用户名: 密码: 验证码:
陆地棉优异纤维品质及产量性状的QTL挖掘
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为进一步挖掘来自美国新墨西哥州立大学的陆地棉高品质品系NM03102的优异纤维品质性状的基因,利用国内大面积推广种植的陆地棉1138(鲁棉研21)作为母本、NM03102为父本组建了F2和F2:3分离群体。利用F2分离群体以SSR标记构建连锁图谱,采用复合区间作图法(CIM)对纤维品质性状及产量相关性状进行QTL定位研究,从分子水平上初步揭示各个性状之间的遗传关系,利用与棉花纤维品质及产量性状QTLs紧密连锁的分子标记进行辅助选择。
     纤维品质和产量性状分析表明,两亲本在铃重、衣分、纤维长度、强度和马克隆值等性状上均达到了显著或极显著差异水平,在F2和F2:3群体所有这些性状呈正态分布,表现双向超亲分离现象,符合受微效多基因控制的数量性状的特征。
     性状间的相关分析结果表明,纤维长度与强度、伸长率、整齐度呈极显著正相关,但与强度的相关系数最高,与马克隆值不相关。纤维强度与整齐度、伸长率呈极显著正相关,但与马克隆值呈极显著负相关;马克隆值与整齐度、伸长率呈极显著正相关。铃重与衣分呈显著或极显著的负相关,与纤维长度、整齐度、马克隆值和伸长率呈极显著的正相关。衣分与纤维长度、整齐度、马克隆值、伸长率和纤维强度呈显著或极显著的负相关,表明高衣分材料,其纤维品质可能较差。本实验中的QTL成簇分布为以上相关关系提供了遗传解释。
     本研究利用不同来源的7892对SSR引物对亲本进行筛选,获得225对多态性引物。利用多态性引物检测(1138×NM03102)F2群体195个单株的标记基因型,共获得242个标记位点。利用Joinmap 3.0构建遗传连锁图谱,182个标记构建了37个连锁群,共覆盖1661.6cM,相当于棉花基因组的37.34%,平均每个连锁群覆盖44.91cM,每个连锁群包含的标记位点数从2到18个不等,平均每个连锁群包含4.9个标记位点,标记间平均相距9.1cM。通过与前人的连锁图谱比对,已将其中的35条连锁群定位到20条染色体上。
     采用WinQTLCartographer2.5的复合区间作图法(CIM),对1138×NM03102的F2和F2:3群体的纤维品质和产量性状进行分析,共检测到20个纤维品质性状QTLs,其中纤维长度4个、纤维比强度4个、马克隆值5个、伸长率3个和整齐度4个,解释表型变异率范围为5.10%-28.49%;检测到27个产量性状QTLs,包括单株籽棉产量3个、单株皮棉产量4个、铃重1个、子指6个、衣分6个、株高4个和果枝数3个,解释表型变异率范围为5.93%-44.29%。
     在20个纤维品质性状QTLs中增效基因来自高值亲本的10个,其中两世代表现稳定的有1个纤维强度QTL和1个马克隆值QTL,有1个纤维强度QTL和1个整齐度QTL与已有的报道一致;在27个产量性状QTLs中增效基因来自高值亲本的14个,其中两世代表现稳定的有1个果枝数QTL,有1个子指QTL和1个衣分QTL与已有的报道一致;特别是1个强度的QTL在不同世代及遗传背景中均检测到,这些稳定的QTL为分子标记辅助选择奠定了基础。
Cotton is the world’s most important natural textile fiber. With the changes in spinning technology, the improvement of cotton fiber quality is becoming extremely important. The combination of conventional breeding techniques with MAS (molecular-assisted selection) will become a basic approach for cotton fiber improvement. The cross of 1138×NM03102 was made, which included one parent, NM03102 with elite fiber quality from New Mexico State University, USA, and the another parent, 1138 as commercial cultivation transgenic variety resistant to budworm from Shandong Cotton Research Center. It could be very useful to identify the quantitative trait loci (QTL) of fiber quality and yield traits for revealing the genetic basis of the main characters and their genetic relationships, and increasing the selective effeciency of cotton breeding.
