用户名: 密码: 验证码:
卡维地洛自乳化及自微乳化给药系统的设计与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卡维地洛是一种高亲脂性药物,由于其水溶性差,溶出度差并且具有肝脏的首过效应,使其生物利用度低。本文旨在通过自乳化及自微乳化给药系统提高卡维地洛的生物利用度,为卡维地洛寻求一系列具有不同释药特点的液体、半固体、固体自乳化及自微乳化给药系统,并且通过对一系列不同释药行为的自乳化给药系统的研究,促进自乳化给药系统的发展。
     为了制备液体自乳化和自微乳化给药系统并对其进行质量评价,以卡维地洛为模型药物,首先建立了卡维地洛的HPLC分析方法,考察了卡维地洛的基本理化性质,因卡维地洛为弱碱性药物,亲脂性高,水溶性差,故其在水性介质中的溶解度随pH值的降低而升高,在pH 1.0的介质中中有最大的溶解度102.9μg/mL;其油水分配系数随着水相介质pH值的升高而升高,药物在pH1,ph5.8,pH6.8,pH7,pH7.4五种介质中的油水分配系数分别为2.57,2.67,3.51,3.78,4.08。DSC分析的结果表明,在200℃以下,卡维地洛的稳定性良好。
     考察了卡维地洛在不同油相、表面活性剂和辅助表面活性剂中的平衡溶解度,绘制三元相图,通过乳化区面积的大小及乳剂的外观对自乳化给药系统进行优选。在此实验的基础上,选择了Labrafil M 1944CS为油相,Tween 80为表面活性剂,Transcutol P为辅助表面活性剂制备自乳化制剂及自微乳化制剂。
     对自乳化制剂、自微乳化制剂的乳化时间进行了考察,实验结果表明,当表面活性剂从30%增加到60%时,体系的自乳化时间先减小,后增大,在表面活性剂为40%时,体系的自乳化时间最小,为22秒。对自乳化制剂、自微乳化制剂乳化后所形成的乳剂的粒度分布、ζ-电位及药物在乳剂各相的分布进行了考察。乳剂的粒径随着表面活性剂含量的增加而减小,苯甲酸的加入导致了自乳化后的乳剂荷正电。
     药物在乳剂各相的分布以及变化是pH值变化和自乳化给药系统表面活性剂比例变化的综合结果,药物有少量分布在水相(18.49%-25.87%),少量分布在油相(6.84%-29.79%),大量分布在界面层上(51.68%-67.29%)。通过直接释药法和总体液平衡反向透析释药法测定了四组自乳化处方的溶出度,结果表明,直接释药法四组自乳化处方溶出迅速完全,几乎不受溶出介质pH值的影响,随着表面活性剂含量的增加,药物释放加快。总体液平衡反向透析释药法结果表明,四组处方在30min时,约有50%的药物以游离形式释出,随释放介质pH值的增加,药物释放加快。
     为了验证自制自乳化给药系统和自微乳化给药系统是否能提高药物的生物利用度,对自制自乳化制剂,自微乳化制剂进行了beagle犬体内药物动力学的研究,络德片,自乳化制剂,自微乳化制剂的C_(max)分别为(510.15±156.20)ng·mL~(-1)、(2060.38±534.60)ng·mL~(-1)、(746.17±170.27)ng/ml;t_(max)分别为(0.79±0.1)h、(1.00±0.00)h、(0.91±0.13)h;AUC分别为(1755.79±409.75)ng·mL~(-1)·h、(7264.29±1911.35)ng·mL~(-1)·h、(4182.47±798.68)ng·mL~(-1)·h;自乳化制剂,自微乳化制剂的相对生物利用度分别为(446±190)%,(249±74)%;SPSS统计软件处理方差分析结果表明,自乳化制剂及自微乳化制剂均能显著提高药物的生物利用度。
     为了考察自制自乳化及自微乳化给药系统的的组织靶向性,进行了大鼠组织分布的研究。大鼠分别灌胃给药络德片混悬液、乳剂、微乳20mg后,自乳化制剂显著提高了药物在心、肺、肝、血液、淋巴的分布,减少了在肾脏内的分布(P<0.05),对药物在脾脏、脑的分布没有显著性影响(P>0.05);自微乳化制剂显著提高了药物在心、血液、淋巴的靶向性,减少了在肝脏和肾脏内的分布(P<0.05),对药物在肺、脑、脾的分布没有显著性影响(P<0.05)。
