用户名: 密码: 验证码:
不同水力条件下Cd对富营养化水体营养特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济发展和人们生活水平的提高,大量的生产和生活污水排入湖泊,导致湖泊富营养化和重金属污染等众多环境问题出现并日益加剧,其中湖泊水体环境中重金属对富营养化的影响值得关注。本文研究了不同水力条件下重金属Cd对富营养化水体营养特性的影响。研究选用了武汉两个不同富营养化程度的湖泊(东湖和南湖)作为研究对象,用相应的湖水作为反应水柱上覆水,上覆水中Cd浓度设置了0mg/L、5mg/L和50mg/L3个水平,用Cd-0、Cd-5和Cd-50表示,试验分别在静态和动态两种水力条件下进行,主要探讨了重金属Cd与上覆水中营养元素氮、磷以及沉积物中总磷、全氮、碱性磷酸酶活性、脲酶活性之间的互相关系。主要结果如下:
     1、上覆水中添加了不同浓度的Cd之后,Cd逐渐被沉积物吸附,Cd在上覆水中的浓度渐渐变小。不同来源的沉积物Cd的吸附速率不同;静态水力条件下南湖沉积物对Cd的吸附速率比动态水力条件下大。
     2、一定条件下Cd可以抑制沉积物中总磷的释放,抑制程度与水力条件和湖泊营养特性有关。在静态水力条件下和Cd-5和Cd-50处理中,富营养化程度高的南湖中,Cd能够显著地抑制沉积物总磷向上覆水释放。Cd的浓度越大,抑制作用越明显;在动态水力条件下,东湖Cd-50处理中Cd能够抑制沉积物总磷的释放,而Cd-5处理表现不明显。
     3、在静态水力条件下,东湖和南湖Cd-5和Cd-50处理上覆水中Cd抑制沉积物释放溶解性磷酸盐显著;在动态水力条件下,东湖和南湖Cd-5和Cd-50处理的上覆水中Cd也能够抑制沉积物释放溶解性磷酸盐,但由于动态水力条件引起的综合性因素使得Cd-50处理中表现的抑制作用比Cd-5处理更显著些。
     4、静态和动态水力条件下,东湖和南湖各处理中Cd对上覆水中总氮的影响均不显著。
     5、静态水力条件下,对于富营养化程度较低的东湖,各处理中的Cd对上覆水中氨氮没有明显抑制作用,而富营养化程度较高的南湖,Cd-5和Cd-50处理对氨氮的内源释放有一定的抑制作用。动态水力条件下,在试验后期,东湖和南湖Cd-50处理中Cd对氨氮的释放有显著的促进作用。
     6、在静态试验中,东湖和南湖各处理在不同阶段,沉积物中碱性磷酸酶活性变化不同。试验前期,沉积物中碱性磷酸酶活性在Cd-0、Cd-5和Cd-50处理中依次减弱;试验后期,沉积物中碱性磷酸酶活性呈依次增强的趋势。在动态试验中,东湖各处理沉积物中碱性磷酸酶活性变化比较复杂;南湖Cd-50处理对碱性磷酸酶活性有明显的抑制作用。
     7、东湖和南湖各处理之间,沉积物中脲酶活性没有显著差别,Cd对脲酶活性没有显著影响。
With the development of economic and the improvement of people's living standards, a large number of production wastewater and domestic sewage was discharged into the lake, causing eutrophication and heavy metal pollution in lakes and many other environmental problems. The environmental problem destroyed the ecological environment, affected people's health, survival and the socio-economic sustainable development.
     This paper studied the influence of cadmium (Cd) input on the nutritional properties of eutrophic lakes in different hydraulic conditions. Water and sediment of two different eutrophication degree lakes (Lake Donhu and Lake Nanhu) in Wuhan City were studied as tested overlying water and tested sediment in the reaction columns, and the Cd concentrations in overlying water were set 0mg/L, 5mg/L and 50mg/L three levels, expressed by Cd-0, Cd-5 and Cd-50, then the study was run in static and dynamic hydraulic conditons respectively. This paper discussed the relationships between Cd and nutrients in overlying water and total phosphorus, total nitrogen, urease activity, alkaline phosphatase activity in sediments. The main conclusions of this paper were listed below:
     1. After Cd was added into overlying water, Cd was adsorbed by sediments gradually, and Cd concentrations in the overlying water became low gradually. The Cd adsorption rates by sediment were different between Lake Donghu and Lake Nanhu, and the Cd adsorption rate by Lake Nanhu sediment in static condition was larger than that in dynamic conditon.