     The fiber quality and yield traits were tested or observed systematically. The results showed that: there were significant or extremely significant difference for boll size,lint percent, fiber length, fiber strength and Micronaire value between the two parents, And all the traits in F2 and F2:3 populations were distributed in normal distribution with the phenomenon of two-way transgressive segregation, which match to the phenotypes conditioned by multiple micro-effect genes.
     The correlation analysis indicated that fiber length was very significantly positive correlation with fiber strength, fiber elongation and fiber uniformity, not correlation with Micronaire value. Fiber strength was very significantly positive correlation with fiber elongation and fiber uniformity, and very significantly negative correlation with Micronaire value. Micronaire was very significantly positive correlation with fiber elongation and fiber uniformity. Boll size was significantly negative correlation with lint percent, and very significantly positive correlation with fiber length, fiber uniformity, Micronaire value and fiber elongation. Lint percent was significant negative correlation with fiber length, fiber uniformity, fiber elongation and fiber strength, which indicated it’s still difficult to improve fiber quality and lint percent simultaneously. These correlations could be partly explained by QTLs clusters or co-location in the experiment.
     In the present study,225 pairs of polymorphic primer were obtained for the two parents from 7892 pairs of SSR primer , and the polymorphic primers were used to genotype the 195 individual plants in F2 population derived from 1138×NM03102,242 loci were obtained. With the software of Joinmap3.0 with LOD of 5.0, Linkage test indicated that 182 loci could be mapped to 37 linkage groups, which covered a total genetic distance of 1661.6cM, approximately 37.34 % of cotton genome. The average distance of neighbor markers was 9.1cM. 35 linkage groups were assigned to corresponding chromosome.
     Based on Composite Interval Mapping (CIM) method of WinQTLCartographer2.5, the result showed that 20 QTLs for fiber quality were detected in F2 and F2:3 populations, 4 for fiber length , 4 for fiber strength , 5 for Micronaire value, 4 for fiber uniformity and 3 for fiber elongation,respectively. These QTLs expained 5.10%-28.49% of the corresponding phenotypic variations. 27 QTLs for the yield traits were identified, 3 for plant seedcotton yield, 4 for plant lint yield, one for boll size, 6 for seed index, 6 for lint percent , 4 for plant height and 3 for fruit branchs, respectively. These QTLs expained 5.93%-44.29% of the corresponding phenotypic variations.
     10 favorable alleles for fiber quality originate from donor parent NM03102. In addition, 2 QTLs with one for fiber strength and another for Micronaire value could be detected in two generations. And 2 QTLs with one for fiber strength and another for fiber uniformity could be detected in different genetic background previously published in other reports. Fourteen favorable alleles for the yield traits originate from donor parent 1138. 1 QTL for fruit branch could be detected in two generations and 2 QTLs with 1 for seed index and 1 QTL for lint percent were same as previously published reports. In particular, 1QTL for fiber strength could be detected in different generations and different genetic background. The molecular markers linked closely to the stable major QTL could be used in MAS to improve cotton fiber quality.
引文
1.陈利,张正圣,胡美纯,等.陆地棉遗传图谱的构建及产量和纤维品质性状QTL定位.作物学报,2008,34(7):1199~1205.
    2.董承光,邓福军,陈红,等.棉花重要性状基因定位研究进展.作物杂志,2008,13:5~9.
    3.董娜,王清连,张金宝,等.棉花QTL定位及MAS育种进展与展望.广东农业科学,2009, 6:23~27.
    4.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001.
    5.郭香墨,刘正德,罗云佳.我国面向21世纪棉花纤维品质改良对策.棉花学报.1999,11(6):321~325.
    6.郭旺珍,张天真,丁业掌,等.分子标记辅助聚合两个棉纤维高强主效QTLs的选择效果.遗传学报,2005,32(12):1275~1285.
    7.贺道华.四倍体棉花分子标记遗传连锁图谱的构建和重要经济性状的QTL定位[博士学位论文].华中农业大学,2005,55~74.