     为了制备一种半固体自微乳化硬胶囊,测定了卡维地洛在几种半固体自乳化辅料中的溶解度,通过对三元相图的研究,优选出半固体自乳化胶囊的最佳处方,即以Gelucire 44/14为油相,Lutrol F68为表面活性剂,Transcutol P为辅助表面活性剂制备了三组自微乳化硬胶囊。考察了其体外溶出行为,三组处方均能快速完全地溶出,在30min溶出量达90%以上。分别用零级方程、一级方程、Higuchi方程、Ritger-Peppas方程、Weibull方程、Hixon-Crowell方程对释药曲线进行模型拟和,三个自微乳化处方的释药动力学最适合用Hixon-Crowell方程拟和,药物的溶出机理属于溶蚀机理。利用差式扫描量热法、红外光谱法、X-射线衍射法证明药物在半固体自微乳化制剂中以无定型的形式存在。
     为了制备一种新颖的自乳化渗透泵片,进行了以下研究。建立了卡维地洛紫外释放度测定方法。通过吸收性能的比较,确定了二氧化硅为半固体自乳化系统的吸收剂,通过崩解时间的测定,确定了以枸橼酸和碳酸氢钠作为崩解剂为自乳化过程提供动力。通过f_2因子法比较释放曲线的相似性,考察了渗透活性物质的种类、释药孔径、包衣增重对药物释放的影响。在此实验的基础上,确定了自乳化渗透泵的最优处方。即以二氧化硅为吸收剂,以枸橼酸和碳酸氢钠作为崩解剂,以甘露醇作为渗透活性物质,以滑石粉做润滑剂制备片芯;包衣液组成为:27g醋酸纤维素溶于1000mL丙酮,加入10g PEG400分散均匀后制得;包衣增重为15mg,双面打1.0mm小孔。在2小时至12小时时间内,药物以零级速率释放,在12h的累计释放量为85%。利用透射电镜对自乳化后所得乳剂进行形态观察,发现自乳化渗透泵遇水后能够形成形态圆整的乳剂,乳剂的粒度分布窄,体积径为246nm,表面积径为242nm。
     为了验证自制半固体自微乳化硬胶囊是否能提高生物利用度,自制自乳化渗透泵片是否既能提高生物利用度,又能减小血药浓度的波动,以络德片为参比制剂,进行了口服半固体自微乳化硬胶囊,自乳化渗透泵片的beagle犬体内药物动力学研究。洛德片,半固体自微乳化硬胶囊,自乳化渗透泵片的C_(max)分别为(1311.60±156.20)ng·mL~(-1)、(2006.38±633.26)ng·mL~(-1)、(640.23±162.79)ng/ml;t_(max)分别为(2.83±0.61)h、(1.63±0.74)h、(4.50±1.22)h;AUC分别为(4063.36±822.30)ng·mL~(-1)·h、(6578.15±2508.09)ng·mL~(-1)·h、(6189.68±1873.58)ng·mL~(-1)·h;半固体自微乳化硬胶囊,自乳化渗透泵片的相对生物利用度分别为(162±50)%,(152±33)%;SPSS方差分析结果表明,,半固体自微乳化硬胶囊的C_(max)显著增加,自乳化渗透泵片的C_(max)显著降低;秩和检验结果表明,半固体自微乳化硬胶囊使t_(max)显著提前,自乳化渗透泵片使t_(max)显著后移。SPSS方差分析结果表明,半固体自微乳化硬胶囊及自乳化渗透泵片均能显著提高药物的生物利用度,半固体自微乳化硬胶囊呈现速释特点,自乳化渗透泵片呈现缓释特点。用W-N法和L-R法进行自乳化渗透泵片体内外相关性的研究,两种方法均能对体内外相关性进行很好的拟和。
Carvedilol is a highly lipophilicβ-adrenoceptor blocking. It has a low solubility in gastrointestinal fluids and undergoes extensive first-pass metabolism in the liver, which leads to the low absolute oral bioavailability which is about 20% in humans. The objectives of our researches are to improve its bioavailability by self-emulsifying drug delivery system (SEDDS) and self-microemulsifying drug delivery system (SMEDDS) and to prepare a series of liquid, semi-solid and solid self-emulsifying and self-microemulsifying formulations that have different release characteristics. Based on the above work, we hope to do contributions to the development of SEDDS and SMEDDS.
