用户名: 密码: 验证码:
木材导热系数的分形与神经网络模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过多种手段对木材的导热系数进行了理论和实验研究。提出了一个计算横纹导热系数的分形模型和一个预测导热系数的人工神经网络模型,并利用瞬态测量法的实验数据对模型进行了验证。
     首先对传统的瞬态平面热源法进行了改进。通过拉普拉斯变换方法求解了一维有限厚度平板的非稳态导热微分方程,得到了平板木材试样的温度随时间和平板厚度变化的短时间公式,并由此建立了恒定热流加热的木材导热系数瞬态测量实验台。利用此实验台测量了不同含水率落叶松和红松试样的径向导热系数并与文献中的数据进行了比较。该实验台还可以同时测量出木材的热扩散系数和比热等热物性参数。
     其次,提出了一个对木材的横纹导热系数进行理论估算的分形模型。通过扫描电镜图片对木材试样横纹剖面的多孔结构特征进行了观察,并利用分形理论对其进行了分析。采用盒维数法计算得到了4种木材纤维多孔结构的分形维数分别为1.38、1.49、1.38和1.44。然后研究了单个木材细胞的导热过程,通过热阻网络模拟的方法分别推导出了其弦向和径向导热系数的表达式,并由木材孔隙率与分形维数的关系式得到了其导热系数随分形维数变化的表达式。根据此分形模型对木材的径向导热系数进行了计算并将其结果与实验测量结果和文献中的数据进行了比较。
     最后,建立了预测木材导热系数随各种物性参数变化的人工神经网络模型。网络类型为单隐层BP神经网络,以木材的温度和孔隙率为输入量,并以其导热系数为输出量。设隐层的神经元数分别为3~8个构建了6个神经网络,并利用桦木的导热系数对它们分别进行了训练。通过对训练误差的比较分析,得到了具有最优性能的网络型式为隐层具有6个神经元的网络,其训练结果的平均相对误差为0.21%,平均绝对误差为0.000433W/mK。利用该最优网络对不同温度和孔隙率情况下桦木的导热系数进行了预测,并将预测结果与实验和文献中的数据进行了对比。
     研究结果表明,利用改进后的瞬态平面热源法能快速地对不同含水率的木材
The thermal conductivity of wood was studied in this thesis using several theoretical and experimental methods. A fractal model and an artificial neural network (ANN) model were proposed to predict the thermal conductivity of wood, and the experimental data was used to validate them.
    First, the traditional transient plane source (TPS) method was improved. The transient heat conduction differential equation of one-dimensional slab with limited thickness was solved using Laplace transform. Moreover, the short time formula that describes the temperature of the flat wood as a function of time and thickness was obtained. The experimental equipment for measuring the thermal conductivity of wood at constant heat flux was also built. Subsequently, the thermal conductivity of the samples of larch and Korean pine with different moisture contents were measured using the improved transient measurement method, and the measured results were compared with the available literature data. In addition, the other thermal properties such as thermal diffusivity and specific heat can be measured simultaneously.
    Secondly, a fractal model was proposed to predict the transverse thermal conductivity of wood. The porous structure of wood samples on their cross sections was observed using the scanning electron microscope (SEM) images and analyzed via the fractal theory. The box-counting dimensions of four kinds of wood samples were calculated, which are equal to 1.38, 1.49, 1.38 and 1.44, respectively. Moreover, the heat conduction process of a single cell was studied and the tangential and radial thermal conductivity of wood were obtained by the thermal resistance network method. The relationship between the thermal conductivity and the porosity was achieved, and the formula that describes the thermal conductivity changing with fractal dimension was also gained. According to the proposed fractal model, the radial thermal conductivity of wood was calculated and compared with the experimental and the available literature data.
    Finally, to predict the variance of the thermal conductivity versus the physical properties of wood, a model based on artificial neural network was proposed. The
引文
[1] 俞自涛.着火前木材传热传质过程的实验和理论研究[D].杭州:浙江大学博士学位论文,2005.
    [2] 王玉芝.木材热物性测试的理论与实验研究[D].杭州:浙江大学硕上学位论文,2004.