    8.胡美纯.陆地棉遗传图谱构建与纤维品质性状QTL定位[硕士学位论文].重庆:西南大学,2008.
    9.胡文静,张晓阳,张天真,等.陆地棉优质纤维QTL的分子标记筛选及优质来源分析.作物学报,2008,34(4):578~586.
    10.高玉千,聂以春,张献龙.棉花抗黄萎病基因的QTL定位.棉花学报,2003,15(2):73~78.
    11.高用明,朱军.植物QTL定位方法的研究进展.遗传.2000,22(3):175~179.
    12.李成奇,郭旺珍,马晓玲,等.陆地棉衣分差异群体产量及产量构成因素的QTL标记和定位.棉花学报,2008,20(3):163~169.
    13.李成奇,黄中文,王清连.棉花分子遗传图谱构建与QTL定位研究进展.河南农业科学,2008,12:16~26.
    14.李杰勤,张启军,叶少平.四种不同QTL作图方法的比较研究.作物学报.2005,31(11):1473~1477.
    15.李朋波,曹美莲,刘惠明,等.陆地棉遗传图谱构建与纤维品质性状QTL定位.西北植物学报,2006,26(6):1098~1104.
    16.杨鑫雷,王志伟,张桂寅,等.棉花分子遗传图谱构建和纤维品质性状QTL分析.作物学报,2009,35(12) :2159~2166.
    17.柳李旺,朱协飞,郭旺珍,等.分子标记辅助选择聚合棉花Rf1育性恢复基因和抗虫Bt基因.分子植物育种,2003,1(1):48~52
    18.刘文欣,孔繁玲,郭志丽,等.建国以来我国棉花品种遗传基础的分子标记分析.遗传学报,2003,30(6):560~570.
    19.刘进元,赵广荣,李骥.棉花纤维品质改良的分子工程,植物学报,2000,42(10):991~995.
    20.林忠旭,张献龙,聂以春,等.四倍体栽培棉种产量和QTL定位.遗传学报.2003,30(5):443~452.
    21.林忠旭.棉花分子标记遗传连锁图构建和产量、纤维品质相关性状定位[博士学位论文].武汉:华中农业大学,2005.
    22.倪西源,王学德,孙志栋.棉花表型性状基因的SSR标记定位.棉花学报,2003,15(6):357~360.
    23.潘家驹.棉花育种学.北京:中国农业出版社,1998.
    24.彭勇,梁永书,王世全.水稻SSR标记在RI群体的偏分离分析.分子植物育种.2006,4(6):786~790.
    25.秦鸿德.陆地棉产量与纤维品质性状QTL定位和标记辅助轮回选择[博士学位论文].南京农业大学,2007.
    26.秦永生,刘任重,梅鸿献,等.陆地棉产量相关性状的QTL定位.作物学报,2009, 35(10): 1812~1821.
    27.沈新莲.陆地棉纤维品质QTL的筛选、定位及其应用[博士学位论文].南京:南京农业大学,2004.
    28.石玉真,刘爱英,李俊文,等.与棉花纤维强度连锁的主效QTL应用于棉花分子标记辅助育种.分子植物育种,2007,5(4):521~527.
    29.宋国立,崔荣霞,王坤波,等.改良CTAB法快速提取棉花DNA,棉花学报,1998,10(5):273~275.
    30.宋宪亮.异源四倍体棉花栽培种分子遗传图谱的构建及部分性状QTL标记定位[博士学位论文].泰安:山东农业大学,2004.
    31.宋宪亮,孙学振,张天真.偏分离及对植物遗传作图的影响.农业生物技术学报,2006,14(2):286~292.
    32.唐淑荣,杨伟华.2005年我国棉花主栽品种纤维品质抽查结果分析.江西农业学报.2007,19(1):14~17.
    33.吴茂清,张献龙,聂以春等.四倍体栽培棉种产量和纤维品质性状的QTL定位.遗传学报,2003,30 (5):443~452.
    34.王淑芳.陆地棉纤维相关性状的遗传及分子标记研究[硕士学位论文].北京:中国农业科学院,2005.