     To prepare a SEDDS and SMEDDS and evaluate their in vitro properties, first of all, the HPLC analytic methods were established. The physical and chemical properties of carvedilol were investigated. The solubility of carvedilol in solutions increases with respect to the decrease of pH value because it is a weak base. It has the biggest solubility in 0.1 mol·L~(-1)HCl which is 102.9μg/mL. The logP increases with the pH value of the water phase, the logP in pH1.0, Ph5.8, pH6.8, pH7, pH7.4 were 2.57, 2.67, 3.51, 3.78, 4.08 respectively. The DSC results showed that carvedilol is stable under 200℃. The balance solubility of carvedilol in different oil phase, surfactant and cosurfactant were assayed. Ternary phase diagrams were constructed. The optimal SEDDS were obtained by comparing the self-emulsifying and self-microemulsifying domain and by the evaluation of the resultant emulsion's appearance. The optimal SEDDS was Labrafil M 1944CS, Tween 80, Transcutol P. The self-emulsifying time of self-emulsifying and self-microemulsifying formulations were investigated. When the surfactant content increase from 30% to 60%, the self-emulsifying time decreased firstly and then increased. The minimal self-emulsifying time which was 22s was found at the formulation that has 40% surfactant. The particle size distribution,ζ-potential and phase distribution of the resultant emulsion and microemulsion were studied. The diameter of the emulsion decreased with respect to the increase of surfactant content. Adding acid benzoic to formulations led to positively charged emulsions. Phase distribution is the results of pH value and the surfactant content. Drug distribution in water phase increased with respect to the decrease of pH value and the increase of surfactant content. Small amount of drug distributed into water phase (18.49%-25.87%) and oil phase (6.84%-29.79%), most of the drug distributed into interface (51.68%-67.29%). Direct dissolution test and bulk equilibrium reverse dialysis bag technique were used to evaluate the dissolution of drug from SEDDS and SMEDDS in media of different pH values. The results showed that the four formulations could release drug fast and completely. The dissolution rate increased with respect to the increase of surfactant content. The dissolution results of bulk equilibrium reverse dialysis bag technique showed that about 50% free drug was released at 30min. the dissolution rate increased with respect to the increase of pH values.
     To testify if the self-made SEDDS and SMEDDS could improve the bioavailability, the pharmacokinetic study of commercial available tablets, self-made SEDDS and SMEDDS in beagle dogs was carried out. The C_(max) of commercial available tablets, self-made SEDDS and SMEDDS were (510.15±156.20) ng·mL~(-1)、(2060.38±534.60) ng·mL~(-1)、(746.17±170.27) ng·mL~(-1) respectively; t_(max) were (0.79±0.1) h、(1.00±0.00) h、(0.91±0.13) h respectively; AUC were (1755.79±409.75) ng·mL~(-1)·h、( 7264.29±1911.35) ng·mL~(-1)·h、(4182.47±798.68) ng·mL~(-1)·h respectively; the relative bioavailability of SEDDS and SMEDDS were (446±190) %, (249±74)% respectively; the results of variance analysis by using SPSS software showed that self-made SEDDS and SMEDDS could improve the bioavailability of carvedilol significantly.
     To investigate the tissue distribution of self-made SEDDS and SMEDDS, the tissue distribution of Luode tablet suspension, emulsions and microemulsions were investigated after oral administration to rats at a dose of 20mg. SEDDS could improve the drug distribution at heart, lung, hepatic, blood, lymph, decrease drug distribution at kidney (P<0.05). SEDDS had no significant effect on the distribution at spleen and brain (P>0.05). SMEDDS improve the drug distribution at heart, blood, lymph, decrease drug distribution at hepatic and kidney (P<0.05). SMEDDS had no significant effect on the distribution at lung, brain and spleen (P>0.05).