    [3] 黄君丽.热管式平板导热仪及木材导热特性的研究[D].杭州:浙江大学硕士学位论文, 2005.
    [4] Kollmann F P. Principles of wood science and technology [M]. New York: Springer, 1968.
    [5] Fredlund B. A model for the heat and mass transfer in timber structures during fire [D]. Lund: Ph.D. Dissertation of Lund University, 1988.
    [6] Maclean J D. Thermal conductivity of wood [J]. Heating, Piping and Air Conditioning, 1941, 13: 380-391.
    [7] VanDusen M S. The thermal conductivity of heat insulators [J]. Journal of American Society of Heating and Ventilating Engineering, 1920, 26: 625-656.
    [8] Rowley F B. The heat conductivity of wood at climatic temperature difference [J]. Heating, Piping and Air Conditioning, 1934, 5:313-323.
    [9] Wangard F F. Transverse heat conductivity of wood [J]. Heating, Piping and Air Conditioning, 1940, 12: 459-464.
    [10] Gu H M. Structure based, two-dimension anisotropic, transient heat conduction for wood [D]. Blacksburg: Ph.D. Dissertation of Virginia Polytechnic Institute and State University, 2001.
    [11] Gustafsson S E, Karawacki, Kahn M N. Transient hot-strip method for simultaneously measuring thermal conductivity and thermal diffusivity of solids and fluids [J]. Physics D: Applied Physics, 1979, 12: 1411-1421.
    [12] Gustafsson S E. Transient plane source technique for thermal conductivity and thermal diffusivity measurements of solid materials [J]. Review of Scientific Instruments, 1991, 62(3): 797-804.
    [13] Suleiman B M, Larfeldt J, Leckner B. Thermal conductivity and diffusivity of wood [J]. Wood Science and Technology, 1999, 33: 465-473.
    [14] 胡亚才,范利武,黄君丽,等.瞬态法测量木材热物性的理论与实验研究[J].浙江大学学报:工学版,2005,39(11):1793-1796.
    [15] 俞自涛,胡亚才,洪荣华,等.温度和热流方向对木材传热特性的影响[J].浙江大学学报:工学版,2006,40(1):123-125,166.
    [16] Wagner Th, Gotz S, Eska, G. Thermal conductivity of wood at low temperatures [J]. Cryogenics, 1994, 34(8): 655-657.
    [17] MANGAL R, SAXENA N S, SREEKALA M S, et al. Thermal properties of pineapple leaf fiber reinforced composites [J]. Materials Science & Engineering A, 2003, 339 (2): 281-285.
    [18] ZHU Shen, LI C, SU Ching-hua, et al. Thermal diffusivity, thermal conductivity, and specific heat capacity measurements of molten tellurium [J]. Journal of Crystal Growth, 2003, 250 (2): 269-273.
    [19] BANASZKIEWICZ M, SEIFERLIN K, SPOHN T, et al. Transient hot-wire instrument for the measurement of the thermal conductivity of solids up to 590K [J]. Review of Scientific Instruments, 1997, 68 (11): 4184-4191.
    [20] BOHAC V, GUSTAFASSON M K, KUBACIR L, et al. Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyzer [J]. Review of Scientific Instruments, 2000, 71 (6): 77-85.
    [21] ANISUR R M, MAQSOOD A. Measurement of thermal transport properties with an improved transient plane source technique [J]. International Journal of Thermophysics, 2003, 24 (3): 867-884.
    [22] 成俊卿.木材学[M].北京:中国林业出版社,1985.
    [23] 渡边治人.木材应用基础[M].上海:上海科学技术出版社,1986.
    [24] THUNMAN H, LECKNER B. Thermal conductivity of wood—models for different stages of combustion [J]. Biomass and Bioenergy, 2002, 23: 47-54.
    [25] ASAKO Y, KAMIKOGA H, NISHIMURA H, et al. Effective thermal conductivity of compressed woods [J]. International Journal of Heat and Mass Transfer, 2002, 45: 2243- 2253.
    [26] MANDELBROT B B. The fractal geometry of nature [M]. New York, W. H. Freeman and Company, 1982.