    35.万少安,任琪.对我国棉花检验的思考.中国棉花加工,2007,(1):27~28.
    36.王娟,郭旺真,张天真.渝棉1号优质纤维QTL的标记与定位.作物学报,2007,33(12):1915~1921.
    37.杨伟华,项时康,唐淑荣,等.20年来我国自育棉花品种纤维品质分析.棉花学报,2001,13(6):377~384.
    38.易成新,张天真,郭旺珍.陆地棉衣分QTL的形态和RAPD分子标记筛选.作物学报,2001,27(6):781~786.
    39.杨昶,郭旺珍,张天真.陆地棉抗黄萎病、纤维品质和产量等农艺性状的定位.分子植物育种,2007,5(6):797~805.
    40.袁有禄.棉花优质纤维特性的遗传及分子标记研究[博士学位论文].南京:南京农业大学.2000.
    41.袁有禄,张天真,郭旺珍,等.棉花高品质纤维性状的主基因与多基因遗传分析.遗传学报,2002,29(9):827~834.
    42.袁有禄,张天真,郭旺珍,等.棉花高强纤维性状QTLs的分子标记筛选及其定位.遗传学报.2001,28(12):1151~1161.
    43.张建宏,王淑芳,石玉真,等.转基因抗虫棉产量相关性状QTL的分子标记及定位.棉花学报2008,20(3):179~185.
    44.张军,武耀廷,郭旺真,等.棉花微卫星标记的PAGE/银染快速检测.棉花学报,2000,12(5):267~269.
    45.张培通,郭旺珍,朱协飞,等.高产棉花品种泗棉3号产量及其构成因素的QTL标记和定位.作物学报.2006,32(8):1197~1203.
    46.张培通,朱协飞,郭旺珍,等.陆地棉衣分及相关性状的遗传和QTL分子标记.江苏农业学报,2005,21(4):264~271.
    47.张天真,袁有禄.棉花高强纤维QTL的微卫星标记筛选,中国农业科学,2001,34(4):363~366.
    48.张天真.棉花纤维品质分子育种的现状及展望.棉花学报,2000,12(6):321~326.
    49.张正圣.陆地棉遗传连锁图谱的构建与纤维相关性状的QTL分析[博士学位论文].重庆:西南农业大学,2005.
    50.章元明.作物QTL定位方法研究进展.科学通报2006,51(19):2223~2231.
    51.周元昌,陈启锋,吴为人,等.作物QTL定位研究进展,福建农业大学学报,2000,
    29(2):138~144.
    52.周桃华,张海鹏.陆地棉纤维品质性状研究.安徽农学通报,2005,11(6):34~35.
    53.赵海燕,渠云芳,黄晋玲.SSR分子标记在棉花遗传育种中的应用及进展.中国农学通报2009,25(22):57~61.
    54.左开井,孙济中,张献龙,等.利用RFLP、SSR和RAPD标记构建陆地棉分子标记连锁图(英).华中农业大学学报,2000,19:190~193.
    55. Abdurakhmonov IY, Buriev ZT,Saha S et al. Microsatellite markers associated with lint percentage trait in cotton, Gossypium hirsutum. Euphytica,2007, 156:141~156.
    56. Altaf MK, Steward JM, Wajahatullah MK et al. Cantrell R.G.. Molecular and morphological genetics of a tri-species F2 population of cotton. Beltwide cotton conferences,1997: 448~452.
    57. Blenda A, Scheffler J, Scheffler B et al. CMD: A Cotton Microsatellite Database Resource for Gossypium Genomics. BMC Genomics. 2006, 7: 132.
    58. Bostein D, White RL, Skolnick M et al.Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genetics.1980,32: 314~331.
    59. Brubaker CL, Paterson AH,Wendel J F.Comparative genetic mapping of allotetraploid cotton and its diploid progenitors.Genome,1999,42:184~203.
    60. Chen N, Hinchliffe DJ,Cantrell RG et al. Identification of Molecular Markers Associated with Root-Knot Nematode Resistance in Upland Cotton. Crop Science. 2007, 47:951~960.