     To prepare a semi-solid self-microemulsifying capsule, the solubility of carvedilol in different semi-solid self-emulsifying materials was investigated. By study of ternary phase diagrams, the optimal semi-solid formulation was optimized that is Gelucire 44/14 was used as oil phase, Lutrol F68 was used as surfactant, Transcutol P was used as cosurfactant. Three different semi-solid self-microemulsifying formulations could all release drug fast and completely, and the cumulated release of three formulations were all above 90% at 30min. Zero-order equation, first-order equation, higuchi equation, ritger-peppas equation, weibull equation, Hixon-crowell were used to calculate drug release kinetics. The results showed that the drug release fitted Hixon-crowell equation most. The dissolution mechanism is erosion dependent. Differential Scanning Calorimeter (DSC), Infrared spectroscopy (IR), X-ray diffraction (XRD) methods were used to investigate the physical characterization of drug in semi-SMEDDS. The results showed that carvedilol was amorphous in dosage form.
     To prepare a novel self-emulsifying osmotic pump tablet (SEOPT), the following experiments were carded out. The release assay method by UV was established. By comparing the absorbing ability, silicon dioxide was used as the adsorbent. By assaying the disintegration time, citric acid and sodium hydrogen carbonate was used as disintegration substance. By comparing the similarity of profiles using f_2 factor method, the effects of the type of osmotic active agent, orifice size, coating weight gained on drug release were investigated. Based on the experiments, the SEOPT formulation was optimized, that is silicon dioxide was used as adsorbent, citric acid and sodium hydrogen carbonate was used as disintegration substance, mannitol was used as osmotic active agent, talc powder was used as lubricant. The coating solution was prepared by dissolving 27.0g cellulose acetate in 1000ml acetone and then adding 50 mL water solution with 10g PEG-400 dissolved in it. Then two orifice of 1.0mm were punched on two sides. In most release period, the drug was released at zero order, the cumulated release at 12h was 85%. The results of transmission electron microscope showed that self-made SEOPT could form regular and round emulsion particles. The volume diameter was 246nm, the surface diameter was 242nm.
     To investigate if the semi-SMEDDS and SEOPT could improve the bioavailability, the pharmacokinetics of Luode tablet, semi-SMEDDS and SEOPT was carried out. The C_(max) of Luode tablet, semi-solid SMEDDS and SEOPT were (1311.60±156.20)ng·mL~(-1)、 (2006.38±633.26) ng·mL~(-1)、(640.23±162.79) ng·mL~(-1); the t_(max) of Luode tablet, semi-SMEDDS and SEOPT were (2.83±0.61) h、(1.63±0.74) h、(4.50±1.22) h; the AUC of Luode tablet, semi-SMEDDS and SEOPT were (4063.36±822.30) ng·mL~(-1)·h、(6578.15±2508.09) ng·mL~(-1)·h、(6189. 68±1873. 58 ) ng·mL~(-1)·h. The relative bioavailability of semi-SMEDDS and SEOPT were (162±50) %, (152±33)%. The results of variance analysis by SPSS software showed that C_(max) of semi-SMEDDS increased significantly, C_(max) of SEOPT decreased significantly. Rank sum test showed that tmax of semi-SMEDDS move forward greatly and t_(max) of SEOPT move backward greatly. SPSS variance analysis results showed that semi-solid SMEDDS and SEOPT could improve the bioavailabitliy significantly. Semi-solid SMEDDS showed fast release characteristics and SEOPT showed sustained release characteristics. W-N method and L-R method both can be used to calculated in vitro and in vivo correlation well.
引文
[1] 马培奇.心血管疾病治疗药物的发展现状及其研究动态.中国制药信息2001,17(8):1-6.
    [2] 李振有,贾允英,王惠中.第3代β阻滞剂在心衰治疗中的作用武警医学2000,11,(8):479-481.
    [3] Love JN, Enlow B, Howell JM, Klein-Schwartz W, Litovitz TL. Electrocardio graphic changes associated with beta-blocket toxicity. Ann. Emerg. Med., 2002, 40 (6):603-610.
    [4] Ruffolo RR, Sauermelch CF, Willette RN. Hemodynamic differences between carvedilol and Labetalol in the cutaneous circulation. Eur J Pharmecol, 1990, 38 (Suppl 2):S112-S114.
    [5] Bril A, Slivak M, Dlmartino J, et al. Cardioprotective effects or carvedilol, a novel β-adrenoceptor antagonist with vardilatlog properties, in anaesthetized minipig, comparison with propanolol. Cardiovasc Res, 1992, 26:518-525.
    [6] 陈晓燕,李瑞杰,胡大一.新型β—阻滞剂---卡维地洛.中国医药导刊,2001,3(3):223—224.