    [27] PEITGEN H O, SAUPE D, BARNSLEY M F, et al. The science of fractal images [M]. New York, Springer-Verlag, 1988.
    [28] RADLINSKI A P, IOANNIDIAS M A, HINDE A L, et al. Angstrom-to-millimeter characterization of sedimentary rock microstructure [J]. Journal of Colloid and Interface Science, 2004, 274: 607-612.
    [29] BISHOP C M. Neural networks and their applications [J]. Review of Scientific Instruments, 1994, 65 (6): 1803-1832.
    [30] SABLANI S S, RAHMAN M S. Using neural networks to predict thermal conductivity of food as a function of moisture content, temperature and apparent porosity [J]. Food Research International, 2003, 36 (6): 617-623.
    [31] O.O. Abe, C.J. Simonson, R.W. Besant, et al. Effectiveness of energy wheels from transient measurements. Part I: Prediction of effectiveness and uncertainty [J]. International Journal of Heat and Mass Transfer, 2006, 49(1-2): 52-62.
    [32] O.O. Abe, C.J. Simonson, R.W. Besant, et al. Effectiveness of energy wheels from transient measurements: Part Ⅱ—Results and verification [J]. International Journal of Heat and Mass Transfer, 2006, 49(1-2): 63-77.
    [33] Faruk O. Alpak, Carlos Torres-Verdin, Kamy Sepehmoori. Estimation of axisymmetric spatial distributions of permeability and porosity from pressure-transient data acquired with in situ permanent sensors [J]. Journal of Petroleum Science and Engineering, 2004, 44(3-4): 231-267.
    [34] V. Szekely. Enhancing reliability with thermal transient testing [J]. Mieroelectronies Reliability, 2002, 42(4-5): 629-640.
    [35] L. Angrisani, P. Daponte, M. D'Apuzzo. A method for the automatic detection and measurement of transients. Part Ⅰ: the measurement method [J]. Measurement, 1999, 25(1): 19-30.
    [36] L. Angrisani, P. Daponte, M. D'Apuzzo. A method for the automatic detection and measurement of transients. Part Ⅱ: applications [J]. Measurement, 1999, 25(1): 31-40.
    [37] Jong-Won Lee, Su-Ⅱ Pyun. Anomalous behaviour of hydrogen extraction from hydride-forming metals and alloys under impermeable boundary conditions [J]. Eleetro chimica Acta, 2005, 50(9): 1777-1805.
    [38] P.J. Holmes, R. G. White. Data analysis criteria and instrumentation requirements for the transient measurement of mechanical impedance [J]. Journal of Sound and Vibration, 1972, 25(2): 217-243.
    [39] J.M. Watson, M. G Baron. Precise static and dynamic permeation measurements using a continuous-flow vacuum cell [J]. Journal of Membrane Science, 1995, 106(3): 259-268.
    [40] H. MasudaS, SasakiM. Higano, H. Sasaki. A method for the simultaneous measurement of total hemispherical emissivity and specific heat of metals by the transient calorimetric technique [J]. Experimental Thermal and Fluid Science, 1991, 4(2): 218-225.
    [41] C.K. Yeom, B. S. Kim, J. M. Lee. Precise on-line measurements of permeation transients through dense polymeric membranes using a new permeation apparatus [J]. Journal of Membrane Science, 1999, 161(1-2): 55-66.
    [42] V. Szekely. A new evaluation method of thermal transient measurement results[J]. Mieroelectronies Journal, 1997, 28(3): 277-292.
    [43] Marta Rencz. New possibilities in the thermal evaluation, offered by transient testing [J]. Microelectronics Journal, 2003, 34(3) 171-177.
    [44] J. S. Laird, T. Hirao, H. Mori, et al. Development of a new data collection system and chamber for microbeam and laser investigations of single event phenomena [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, 181(1-4): 87-94.
    [45] G Oddie, H. Shi, L. J. Durlofsky, et al. Experimental study of two and three phase flows in large diameter inclined pipes [J]. International Journal of Multiphase Flow, 2003, 29(4): 527-558.