    61. Culp T.W. & D.C.Harrell. Influence of lint percentage', boll size, and seed size on lint Yield of Upland cotton with high fiber strength. Crop Sci. 1975, 5:741~746.
    62. Edwards A, Civitello A, Hammond HA et al.DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am. J. Hum. Genet.1991, 49:746~756.
    63. Elkind Y and A Cahaner. A mixed model for the effects of single gene, polygenes and theirinteraction on quantitative traits. Theoretical and Applied Genetics,1986,72:377~383.
    64. Frelichowski JE, Palmer MB, Main D et al. Cotton genome mapping with new microsatellites from Acala‘Maxxa’BAC-ends. Mol Gen Genomics, 2006, 275: 479~491.
    65. Gerald O,Myers.An intraspecific AFLP map of G. hirsutum International Cotton Genome Initiative ICGI~2004 Workshop.Grower,1999,20(5):80~83.
    66. Green CC, Culp TW. Simultaneous improvement of yield, fiber quality, and yam strength in upland cotton. Crop Sci, 1994,30:66~69.
    67. Guo WZ, Cai CP, Wang CB et al. A microsatellite~based, gene~rich linkage map reveals genome structure, function, and evolution in Gossypium.Genetics. 2007,176:527~541.
    68. Guo YF, McCarty JC, Jenkins JN et al. QTLs for node of first fruiting branch in a cross of an upland cotton, Gossypium hirsutum L.,cultivar with primitive accession Texas 701.Euphytica, 2008, 163:113~122.
    69. Gutierrez OA, Basu S, Saha S et al. Genetic distance among selected cotton genotypes and its relationship with F2 performance. Crop Science. 2002 ,42: 1841~1847.
    70. Han Z, Wang C, Song X et al. Characteristics, development and mapping of Gossypium hirsutum derived EST-SSRs in allotetraploid cotton. Theoretical and Applied Genetics. 2006, 112(3):
    430~439.
    71. Han ZG, Guo WZ,Song XL, Zhang TZ.Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreumin allotetraploid cotton. Mol. Gen. Genom. 2004, 272:308~327.
    72. He DH, Lin ZX, Zhang XL et al. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton. Euphytica. 2005, 144:141~149.
    73. He DH, Lin ZX, Zhang XL et al. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum W Gossypium barbadense. Euphytica 2007,153(1-2): 181~197.
    74. Hsu CY, An CF, Saha S et al. Molecular and SNP characterization of two genome specific transcription factor genes GhMyb8 and GhMyb10 in cotton species. Euphytica,2008, 159:259~273.
    75. Iqbal MJ, Reddy OUK, El-Zik KM et al.A genetic bottleneck in the evolution under domestication of upland cotton(Gossypium hirsutum L.) examined using DNA fingerprinting. Theoretical and Applied Genetics. 1997,103:547~554.
    76. Jansen RC.Interval mapping of multiple quantitative trait loci.Genetics.1993,135 :205~211.
    77. Jeffreys AJ, Wilson V, Newumann R et al. Amplification of human minisatellites by the polymerase chain reaction: towards DNA fingerprinting of single cells. Nucleic Acids Research.1988,16:10953~10971.
    78. Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci. Theoretical and Applied Genetics.1989,78:613~618.
    79. Jiang CX, Wright RJ, El-Zik KM et al.Polyploid formation created unique convenues for response to selection in Gossypium (cotton).Proc.Natl.Sci.USA.1998,95:4419~4424.
    80. Jiang CJ, Zeng ZB.Multiple t rait analysis of genetic mapping for quantitative trait loci.Genetics. 1995,140:1111~1127.
    81. Jiang CX, Wright RJ, Woo SS, Delmonte TA, and Paterson.QTL analysis of leaf morphology in tetraploid Gossypium (cotton). Theoretical and Applied Genetics. 2000,100:409~418.
    82. Joseph GM. Textile technology relationships between micronaire, fineness, and maturity. Cotton Science,2005,9:81~88.
    83. J Xiao, K Wu, David D Fang et al. New SSR Markers for Use in Cotton (Gossypium spp.) Improvement.The Journal of Cotton Science.2009, 13:75~157.