    [7] Packer M, Bristow WR, Cohn JN, et al. Effect of carvedilol on morbidity and mortality in chronic heart failure. N Engl J Med, 1996, 334:1349-1355.
    [8] Australia/ New Zealand Heart Failure Research Collaborative Group. Randomized, placebo-controlled trial of carvedilol in patients with congestive heart failure due to ischemic heart disease. Lancel,.1997;349:375-380
    [9] 苏工.卡维地洛.临床药物治疗杂志,2003,1,(1):28-32.
    [10] Dugger, Harry A. Buccal sprays or capsules containing cardiovascular or renal drugs. US Patent 77,229,April 24,2003.
    [11] Fischer, Gina; Bar-Shalom, Daniel. Controlled release pharmaceutical compositions containing polymers. Wo Patent 24,429, March 27,2003.
    [12] Fischer, Gina; Bar-Shalom, Daniel. Controlled release solid dispersions containing carvedilol. Wo Patent 24,426, March 27,2003.
    [13] Oh, Choon K. Carvedilol formulations containing cyclodextrin. Wo Patent 28,718, April 10,2003.
    [14] Oh, Choon K. Oral composition of carvedilol. Wo Patent 28,649, April 10,2003.
    [15] Kusumoto, Keiji; Hoshino, Tetsuo. Sustained-release medicines containing angiotension II antagonists. Wo Patent 13,609, Febrary 20, 2003.
    [16] 冯少华,肖小河,高文远,马莉.提高难溶性药物生物利用度方法研究概述.解放军药学学报,21,(5):372—374.
    [17] 沙先宜.9-硝基喜树碱小肠吸收机理及其自微乳化给药系统的研究.复旦大学博士学位论文.
    [18] 徐琛,张钧寿.自我乳化药物传递系统.药学进展,2001,25(1):21—24.
    [19] Gershanik T, Benita S. Self-emulsifying oily formulation for improving oral absorption of lipophilic drugs. Eur J Pharm Biopharm. 2000, 50(2): 179.
    [20] Shah NH, Carvajal MT, Malick AW, et al. Self-emulsifying drug delivery system with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drugs, Int. J. Pharm,1994,106(1):15-23.
    [21] 寇欣.微乳给药系统的研究进展.天津药学,2005,17(6):49—52.
    [22] Bachynsky MO; Shah NH; C.I. Patel; A.W. Malick. Factors Affecting the Efficiency of Self-Emulsifying Oral Delivery System. Drug Dev Ind. Pharm. 1997,23 (8): 809-816.
    [23] Pouton CW. Self-emulsifying drug delivery systems:assessment of the efficiency of emulsification.Int J Pharm, 1985:27(3):355
    [24] T.R.Kommura, B Gurley, M.A.Khan, I.K.Reddy, Self-emulsifying drug delivery systems of coenzyme Q_(10):formulation. Int J Pharm, 2001(212): 233-246.
    
    
    [25] 张正权,陆彬.微乳给药系统研究概况.中国医药工业杂志.2001,31(3):139.
    [26] J. Y. Kiyasu, B. Bloom and I.L. Chaikoff. The portal transport of absorbed fatty acids. J.Biol.Chem. 1952, 199:415-419.
    [27] C.L.Bisgaier and R.M.Glickman. Intestinal synthesis, secretion and transport of lipoproteins, Annu. Rev. Physiol. 1983, 45: 625-636.
    [28] Holm R. Porter CJH. Examination of oral absorption and lymphatic transport of halofantrine in a triple-cannulated canine model after administration in self-microemulsifying drug delivery systems (SMEDDS) containing structured triglycerides. Eur J Pharm Sci. 2003,20, (1):91
    [29] Barry R.J. Eggenton J. Membrane potentials of epithelial cells in rat small intestine.J.Physiol.1972, 227,(1):201.
    [30] A.A. Attama, I.T. Nzekwe, P.O. Nnamani et al. The use of solid self-emulsifying systems in the delivery of diclofenac. Int. J. Pharm, 262, (2003): 23-28.
    [31] L. Halbaut, C. Barbe, A. Del Pozo. An investigation into physical and chemical properties of semi-solid self-emulsifying systems for hard gelatin capsules, Int. J. Pharm, 1996,130: 203- 212.