    [46] Wilfried Roetzel, Frank Balzereit. Determination of axial dispersion coefficients in plate heat exchangers using residence time measurements [J]. Revue Generale de Thermique, 1997, 36(8): 635-644.
    [47] Aleksander Saljnikov, Branislav Repic. Development of a high-speed spectrophotometer for transient measurement of pulverized-coal flame radiation emission [J]. Experimental Thermal and Fluid Science, 1991,4(6): 747-750.
    [48] M. A. Grant, R. B. Glover. Two-phase heat and mass transfer experiment at well BR21 Broadlands [J]. Geothermics, 1984,13(3): 193-213.
    [49] Stratis V. Sotirchos. Steady-state versus transient measurement of effective diffusivities in porous media using the diffusion-cell method [J]. Chemical Engineering Science, 1992, 47(5): 1187-1198.
    [50] Uri Gat, Donald S. Kammer, O. J. Hahn. The effect of temperature dependent properties on transient measurement with intrinsic thermocouple [J]. International Journal of Heat and Mass Transfer, 1975,18(12): 1337-1342.
    [51] Co§kun Gulser. Effect of forage cropping treatments on soil structure and relationships with fractal dimensions [J]. Geoderma, 2006,131(1-2): 33-44.
    [52] D. Gimenez, E. Perfect, W. J. Rawls, et al. Fractal models for predicting soil hydraulic properties: a review [J]. Engineering Geology, 1997,48(3-4): 161-183.
    [53] V. I. Roldughin, V. V. Vysotskii. Percolation properties of metal-filled polymer films, structure and mechanisms of conductivity [J]. Progress in Organic Coatings, 2000, 39(2-4): 81-100.
    [54] A. G Hunt. Applications of percolation theory to porous media with distributed local conductances [J]. Advances in Water Resources, 2001,24(3-4): 279-307.
    [55] Dionissios T. Hristopulos. Renormalization group methods in subsurface hydrology: overview and applications in hydraulic conductivity upscaling [J]. Advances in Water Resources, 2003,26(12): 1279-1308.
    [56] Yongfu Xu. Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution [J]. Computers and Geotechnics, 2004,31(7): 549-557.
    [57] A. G Hunt, G W. Gee. Application of critical path analysis to fractal porous media: comparison with examples from the Hanford site [J]. Advances in Water Resources, 2002, 25(2): 129-146.
    [58] Y. F. Xu, Ping Dong. Fractal approach to hydraulic properties in unsaturated porous media [J]. Chaos, Solitons & Fractals, 2004,19(2): 327-337.
    [59] A. G Hunt. Percolative transport in fractal porous media [J]. Chaos, Solitons & Fractals, 2004,19(2): 309-325.
    [60] F. Bordi, C. Cametti, A. Rosi, et al. Frequency domain electrical conductivity measurements of the passive electrical properties of human lymphocytes [J]. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1993, 1153(1): 77-88.
    [61] J. L. McCauley. Models of permeability and conductivity of porous media [J]. Physica A: Statistical and Theoretical Physics, 1992,187(1-2): 18-54.
    [62] Bu-Xuan Wang, Le-Ping Zhou, Xiao-Feng Peng. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles [J]. International Journal of Heat and Mass Transfer, 2003,46(14): 2665-2672.
    [63] R. D. McLeod, H. C. Card, Interpretation of amorphous silicon behavior using fractal geometry [J]. Journal of Non-Crystalline Solids, 1988,105(1-2): 17-26.
    [64] Vladimir N. Prigodin, Alexander N. Samukhin, Arthur J. Epstein. Variable range hopping in low-dimensional polymer structures [J]. Synthetic Metals, 2004,141(1-2): 155-164.
    [65] Paul MeakinMichael Murat, Amnon Aharony Jens Feder, Torstein Jossang. Diffusion-limited aggregation near the percolation threshold [J]. Physica A: Statistical and Theoretical Physics, 1989, 155(1): 1-20.
    [66] Hansgeorg Pape, Lutz Riepe, Jurgen R. Schopper. Interlayer conductivity of rocks — a fractal model of interface irregularities for calculating interlayer conductivity of natural porous mineral systems [J]. Colloids and Surfaces, 1987,27(1-3): 97-122.