    84. Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci.Genetics.1999,152:1203~1216.
    85. Knapp SJ, Bridges WC Jr, Brikes D.Mapping quantitative trait loci using molecular marker linkage maps. Theoretical and Applied Genetics.1990, 79:583~592.
    86. Kohel RJ, Yu J, Park YH et al.Molecular mapping and characterization of traits controlling fiber quality in cotton.Euphytica.2001,121:163~172.
    87. Korstanje R ,Paigen B. From QTL to gene:the harvest begins.Nature Genetics.2002, 31: 235~236.
    88. Kumar P, Paterson AH, Chee PW. Predicting intron sites by aligning cotton ESTs with Arabidopsis genomic DNA. Journal of Cotton Science. 2006, 10: 29~38 .
    89. Kumpatla SP, Manley MK, Horne EC et al. An improved enrichment procedure to develop multiple repeat classes of cotton microsatellite markers. Plant Molecular Biology Reporter. 2004,
    22: 85~86 .
    90. Lacape JM, Nguyen TB, Thibivilliers S et al. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum×Gossypium barbadense backcross population.Genome, 2003,46:612~626.
    91. Lacape JM, Nguyen TB. Mapping quantitative trait loci associated with leaf and stem pubescence in cotton. Journal of Heredity. 2005, 96(4): 441~444.
    92. Lacape JM, Nguyen TB, Brigitte C et al. QTL Analysis of Cotton Quqlity Using Multiple Gossypium hirsutum×Gossypium barbadense Backcross Generations. Crop Science, 2005, 45:123~140.
    93. Lacape JM, Dessauw D, Rajab M et al. Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs. Molecular Breeding ,2007,19(1): 45~58.
    94. Lin Z, He D, Zhang X et al. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breeding.2005, 124: 180~187.
    95. Losisel P, Goffinet B, Monod H et al. Detecting a major gene in an F2 population. Biometrics,1994,50,512~516.
    96. Luo Z W, Kearsey MJ.Maximum likelihood estimation of linkage between a marker gene and a quantitative locus. II. Application to backcross and doubled haploid populations.Heredity .1991, 66 :117~124.
    97. Luo ZW, Kearsey MJ.Maximum likelihood estimation of linkage between a marker gene and a quantitative locus.Heredity.1989, 63 :401~408.
    98. Luo ZW, Woolliams JA.Estimation of genetic parameters using linkage between a marker gene and a locus underlying a quantitative character in F2 populations.Heredity. 1993, 70 : 245~253.
    99. May OL. Genetic variation in fiber quality. Basra A.S. (ed.).ln Cotton fibers developmental biology, quality improvement,and testile processing. Food product press. NY. 1999, pp183~229.
    100.May OL,Jividen GM. Genetic modification of cotton fiber properties as measured by single and high volume instruments. Crop Science,1999, 39,328~333.
    101.May OL, Green CC, Roach S H et al. Regitration of PD93001, PD93002, PD93003, PD93004 germplasm lines of Upland cotton with brown lint and high fiber quality.Crop Science,1994,34:542.
    102.May OL, Jividen GM. Genetic modification of cotton fiber properties with single and high volume instruments.Crop Science,1999,39:328~333.
    103.Mei M, Syed NH, Gao W et al.Genetic mapping and QTL analysis of fiber~related traits in cotton (Gossypium) . Theoretical and Applied Genetics,2004,108:280~291.
    104.Meredith WR, Jr. Associations of maturity and perimeter with micronaire. Beltwide cotton conferences. 1991,P569.
    105.Meredith WRJ. Cotton breeding for fiber strength. In Proceedings from cotton fiber cellulose: structure, function, and utilization conference. Memphis, TN. National Cotton Council of American,1992,289~302.
    106.Meredith WR, Sasser PE, Rayburn ST. Regional high quality fiber properties as measured by conventional and AFIS methods. Beltwide cotton conferences. 1996,pp1681~1684.