     2. Cd could inhibit the release of total phosphorus from sediment and the inhibition which was in relation to the hydraulic condition and the nutrient characteristics of lakes. In static hydraulic conditon, Cd in the Cd-5 and Cd-50 treatments of higher eutrophication degree Lake Nanhu inhibited the release of total phosphorus obviously. In dynamic hydraulic condition, Cd in the Cd-50 treatment of Lake Donghu inhibited the release of total phosphorus obviously, but did not in the Cd-5 treatment; Cd in the Cd-5 and Cd-50 treatments of Lake Nanhu could inhibit the release of total phosphorus, and the higher the Cd concentration, the more obvious inhibition.
     3. In static hydraulic condition, Cd in the Cd-5 and Cd-50 treatments of Lake Donghu and Lake Nanhu inhibited the release of soluble phosphate from sediments obviously. In dynamic hydraulic conditon, because of the factors caused by dynamic hydraulic conditon, the inhibition in the Cd-50 treatment was more obvious than that in the Cd-5 treatments.
     4. The effects of Cd to total nitrogen in the overlying water were not obviously in the treatments of Lake Donghu and Lake Nanhu.
     5. In static hydraulic condition, the effects of Cd to ammonia-nitrogen concentrations in the treatments of Lake Donghu were not obviously. But to the higher eutrophication degree Lake Nanhu, Cd of Cd-5 and Cd-50 treatments could inhibited the release of ammonia-nitrogen. In dynamic hydraulic conditon, Cd in the Cd-50 treatments of Lake Donghu and Lake Nanhu promoted the release of ammonia-nitrogen in the later period of the test.
     6. In static hydraulic conditon, the changes of alkaline phosphatase activity in sediments of Lake Donghu and Lake Nanhu treatments were different in different phases. In dynamic hydraulic conditon, the changes of alkaline phosphatase activity in sediments of Lake Donghu treatments were complicated; the alkaline phosphatase activity of Cd-50 treatment in sediments of Lake Nanhu was inhibited obviously.
     7. The urease activity in sediments of Lake Donghu and Lake Nanhu treatments did not change obviously, and the inhibition of Cd to urease activity was not obviously.
引文
1.鲍士旦.土壤农化分析(第3·版).北京:中国农业出版社,2000:40-84
    2.陈荷生,石建华.太湖底泥的生态疏浚工程-太湖水污染综合治理措施之一.水资源保护,1998,(3):11-16
    3.陈华林,陈英旭.污染底泥修复技术进展.农业环境保护,2002,21(2):179-182
    4.陈静生.沉积物金属污染研究中的若干问题.环境科学丛刊,1983,4(8):1-2
    5.陈永川,汤利.沉积物.水体界面氮磷的迁移转化规律研究进展.云南农业大学学报,2005,20(4):527-533
    6.范成新,朱育新,吉志军等.太湖宜溧河水系沉积物的重金属污染特征.湖泊科学,2002,14(3):234-241
    7.高丽,周健民.磷在富营养化湖泊沉积物.水界面的循环.土壤通报,2004,35(4):512-515
    8.国家环境保护总局.水和废水监测分析方法(第4版).北京:中国环境科学出版社,2002:200-284
    9.哈子耶夫.土壤酶活性.北京:科学出版社,1980:100-132
    10.韩沙沙,温琰茂.富营养化水体沉积物中磷的释放及其影响因素.生态学杂志,2004,23(2):98-101
    11.韩卫明.底泥释磷及其对西湖富营养化的影响.环境污染与防治,1991,13(5):31-34
    12.和文祥,黄英锋,朱铭莪等.汞和镉对土壤脲酶活性影响.土壤学报,2002,39(3):412-420
    13.胡荣桂,李玉林,彭佩钦等.金属镐、铅对土壤生化活性影响的初步研究.农业环境保护,1990,9(4):6-9
    14.胡智弢,孙红文,谭媛.湖泊沉积物对N和P的吸附特性及影响因素研究.农业环境科学学报,2004,23(6):1212-1216
    15.蒋小欣,阮晓红,邢雅囡等.城市中污染河道上覆水氮营养盐浓度及DO水平对底质氮释放的影响.环境科学,2007,28(1):87-91