    [32] Vanderbist, Francis et al. Pharmaceutical semi-solid composition of isotretinoin US patent, 20040009225, January 15,2004.
    [33] Li Wenji et al. Free-flowing solid formulations with improved bio-availability of poorly water soluble drugs and process for making the same. US patent 20040115226, June 17, 2004.
    [34] Colin Pouton. Physiology Based Pharmaceutics: Lipid Formulations for Poorly Water-soluble Drugs. American Association of Pharmaceutical Scientists and China Pharmaceutical Association, Shenyang, September, 2005.
    [35] Barthelemy, Philippe et al. Composition with sustained release of active principle, capable of forming a microemulsion. US patent, 20010004459, June 21,2001.
    [36] 张瑛,张钧寿,陈国广等.盐酸维拉帕米自乳化缓释片的研制及释药行为的探讨.中国药科大学学报,2002,33,(3):208-210.
    [37] 卢恩先,江志强.难溶性药物口服渗透泵片工艺的研究进展.药学学报,2001,36(3):235-240.
    [38] Zia V, Rajewski RA, Bornancini ER, et al. Effect of alkyl chain length and degree of substitution on the complexation of sulfoalkyl ether-β-cyclodextrin with steroids. J. Pharm. Sci, 1997,86,(2):220-224.
    [39] Cardinal JR, Herbig SM, Korsmeyer RW, et al. Use of asymmetric membranes in delivery devices.
    ??US Patent, 5612059, March 18, 1992.
    [40] Janicki S, Cichon R, Jedras Z, et al. Gastrointesting therapeutic system delivering of a water insoluble drug: isosorbide dinitrate. Pharmazie, 1987, 42 (1):95-95.
    [41] HouHM, Zhu JP. The preparation and in vivo release of OROS. Chin J Hospital Pharm, 1982, 2, (5) : 265-266.
    [1] Trefor Morgan. Clinical Pharmacokinetics and Pharmacodynamics of Carvedilol. Clin. Pharmacokinet, 1994, 26 (5): 335-346.
    [2] Chert, Bonnie P., Chow, Moses S. S. Formulary, 1997, 32: 795-805.
    [3] G. Neugebauer, W. Akpan. Pharmacokinetics and Disposition of Carvedilol in Humans. Journal of Cardiovascular Pharmacology. 1987, 10 (suppl 11): 85-88.
    [4] 扈本荃,廉江平,张鹏等.反向高效液相色谱法测定血浆中卡维地洛的浓度.解放军药学学报,2007,23 (1):46-47.
    [5] 李国栋,范伟,居红卫等.自乳化释药系统的研究进展.国外医药——合成药 生化药 制剂分册 2001,22,(5):304-305.
    [6] Shui-Mei Khoo; Andrew J; Humberstone; Christopher J. H.; Porter; Glenn A; Edwards. Formulation design and bioavailability assessment of lipidic self-emulsifying formulations of halofantrine. Int. J. Pharm 1998, 167, (1): 155-164.
    [7] Bachynsky MO; Shah NH; C. I. Patel; A. W. Malick. Factors Affecting the Efficiency of Self-Emulsifying Oral Delivery System. Drug Dev Ind. Pharm, 1997, 23, (8): 809-816.
    [8] Colin W. Pouton. Self-emulsifying drug delivery systems: assessment of the efficiency of emulsification. Int J Pharm, 1985, 27: 335-348.
    [9] R. Aboofazeli, M. J. Lawrence. Investigations into the formation and characterization of phospholipid microemulsions. Ⅱ. Pseudo-ternary phase diagrams of systems containing water-lecithin-isopropyl myristate and alcohol: influence of purity of lecithin. Int. J. Pharm., 1994, 106: 51-61.
    [10] T. R. Kommuru, B. Gurley, M. A. Khan, et al. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int. J. Pharm. 2001, 212: 233-246.
    [11] M. Y. Levy, S. Benita. Drug release from submicronized o/w emulsion: a new in vitro kinetic evaluation model. Int. J. Pharm. 1990, 66: 29-37.
    [12] Barry R. J.; Eggenton J. Membrane potentials of epithelial cells in rat small intestine. J. Physiol. 1972, 227, (1): 201.
    [13] Yatyana Gershanik; Benita S. Self-emulsifying oily formulation for improving oral absorption of lipophilic drugs. Eur J Pharm Bio. 2000, 50, (1): 179-188.