    107.Myers GO, Jiang BG, Akash MW et al. Chromosomal assignment of AFLP markers in upland cotton (Gossypium hirsutum L.). Euphytica ,2009,165:391~399.
    108.Nekrutenko A, Baker RJ. Subgenome-specific markers in allopolyploid cotton Gossypium hirsutum: implications for evolutionary analysis of polyploids. Gene. 2003,306: 99~103.
    109.Nguyen TB, Giband M, Lacape JM et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers. Theoretical and Applied Genetics,2004,109:167~175.
    110.Paran I, Zamir D. Quantitative traits in plants: beyond the QTL.Trends in Genetics. 2003, 19(6):303~306.
    111.Park YH, Alabady MS, Ulloa M et al. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population. Molecular Genetics and Genomics. 2005, 274: 428~441.
    112.Paterson AH, Saranga Y, Menz M et al. QTL analysis of genotype×Environment interaction affecting cotton fiber quality. Theoretical and Applied Genetics,2003,106:384~396.
    113.Qin HD, Guo WZ, Zhang YM et al. QTL mapping of yield and fiber traits based on a four~way cross population in Gossypium hirsutum L.Thero Appl Genet,2008,117:883~894.
    114.Qureshi SN, Saha S, Kantety RV et al. EST-SSR: A new class of genetic markers in cotton.Journal of Cotton Science. 2004,8: 112~123.
    115.Reddy OUK, Pepper AE, Abdurakhmonov I et al. New dinucleotide and trinucleotide microsatellite marker resources for cotton genome research. Journal of Cotton Science. 2001,5: 103~113.
    116.Ren LH, Guo WZ, Zhang TZ.Identification of quantitative trait (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line.Acta Botanica Sinica. 2002,4(7):815~820.
    117.Rong JK, Abbey C, Bowers JE et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium) .Genetics.2004,166:389~417.
    118.Saha S, Karaca M, Jenkins JN et al. Simple sequence repeats as useful resources to study transcribed genes of cotton. Euphytica.2003,130(3): 355~364.
    119.Shappley ZW, Jenkins JN, Meredith WR Jr et al. An RFLP linkage map of upland cotton, Gossypium hirsutum L. Theoretical and Applied Genetics.1998a,97:756~761.
    120.Shappley ZW, Jenkins JN, Zhu J et al.Quantitative trait loci associated with agronomic and fiber traits of upland cotton. Cotton Science.,1998b,2:153~163.
    121.Shen X, Zhang T, Guo W et al. Mapping fiber and yield QTLs with main, epistatic, and QTL x environment interaction effects in recombinant inbred lines of upland cotton. Crop Science. 2006, 46: 61~66.
    122.Shen Xinlian,Guo Wangzhen,Yuan Youlu et al.Molecular Mapping of QTLs for fiber qualities in three diverse lines in upland cotton using SSR Markers. Molecular breeding. 2005,15:169~181.
    123.Shen XL, Guo WZ, Lu QX et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica,2007,155:371~380.
    124.Song X, Wang K, Guo W et al. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L. Genome. 2005,48(3): 378~390.
    125.Tanksley SD, Herculano MF, Rick CM.Use of naturally-occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato.Heredity. 1982,49:11~25.
    126.Tanksely S D, S R Mcouch. Seed banks and molecular maps: Unlocking genetic potential from the wild [J]. Science.1997,277(22): 1063~1066.
    127.Ulloa M, Cantrell RG, Pency RG et al.QTL analysis of stomatal conductance and relationship to lint yield in an interspecific cotton. Journal of Cotton Science sci. 2000a,(4):10~18.
    128.Ulloa M, W R. Meredith.Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population. Journal of Cotton Science . 2000b,(4):161~170.
    129.Ulloa M, Saha S, Jenkins JN et al. Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton(Gossypium hirsutum L.)joinmap.Journal of Heredity, 2005,96(2):132~144.
    130.Van Ooijen J W, Voorrips R E. JoinMap 3.0, Software for the Calculation of Genetic Linkage Maps. Wageningen, the Netherlands: Plant Research International, 2001.