    [67] Hansgeorg Pape, Lutz Riepe, Jurgen R. Schopper. Interlayer conductivity of rocks — a fractal model of interface irregularities for calculating interlayer conductivity of natural porous mineral systems [J]. Colloids and Surfaces, 1987,27(4): 97-122.
    [68] A. G. Hunt. Continuum percolation theory for pressure-saturation characteristics of fractal soils: extension to non-equilibrium [J]. Advances in Water Resources, 2004, 27(3): 245- 257.
    [69] Cezary Sawiski, Zofia Sokoowska, Ryszard Walczak, et al. Fractal dimension of peat soils from adsorption and from water retention experiments [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002,208(1-3): 289-301.
    [70] Karl-Michael Jager, Douglas H. McQueen. Fractal agglomerates and electrical conductivity in carbon black polymer composites [J]. Polymer, 2001, 42(23): 9575-9581.
    [71] Oldrich Zmeskal, Miroslav Buchnicek, Martin Vain. Thermal properties of bodies in fractal and cantorian physics [J]. Chaos, Solitons & Fraetals, 2005, 25(5): 941-954.
    [72] E. Kozlovskaya, S. E. Hjelt. Modeling of elastic and electrical properties of solid-liquid rock system with fractal microstructure [J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2000, 25(2): 195-200.
    [73] Yakov Pachepsky, Dennis Timlin. Water transport in soils as in fractal media [J]. Journal of Hydrology, 1998, 204(1-4): 98-107.
    [74] Beming Yu, Mingqing Zou, Yongjin Feng. Permeability of fractal porous media by Monte Carlo simulations [J]. International Journal of Heat and Mass Transfer, 2005, 48(13): 2787-2794.
    [75] C. Hudson, C. L. Briens, A. Prakash. Effect of inclination on liquid-solid fluidized beds [J]. Powder Technology, 1996, 89(2): 101-113.
    [76] Vincenzo Comegna, Paolo Damiani, Angelo Sommella. Use of a fractal model for determining soil water retention curves [J]. Geoderma, 1998, 85(4): 307-323.
    [77] Anthony P. Roberts, Mark A. Knackstedt. Transport and elastic properties of fractal media [J]. Physiea A: Statistical and Theoretical Physics, 1996, 233(3-4): 848-858.
    [78] Silong Lu, Fred J. Molz, Hui Hai Liu. An efficient, three-dimensional, anisotropic, fractional Brownian motion and truncated fractional Levy motion simulation algorithm based on successive random additions [J]. Computers & Geosciences, 2003, 29(1): 15-25.
    [79] S. Mikake, H. Yoshida, K. Koide, et al. Methodology development for modeling hetero geneous conductivity fields for a sandstone type uranium deposit, central Japan [J]. Engineering Geology, 2000, 56(1-2): 185-195.
    [80] Coskun Gulser. Effect of forage cropping treatments on soil structure and relationships with fractal dimensions [J]. Geoderma, 2006, 131(1-2): 33-44.
    [81] L.A. Briens, C. L. Briens, A. Margaritis, et al. Characterization of channelling in multiphase systems. Application to a liquid fluidized bed of angular Biobone particles [J]. Powder Technology, 1997, 91(1): 1-9.
    [82] A.G. Hunt. Some comments on the scale dependence of the hydraulic conductivity in the presence of nested heterogeneity [J]. Advances in Water Resources, 2003, 26(1): 71-77.
    [83] Asya S. Skal. A new characterization of three-dimensional conductivity backbone above and below the percolation threshold [J]. Solid State Communications, 1996, 99(5): 341-345.
    [84] Ce-wen Nan, Douglas M. Smith. Electrical and fractal properties of composite solid electrolytes [J]. Materials Letters, 1990, 10(3): 109-111.
    [85] T. Hamaide, C. Carre, A. Guyot. Influence of the peo macromonomers on the ionic transport and aging processes in heterogeneous solid polymer electrolytes: A fractal approach [J]. Solid State Ionics, 1990,39(3-4): 173-186.