    16.金相灿等.沉积物污染化学.北京:中国环境科学出版社,1992:1-77
    17.金相灿等.中国湖泊环境(第1册).北京:海洋出版社,1995:1-2
    18.黎秉铭,万国江,江成忠等.滇池、洱海水体及沉积物中重金属元素的行为.环境科学,1995,16(2):50-53
    19.黎颖治,夏北成.影响湖泊沉积物.水界面磷交换的重要环境因子分析.土壤通报,2007,38(1):162-165
    20.刘霞,刘树庆,王胜爱.河北主要土壤中重金属镉、铅形态与土壤酶活性的关系.河北农业大学学报,2002,25(1):34-39
    21.卢少勇,金相灿,胡小贞等.扰动与钝化剂对水/沉积物系统中磷释放及磷形 态的影响.中国环境科学,2007,27(4):437-440
    22.马经安,李红清.浅谈国内外江河湖库水体富营养化状况.长江流域资源与环境,2002,11(6):557-578
    23.闵骞,闵聃.湖泊生态系统的水资源保护.水资源研究,2008,29(4):18-19
    24.乔胜英,蒋敬业,向武等.武汉市湖泊中重金属污染状况.水资源保护,2007,23(1):45-48
    25.秦伯强.我国湖泊富营养化及其水环境安全.科学对社会的影响,2007,(3):17-23
    26.商少凌,洪华生.厦门西海域磷的研究.海洋环境科学,1996,15(1):15-20
    27.史丹.我国湖泊富营养化问题及防治对策.资源开发与市场,2005,21(1):17-18
    28.唐孟成.西湖沉积物磷释放影响因子的研究.浙江农业大学学报,1997,23(3):289-292
    29.唐阵武,程家丽,岳勇等.武汉典型湖泊沉积物中重金属累积特征及其环境风险.湖泊科学,2009,21(1):61-68
    30.田升平,东野脉兴,周建民.滇池湖泊磷负荷及其对水环境的影响.北工矿产地质,2002,24(1):11-16
    31.汪常青,吴永红,刘剑彤.武汉城市湖泊水环境现状及综合整治途径.长江流域资源与环境,2004,13(5):499-503
    32.王冬,张进忠.水体沉积物中磷释放的影响因素.内蒙古环境科学,2008,20(11:45-48
    33.王玲玲,沈熠.水体富营养化的形成机理、危害及其防治对策探讨.环境监测与研究,2007,20(4):33-35
    34.王丕波,宋金明,郭占勇等.海洋表层沉积物中的无机氮在扰动情况下的行为特征.中国科学院研究生院学报,2005,22(6):739-745
    35.王庭健,苏睿,金相灿等.城市富营养湖泊沉积物中磷负荷及其释放对水质的影响.环境科学研究,1994,7f4):12-19
    36.王晓蓉.环境条件变化对太湖沉积物磷释放的影响.环境化学,1996,15(1):15-19
    37.王秀丽,徐建民,姚槐应等.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响.环境科学学报,2003,23f1):22-27
    38.王永华,刘振宇,刘伟等.巢湖合肥区底泥污染物分布评价与相关特征研究.北京大学学报(自然科学版),2003,39(4):501-506
    39.王雨春.湖泊现代化沉积物中磷的地球化学作用及环境效应.重庆环境科学,2000,22(4):39-41
    40.魏丽萍,梁美生.我国湖泊富营养化问题概述.化工文摘,2008,(6):38-40
    41.夏开元.湖泊中的武汉.城建档案,2007,(9):16-19
    42.夏学惠,东野脉心,周建明等.滇池现代沉积物中磷的地球化学及其对环境的 影响.沉积学报,2002,20(3):416-420
    43.谢礼国,郑怀礼.湖泊富营养化的防治对策研究.世界科技研究与发展,2004,26(2):7-11
    44.谢正苗,卡里德,黄昌勇等.镉铅锌污染对红壤中微生物生物量碳氮磷的影响.植物营养与肥料学报,2000,6(1):69-74
    45.熊汉锋,黄世宽,陈治平等.梁子湖湿地土壤酶初步研究.生态环境,2006,15(6):1305-1309
    46.徐敏,程凯,孟博等.环境因子对衣藻水华消长影响的初步研究.华中师范大学学报,2001,35(3):322-325
    47.徐轶群,熊慧欣,赵秀兰.底泥磷的吸附与释放研究进展.重庆环境科学,2003,25(11):147-149
    48.杨龙元,Gamder W S.休伦湖sganiwa湾沉积物反硝化率的测定及其时空特征.湖泊科学,1995,10(3):32-35
    49.杨龙元,蔡启铭,秦伯强等.太湖梅梁湾沉积物-水界面氮迁移特征初步研究.湖泊科学,1998,10(4):41-47
    50.杨志新,刘树庆.Cd、Zn、Pb单因素及复合污染对土壤酶活性的影响.土壤与环境,2000,9(1):15-18
    51.由文辉.沉积物中磷负荷及其释放对水质的影响.上海环境科学,1997,16(12):23-25
    52.曾巾,杨柳燕,肖琳等.湖泊氮素生物地球化学循环及微生物的作用.湖泊科学,2007,19(4):382-389
    53.曾路生,廖敏,黄昌勇等.镉污染对水稻土微生物量、酶活性及水稻生理指标的影响.应用生态学报,2005,16(11):2162-2167
    54.张路,范成新,秦伯强等.模拟扰动条件下太湖表层沉积物磷行为的研究.湖泊科学,2001,13(1):35-42
    55.章婷曦,王晓蓉,金相灿.太湖沉积物中碱性磷酸酶活力(APA)和磷形态的垂向特征及相关性.农业环境科学学报,2007,26(1):36-40
    56.张锡辉.水环境修复工程学原理与应用.北京:化学工业出版社,2002:21-25
    57.张征.环境评价学.北京:高等教育出版社,2004:60
    58.周礼恺.土壤酶学.北京:科学出版社,1987:116-120
    59.周世伟,徐明岗.磷酸盐修复重金属污染土壤的研究进展.生态学报,2007,27(7):3043-3050
    60.周易勇,付永清.水体磷酸酶:来源、特征及其生态学意义.湖泊科学,1999,11(3):274-279
    61.朱广伟,秦伯强,高光.浅水湖泊沉积物磷释放的重要因子一铁和水动力.农业环境科学学报,2003,22(6):762-764
    62.Brookes P C,McGrath S P.Effects of metal oxicity on the size of the soil microbial biomass. Journal of Soil Science, 1984, 35: 341-346
    