    131.Voorrips, RE. MapChart: Software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity.2002, 93 (1): 77~78.
    132.Wan J L, Zhai H Q, Wan JM. Mapping QTL for traits associated with resistance to ferrous Iron Toxicity in Rice(Oryza sativa L.),using jap onica chromosome segment substitution lines. Genetics.2003,30(10):893~898.
    133.Wang B, Guo W, Zhu X et al.QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton. Euphytica. 2006,152(3): 367~378.
    134.Wang Z.L., Wang L.X., Zhang Y.H.Gene expression analysis of Near-lsogenic Lines for different heterosis in Maize. Genetics.2004,31(4):345~348.
    135.Wang BH, Guo WZ, Zhu XF. QTL Mapping of Yield and Yield Components for Elite Hybrid Derived-RILs in Upland Cotton. Genetics.2007,34(1):35~45.
    136.Wang HM, Lin ZX, Zhang XL et al. Mapping and quantitative trait loci analysis of verticillium wilt resistance genes in cotton. Journal of Integrative Plant Biology,2008, 50(2): 174~182.
    137.Wang X, Ma J, Yang S, Zhang G, Ma Z. Assessment of genetic diversity among Chinese upland cottons with Fusarium and/or Verticillium wilts resistance by AFLP and SSR markers. Frontiers of Agriculture in China ,2007,1(2): 129~135.
    138.Weber J L and May PE. Abundant class of human DNA polymorhisms which can be typed using the polymerare chain reaction. Am. J. Hum. Genet. 1989,44:388~396.
    139.Wendel JF.Genome evolution in polyploids.Plant Molacular Biology.2000,42:225~249.
    140.Williams JG, Kubelik AR, Livak KJ et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucl. Acids Res.1990,18:6531~6535.
    141.Wright RJ, Thaxton PM, EL-Zik KM et al. D-subgenome bias of Xcm resistance genes in tetraploid Gossypium(cotton) suggests that polyploid formation has created novel avenues for evolution.Genetics.1998,149:1987~1996.
    142.Wu JX, Jenkins JN, McCarty JC et al. AFLP marker associations with agronomic and fiber traits in cotton . Euphytica,2007, 153:153~163.
    143.Wu JX, Gutierrez OA, Jenkins JN et al. Quantitative analysis and QTL mapping for agronomic and fiber traits in an RI population of upland cotton. Euphytica,2009,165:231~245.
    144.Xu S Z. A comment on the simple regression method for interval mapping. Genetics. 1995 , 141 :165~1659.
    145.Yang C, Guo WZ, Li GY et al. QTLs mapping for Verticillium wilt resistance at seedling and maturity stages in Gossypium barbadense L. Plant Science,2008, 174:290~298.
    146.Yu JW, Yu SX, Lu CR et al. High-density linkage map of cultivated allotetraploid cotton based on SSR,TRAP,SRAP,AFLP markers.Journal of Integrative Plant Biology,2007,49(5):716~724.
    147.Yuan YL, Zhang TZ.Diallel analysis of superior fiber quality properties in selected upland cottons. Acata Genetica Sinica.2005,32(1):79~85.
    148.Zeng ZB, Kao CH, Basten CJ.Estimating the genetic architecture of quantitative traits.Genet Res.1999,74:279~289.
    149.Zeng ZB.Theoretical basis of separation of multiple linkage gene effects on mapping quantitative trait loci. Proc. Natl. Sci. USA.1993,90:10972~10976.
    150.Zhang J, Guo WZ, Zhang TZ.Molecular linkage map of allotetraploid (Gossypium hirsutum L.×Gossypium barbadense L.) with a haploid population. Theoretical and Applied Genetics. 2002, 105:1166~1174.
    151.Zhang TZ, Yuan YL, Yu J et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection.Theor. Appl. Genet.2003,106:262~268.
    152.Zhang ZS, Xiao YH, Lou M et al.Construction of a genentic linkage map and QTL analysis of fiber-related traits in upland cotton(Gossypium hirsutum L.).Euphytica.2005:1~9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700