    [86] Pedro G Toledo, H. Ted Davis, L. E. Scriven. Fluids in fractal porous media: scaling of transport properties [J]. Physica A: Statistical and Theoretical Physics, 1992, 185(1-4): 228-234.
    [87] J0rgen K. Kjems. Thermal transport in fractal systems [J]. Physica A: Statistical and Theoretical Physics, 1992, 191(1-4): 328-334.
    [88] F. Bordi, C. Cametti, P. Codastefano, et al. Electrical conductivity of colloidal systems during irreversible aggregation [J]. Physica A: Statistical and Theoretical Physics, 1990, 164(3): 663-672.
    [89] G A. Niklasson. Fractals and the ac conductivity of disordered materials [J]. Physica D: Nonlinear Phenomena, 1989, 38(1-3): 260-265.
    [90] James W. Kirchner, Xiahong Feng, Colin Neal. Catchment-scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations [J]. Journal of Hydrology, 2001, 254(1-4): 82-101.
    [91] A. G. Hunt. An explicit derivation of an exponential dependence of the hydraulic conductivity on relative saturation [J]. Advances in Water Resources, 2004, 27(2): 197- 201.
    [92] A. G Hunt. Continuum percolation theory for water retention and hydraulic conductivity of fractal soils: estimation of the critical volume fraction for percolation [J]. Advances in Water Resources, 2004,27(2): 175-183.
    [93] SABLANI S S, BAIK O D, MARCOTTE M. Neural networks for predicting thermal conductivity of bakery products [J]. Journal of Food Engineering, 2002,52(2): 299-304.
    [94] Rakesh Kumar, S.C. Kaushik, S.N. Garg, Heating and cooling potential of an earth-to-air heat exchanger using artificial neural network [J]. Renewable Energy, 2006, 31(6): 1139- 1155.
    [95] Adnan Parlak, Yasar Islamoglu, Halit Yasar, et al. Application of artificial neural network to predict specific fuel consumption and exhaust temperature for a diesel engine [J]. Applied Thermal Engineering, 2006,26(8-9): 824-828.
    [96] Moh'd Sami Ashhab, Ahmed Al-Salaymeh. Optimization of hot-wire thermal flow sensor based on a neural net model [J]. Applied Thermal Engineering, 2006,26(8-9): 948-955.
    [97] Kuentai Chen, Yue Jiao, E. Stanley Lee. Fuzzy adaptive networks in thermal comfort [J]. Applied Mathematics Letters, 2006,19(5): 420-426.
    [98] C. Mugler, M. Filippi, Ph. Montarnal, J.-M. Martinez, et al. Determination of the thermal conductivity of opalinus clay via simulations of experiments performed at the Mont Terri underground laboratory [J]. Journal of Applied Geophysics, 2006,58(2): 112-129.
    [99] A. Esnoz, P.M. Periago, R. Conesa, et al. Application of artificial neural networks to describe the combined effect of pH and NaCl on the heat resistance of Bacillus stearothermophilus [J]. International Journal of Food Microbiology, 2006, 118(2): 153- 158.
    [100] Ahmed Al-Salaymeh, Moh'd Sami Ashhab. Modelling of a novel hot-wire thermal flow sensor with neural nets under different operating conditions [J]. Sensors and Actuators A: Physical, 2006, 126(1): 7-14.
    [101] E.C. Goncalves, L.A. Minim, J.S.R. Coimbra, et al. Modeling sterilization process of canned foods using artificial neural networks [J]. Chemical Engineering and Processing, 2005, 44(12): 1269-1276.
    [102] A. Abbassi, L. Bahar. Application of neural network for the modeling and control of evaporative condenser cooling load [J]. Applied Thermal Engineering, 2005, 25(17-18): 3176-3186.
    [103] Enrique Teruel, Crist6bal Cortes, Luis Ignacio Diez, et al. Monitoring and prediction of fouling in coal-fired utility boilers using neural networks [J]. Chemical Engineering Science, 2005,60(18): 5035-5048.
    [104] S. Atthajariyakul, T. Leephakpreeda. Neural computing thermal comfort index for HVAC systems [J]. Energy Conversion and Management, 2005,46(15-16): 2553-2565.