    63. Catarina M, Joana C, Catarina T et al.. Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary, Portugal. Marine Chemistry, 2007, 107: 332-341
    
    64. Chrost R J, Siuda W, Halemejko G Z. Longterm studies on alkaline phosphatase activity(APA) in a lake with fish aquaculture in relation to lake eutrophication and phosphorus cycle. Arch Hydrobiol Suppl, 1984, 70: 1-32
    
    65. Dong D M, Nelson Y M, Lion L W et al.. Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined selective extractions: New evidence for the importance of Mn and Fe oxides. Wat Res, 2000, 34: 427-436
    
    66. Fanning K A, Carder K L, Betzer P R. Sediment resuspension by coastal water: a potential mechanism for nutrient re-cycling on the ocean's margins. Deep-Sea Research, Part A, 1982, 29: 953-965
    
    67. Feng X H, Banin A. Long-term transformations and redistribution of potentially toxic heavy metals in arid-zone soils incubated: I. Under saturated conditions. Water, Air and Soil Pollution, 1997, 95: 399-423
    
    68. Golterman H L. The chemistry of phosphate and nitrogen compounds in sediments. Dordrech/Boston/London: Kluwer Academic Publishers, 2004: 135-180
    
    69. Holdren G C, David E. Armstrong, factors affecting phosphorus release from intact lake sediments cores. Environ Sci Technol, 1980, 14(1): 79-87
    
    70. Igrid C, Jamie B. Toxic cyanobacteria in waters. London and New York: E & FN Spon Publisher, 1999,416
    
    71. Kensei K, Kimikazu I, Masahiro M et al.. Studies on dissolved metalloenzymes in lake water. I. Indentification of alkaline phosphatase. Bull Chem Soc Jpn, 1982, 55: 3459-3463
    
    72. Lee H K, Euiso C, Michael K S. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere, 2003, 50: 53-61
    
    73. Miguel E D, Grado M J, Llamas J F et al.. The overlooked contribution of compost application to the trace element load in the urban soil of Madrid(Spain). Sci Total Environ, 1998,215: 113-122
    
    74. Moore P A, Ruddy K R, Graetz D A. Phosphorus geochemistry in the sediment-water column of a hypereutrophic lake. J Environ Qual, 1991, 20: 869-875
    
    75. Nascimento S F, Kurzweil H, Wruss W et al.. Cadmium in the Amazonian Guajara Estuary: Distribution and remobilization. Environmental Pollution, 2006, 140: 29-42
    
    76. Pennanen T, Frostegard A, Fritze H et al.. Phospholipida fatty acid composition and heavy metal to tolerance of soil microbial communities along two heavy metal polluted gradients in coniferous forests.Appl Enviro Microbiol,1996,62(2):420-428
    77.Tengberg A,Almroth E,Hall P.Resuspension and its effects on organic carbon recycling and nutrient exchange in coastal sediments:in situ measurements using new experimental technology.Experimental Marine Biology and Ecology,2003,285-286
    78.Wainright S C.Stimulation of heterotrophic microplankton production by resuspended marine sediments.Science,1987,238:1710-1712
    79.Wainright S C.Sediment-to-water fluxes of particulate material and microbes by resuspension and their contribution to the planktonic food web.Mar Ecol Prog Ser,1990,62:271-281
    80.Wim V R,Henderikus T K.Phosphate sorption in superficial intertidal sediments.Marine Chemistry,1994,48:1-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700