    [14] 高晓黎,孙殿甲,程利勇.去氢骆驼蓬碱注射用乳剂中药物的相分布和体外释放研究.中成药.2000,22,(2):111-116.
    [15] Washington C. Drug release from microdisperse systems:a ritical review. Int J Pharm, 1990, 58, (1): 1-12.
    [16] 陆彬.药物新剂型与新技术 北京:人民卫生出版社,1998.
    [17] 刘华,李三鸣,袁悦.酮洛芬自乳化制剂的释药动力学研究.沈阳药科大学学报 2005,2,(2):81-95.
    [1] 徐贵霞,王玉丽,全东琴.自乳化释药系统的体外评价.解放军药学学报,2003,19(3):195-197.
    [2] Shah NH, Carvajal MT, Malick AW etc. Self-emulsifying drug delivery system with polyglycolyzed glycerides for improving in vitro dissolution and oral absorption of lipophilic drug. Int J Pharm, 1994, 106, (1): 15-23.
    [3] David J Hauss, Steven E. Fogal, et al. Lipid-Based Delivery Systems for Improving the Bioavailability and Lymphatic Transport of a Poorly Water-Soluble LTB_4 Inhibitor. Journal of Pharmaceuticsl Sciences. 1998, 87, (2): 164-169.
    [4] 吕迁洲,李雪宁,吴伟洁,陈伟力,沈熊.三种交沙霉素片剂的生物等效性研究.中国临床药学杂志 2000,10,(2):173-175.
    [5] 侯伟雄,李思华.SPSS 11.5 for windows 在药学研究领域中的应用.数理医药学杂志.2004,15(5):58-459.
    [6] 梁文权.生物药剂学与药物动力学 (第二版)北京:人民卫生出版社,2003.
    [7] S. Chakrabarti and F. M. Belpaire. Bioavailability of phenytoin in lipid containing dosage forms in rats. J. Pharm, Pharmac. 1978, 30: 330-331.
    [8] V. Stella, T. Higuchi. Enhancement of bioavailability of a hydrophobic amine antimalarial by formulation with oleic acid in a soft gelatin capsule. J. Pharma. Sci. 1978, 67: 1375-1377.
    [9] P. J. Carrigan and T. R. Bates. Biopharmaceutics of drugs administered in lipidcontaining dosage forms Ⅰ: GI absorption of grisefulvin from an oil-in-water emulsion in the rat, J. Pharm. Sci. 1973, 62: 1476-1479.
    [10] 毕殿洲.药剂学 (第四版) 北京:人民卫生出版社,1999.
    [11] B. D. Tarr and S. H. Yalkowsky. Enhanced intestinal absorption of cyclosporine in mrs through the reduction of emulsion droplet size, Pharmaceutical Research. 1989, 6: 40-43.
    [1] Hans Schreier.药物靶向技术 北京:中国医药科技出版社,2004.
    [2] 潘弘.chTNT-3 介导的主动靶向脂质体的研究.复旦大学博士论文.
    [3] 仝新勇,周建平,谭燕等.LC-MS/MS研究紫杉醇自组装前体脂质体在大鼠体内的组织分布性及靶向性.中国药科大学学报.2006,36,(4):318-322.
    [4] 毕殿洲.药剂学 (第四版) 北京:人民卫生出版社,1999.
    [1] Kirsten Westesen, Britta Siekmann. Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles. Int. J. Pharm, 1997, 151: 35 45.
    [2] L. Halbaut, C. Barbé, M. Aróztegui, et al. Oxidative stability of semi. solid excipient mixtures with com oil and its implication in the degradation of vitamin A. Int. J. Pharm, 1997, 147: 31 40.
    [3] 刘华,李三鸣,袁悦等.酮洛芬自乳化制剂的释药动力学研究.沈阳药科大学学报,2005,22,(6):81-95.
    [4] Colin Pouton. Physiology Based Pharmaceutics: Lipid Formulations for Poorly Water-soluble Drugs. American Association of Pharmaceutical Scientists and China Pharmaceutical Association, Shenyang, September, 2005.
    [5] Bok Ki Kang, Jin Soo Lee, Se Kang Chon, et al. Development of self-microemulsifying drug delivery systems(SMEDDS) for oral bioavailability enhancement of simvastatin in beagle dogs. Int. J. Pharm, 2004, 271: 65-73.