    [105] Xavier Maldague, Yves Largouet, Jean-Pierre Couturier. A study of defect depth using neural networks in pulsed phase thermography: modelling, noise, experiments [J]. Revue Generate de Thermique, 1998,37(8): 704-717.
    [106] M. A. Hussain, M. Shafiur Rahman, C. W. Ng. Prediction of pores formation (porosity) in foods during drying: generic models by the use of hybrid neural network [J]. Journal of Food Engineering, 2002, 51(3): 239-248.
    [107] Hong Yang, Jun Ni. Dynamic neural network modeling for nonlinear, nonstationary machine tool thermally induced error [J]. International Journal of Machine Tools and Manufacture, 2005,45(5): 455-465.
    
    [108] S. S. Sablani, H. S. Ramaswamy, S. Sreekanth, et al. Neural network modeling of heat transfer to liquid particle mixtures in cans subjected to end-over-end processing [J]. Food Research International, 1997,30(2): 105-116.
    [109] Narayan Srinivasa, John C. Ziegert. Automated measurement and compensation of thermally induced error maps in machine tools [J]. Precision Engineering, 1996, 19(2-3): 112-132.
    [110] Yoshihiro Ootao, Ryuusuke Kawamura, Yoshinobu Tanigawa, et al. Optimization of material composition of nonhomogeneous hollow sphere for thermal stress relaxation making use of neural network [J]. Computer Methods in Applied Mechanics and Engineering, 1999, 180(1-2): 185-201.
    [111] Soteris A. Kalogirou, Milorad Bojic. Artificial neural networks for the prediction of the energy consumption of a passive solar building [J]. Energy, 2000,25(5): 479-491.
    [112] Lidija Irmannik Beli, Igor Beli, Bojan Erjavec, et al. Neural network modelling of cold-cathode gauge parameters [J]. Vacuum, 2003, 71(4): 505-515.
    [113] Abdullatif E. Ben-Nakhi, Mohamed A, Mahmoud. Cooling load prediction for buildings using general regression neural networks [J]. Energy Conversion and Management, 2004, 45(13-14): 2127-2141.
    [114] L. Boillereaux, C. Cadet, A. Le Bail. Thermal properties estimation during thawing via real-time neural network learning [J]. Journal of Food Engineering, 2003, 57(1): 17-23.
    [115] Eric W. M. Lee, Richard K. K. Yuen, S. M. Lo, et al. A novel artificial neural network fire model for prediction of thermal interface location in single compartment fire [J]. Fire Safety Journal, 2004, 39(1): 67-87.
    [116] Liu Qingbin, Ji Zhong, Liu Mabao, et al. Acquiring the constitutive relationship for a thermal viscoplastic material using an artificial neural network [J]. Journal of Materials Processing Technology, 1996, 62(1-3): 206-210.
    [117] Xianzhong, CuiKang, G Shin. Application of neural networks to temperature control in thermal power plants [J]. Engineering Applications of Artificial Intelligence, 1992, 5(6): 527-538.
    [118] S.S. Sablani, A. Kacimov, J. Perret, et al. Non-iterative estimation of heat transfer coefficients using artificial neural network models [J]. International Journal of Heat and Mass Transfer, 2005,48(3-4): 665-679.
    [119] C. Milgler, M. Filippi, Ph. Montarnal, et al. Determination of the thermal conductivity of opalinus clay via simulations of experiments performed at the Mont Terri underground laboratory [J]. Journal of Applied Geophysics, 2006, 58(2): 112-129.
    [120] Adnan Sozen, M. Ali Akcayol. Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle [J]. Applied Energy, 2004, 79(3): 309- 325.
    [121] Jolanta Bryjak, Krzysztof Ciesielski, Ireneusz Zbicihski. Modelling of glucoamylase thermal inactivation in the presence of starch by artificial neural network [J]. Journal of Biotechnology, 2004, 114(1-2): 177-185.
    [122] Adnan Sozen, Mehmet Ozalp, Erol Arcakliolu. Investigation of thermodynamic properties of refrigerant/absorbent couples using artificial neural networks [J]. Chemical Engineering and Processing, 2004,43(10): 1253-1264.
