M].北京:中国环境科学出版社,2002.
    [75]熊清华,艾怀森.高黎贡山自然与生物多样性研究[C].北京:科学出版社,2006.
    [76]许光辉,李振高.微生物生态学[M].南京:东南大学出版社,1991.
    [77]杨云根,E.Paterson,C.Compbell.苏格兰阿伯丁城市土壤的微生物特性研究[J].矿物学报,2000,20(4):342-348.
    [78]樊军,郝明德.长期轮作施肥对土壤微生物碳氮的影响[J].水土保持研究,2003,10(1):85-87.
    [79]杨志新,刘树庆.重金属Cd、Zn、Pb复合污染对土壤酶活性的影响[J].环境科学学报,2001,21(1):60-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700