    [6] O. Chambin, V. Jannin, D. Champion. Influence of cryogenic grinding on properties of a self-emulsifying formulation, Int J Pharma, 2004, 278: 79-89.
    [7] Ho-Jin Kim, Kyung Ae Yoon. Preparation and in vitro evaluation of self-microemulsifying drug delivery systems containing idebenone. Drag Dev Ind. Pharm, 2000, 26, (5): 523-52.
    [8] Eddy Castellanos Gil, Antonio Iraizoz Colarte, Bernard Bataille, et al. Development and optimization of a novel sustained-release dextran tablet formulation for propranolol hydrochloride, Int. J. Pharm. 2006, in press.
    [9] T. R. Kommuru, B. Gurley, M. A. Khan, et al. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: formulation development and bioavailability assessment. Int. J. Pharm. 2001, 212: 233-246.
    [10] M. Y. Levy, S. Benita. Drug release from submicronized o/w emulsion: a new in vitro kinetic evaluation model. Int. J. Pharm. 1990, 66: 29-37.
    [11] O. Chambin, V. Jannin. Influence of cryogenic grinding on properties of a self-emulsifying formulation. Int. J. Pharm., 2004, 278: 79-89.
    [12] V. Tantishaiyakul, N. Kaewnopparat, S. Ingkatawornwong. Properties of solid dispersions of piroxicamin polyvinylpyrrolidone, Int. J. Pharm., 1999, 181: 143-151.
    [13] Porubcan, L. S., Serna, C. J., White, J. L., Hem, S. L. Mechanism of adsorption of clindamycin and tetracycline by montmorillonite, J. Pharm. Sci, 1978, 67: 1081-1087.
    [1] 卢恩先,江志强.难溶性药物口服渗透泵片工艺的研究进展.药学学报,2001,36(3):235-240.
    [2] Jeffrey W. Moore, Henry H. Flanner. Mathematical Comparison of Dissolution Profiles. Pharmaceutical Technology. 1996, (6): 64-74.
    [3] 刘清飞,罗国安,王义明.缓控释制剂释放度相似性评价方法研究进展.中国药学杂志,2006,41,(15):1121-1124.
    [4] Jorge polonia, Rui Ramos, Joao P Ferreira, et al. High Dietary Salt Intake In Hypertensives, Relatives Of Patients With Stroke And In Universtiy Students. The Drama of A Country With Rate Of Mortality By Stroke. Nutrition and Electrolytes. 2005, 18, (5): 575.
    [5] Robert O. William Ⅲ., Vorapann Mahaguna, Mongkol Sriwongjanya. Characterization of an inclusion complex of cholesterol and hydroxypropyl-β-cyclodextrin. European Journal of Pharmaceutics and Biopharmaceutics, 1998, 46: 355-360
    [6] Porubcan, L. S., Serna, C. J., White, J. L., Hem, S. L. Mechanism of adsorption of clindamycin and tetracycline by montmorillonite, Journal of Pharmaceutical Science, 1978, 67: 1081-1087.
    [7] Tatyana Gershanik, Simon Benita. Self-dispersing lipid formulations for improving oral absorption of lipophilic drugs. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50: 179-188.
    [8] 欧阳德方.复方盐酸二甲双胍/格列吡嗪同步缓 (控) 释制剂的设计与评价.沈阳药科大学硕士论文.
    [9] F. Theeuwes, Elementary osmotic pump, Journal of Pharmaceutical Science, 1975, 64: 1987-1991.
    [10] Xiaodong Li, Wei-san Pan, Shu-fang Nie, et al. Studies on controlled release effervescent osmotic pump tablets from Traditional Chinese Medicine Compound Recipe. Journal of Controlled Release. 2004, 96: 359-367.
    [1] 梁文权.生物药剂学与药物动力学 (第2版) 北京:人民卫生出版社,2003.
    [2] 魏树理.生物药剂学与药物动力学 北京:北京医科大学、中国协和医科大学联合出版社,1997.
    [3] 张嘉杰,余传林,徐伟等.卡维地洛人体药代动力学及生物利用度研究 第一军医大学学报1999,16 (6):575-577.
    [4] 陈汇,顾世芬,肖宙等.国产卡维地洛药代动力学及相对生物利用度研究 中国临床药理学杂志 2000,16 (3):213-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700