    [123] Abdullatif E. Ben-Nakhi, Mohamed A. Mahmoud. Cooling load prediction for buildings using general regression neural networks [J]. Energy Conversion and Management, 2004, 45(13-14): 2127-2141.
    [124] Athanassios A. Argiriou, Ioannis Bellas-Velidis, Michael Kummert, et al. A neural network controller for hydronic heating systems of solar buildings [J]. Neural Networks, 2004, 17(3): 427-440.
    [125] R. C. O. Sebastiao, J. P. Braga, M. I. Yoshida. Competition between kinetic models in thermal decomposition: analysis by artificial neural network [J]. Thermochimica Acta, 2004, 412(1-2): 107-111.
    [126] Sofiane Guessasma, Ghislain Montavon, Christian Coddet. Modeling of the APS plasma spray process using artificial neural networks: basis, requirements and an example [J]. Computational Materials Science, 2004, 29(3): 315-333.
    [127] Eric W. M. Lee, Richard K. K. Yuen, S. M. Lo, et al. A novel artificial neural network fire model for prediction of thermal interface location in single compartment fire [J]. Fire Safety Journal, 2004, 39(1): 67-87.
    [128] Tsuyoshi Horiguchi, Hideyuki Takahashi, Keisuke Hayashi, et al. Dynamic programming for optimal packet routing control using two neural networks [J]. Physiea A: Statistical Mechanics and its Applications, 2004, 339(3-4): 653-664.
    [129] G. Scalabrin, L. Piazza, M. Condosta. Convective cooling of supercritical carbon dioxide inside tubes: heat transfer analysis through neural networks [J]. International Journal of Heat and Mass Transfer, 2003, 46(23): 4413-4425.
    [130] Jenq-Shyong Chen, Wei-Yao Hsu. Characterizations and models for the thermal growth of a motorized high speed spindle [J]. International Journal of Machine Tools and Manu facture, 2003, 43(11): 1163-1170.
    [131] Adnan Sozen, Erol Arcakliolu, Mehmet Ozalp. A new approach to thermodynamic analysis of ejector-absorption cycle: artificial neural networks [J]. Applied Thermal Engineering, 2003, 23(8): 937-952.
    [132] Ji-Zheng Chu, Shyan-Shu Shieh, Shi-Shang Jang, et al. Constrained optimization of combustion in a simulated coal-fired boiler using artificial neural network model and information analysis [J]. Fuel, 2003, 82(6): 693-703.
    [133] L. Boillereaux, C. Cadet, A. Le Bail. Thermal properties estimation during thawing via real-time neural network learning [J]. Journal of Food Engineering, 2003, 57(1): 17-23.
    [134] R. Ramesh, M. A. Mannan, A. N. Poo, et al. Thermal error measurement and modelling in machine tools. Part Ⅱ. Hybrid Bayesian Network—support vector machine model [J]. International Journal of Machine Tools and Manufacture, 2003, 43(4): 405-419.
    [135] T. Abbas, M. M. Awais, F. C. Lockwood. An artificial intelligence treatment of devo- latilization for pulverized coal and biomass in co-fired flames [J]. Combustion and Flame, 2003, 132(3): 305-318.
    [136] M. Basu. Hopfield neural networks for optimal scheduling of fixed head hydrothermal power systems [J]. Electric Power Systems Research, 2003,64(1): 11-15.
    [137] Aleksandra Sander, Darko Skansi, Nenad Bolf. Heat and mass transfer models in convection drying of clay slabs [J]. Ceramics International, 2003,29(6): 641-653.
    [138] Soteris A. Kalogirou, Milorad Bojic. Artificial neural networks for the prediction of the energy consumption of a passive solar building [J]. Energy, 2000,25(5): 479-491.
    [139] Adnan Sozen, Erol Arcakliogˇlu, Mehmet Ozalp. Formulation based on artificial neural network of thermodynamic properties of ozone friendly refrigerant/ absorbent couples [J]. Applied Thermal Engineering, 2005,25(11-12): 1808-1820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700