用户名: 密码: 验证码:
化工储罐火灾起火点推断物证技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化工储罐火灾影响因素众多,过程所涉及的危险因素、事故机理复杂,火灾现场破坏严重,往往给火灾现场勘查和起火点认定带来很大困难。在目前我国火灾事故调查证据单薄,说服力不强,物证分析技术匮乏的现状下,研究化工储罐火灾事故起火点推断物证技术,建立一套包括科学的调查取证手段、系统的推理方法和数值模拟仿真技术在内的火灾调查和物证分析技术体系,将有助于准确、快速分析火灾事故的起火点和原因,克服以往经验分析法的不足,提高火灾调查工作的科学性和可靠性。
     本文以化工储罐为具体研究对象,采用典型案例剖析、理论分析、实验测试以及模拟仿真相结合的研究手段,分析化工储罐火灾特点与破坏机理,建立化工储罐火灾模拟实验平台,研究化工储罐火灾的燃烧特性与典型物证的形成机理,分析面向起火点认定的储罐火灾数值模拟技术,建立化工储罐火灾起火点推断的定性和定量判据。主要研究内容如下:
     (1)化工储罐火灾特点与破坏机理。在总结化工储罐火灾特点的基础上,对近30年来我国发生的50起典型化工储罐火灾事故进行统计分析,从事故调查角度找出事故中共性的规律和特点,总结化工储罐火灾事故的典型类型;分析化工储罐火灾对外界物体产生破坏的主要形式,研究储罐周围物体在两种传热方式下温升的理论模型,分析化工储罐火灾中的物体在火焰内部和火焰外部不同的破坏机理。
     (2)化工储罐火灾燃烧特性的模拟实验研究。建立小尺寸柴油储罐火灾实验平台,采用接触和非接触两种方式对储罐火灾的火焰温度、火焰辐射、火焰高度、火焰形状等特征参量进行测量,分析火灾发展历程与扬沸现象,建立火灾高度-温度,火灾持续时间-火焰温度以及火焰温度-热辐射的关系,得到化工储罐火灾在不同燃烧时期的温度场和辐射场分布。研究液位高度、含水层、油层厚度、油品初温、消防射水等因素对火焰温度的影响,分析储罐火灾事故过程的灾害特性规律。
     (3)化工储罐火灾的典型物证及其形成机理。构建化工储罐火灾事故的物证体系,实验研究在模拟火灾环境中Q345R、Q245R和Q235R等典型物证的力学性能与火灾作用时间、火灾温度的关系;研究温升速率、受火时间、消防冷却水等因素对物证的抗拉强度、伸长率等特征参数的影响规律;分析化工储罐火灾中典型物证在复杂环境下的形成机理。
     (4)面向起火点认定的化工储罐火灾数值模拟。选用PDF非预混燃烧模拟方法和带浮力修正的CFD湍流模型对化工储罐火灾特性进行模拟分析,对火场温度、辐射分布规律进行数值研究。通过与实验结果的对比,检验该方法在储罐池火灾数值模拟方面的合理性。运用数值模拟方法,对化工储罐可能发生的三种典型火灾模式进行模拟,分析储罐内外壁各部位受火后强度和时间分布规律,为起火点认定提供物证基础。
     (5)基于物证的化工储罐火灾起火点推断技术。从理论上分析起火点特征与火灾现场物证特点之间的关系,建立化工储罐火灾事故起火点推断的系统方法,构建起火点推断的一般判据;结合数值模拟与模拟实验方法,建立基于金属物证力学性能变化的受火温度、热辐射强度和受火时间的推断判据,为起火点确定提供判定依据。
Factors influencing the chemical storage tank fire are numerous, the hazards, complexity of accident mechanism, serious damage to the fire scene. These factors often bring tremendous difficulties to fire scene investigation and affirmation of origin of fire. On the present condition of weak evidence of fire investigation, low persuasion, and urgent lack of analytical techniques of physical evidence,doing research on material evidence inferring techlogy, setting up a set of system for the investigation and physical evidence analysing technology of fire accidents containing scientific researching & evidence obtaining methods, systematic reasoning methods, numerical simulation techniques, will be very helpful to analysis the origin of fire and reasons for fire accidents accurately and fast, the disadvantages of previous experimental analysing methods can be overcome and the scientificity and reliability of the investigation of fire accidents can be greatly improved.
     With the chemical storage tanks being specific object of study, using the strategy of typical case study, theoretical analysis, experimental tests and the combination of simulation, this thesis is aiming at analysing characteristics and failure mechanism, studying the combustion behavior and forming mechanism of typical physical evidence, and numerical simulation of the chemical storage tanks fire on fire's origin confirmed and deducing technologies and methods of the fire origin, and set up deducing criteria of fire origin of the chemical storage tanks fire. The main research contents are as follows:
     (1). Characteristics & Failure Mechanism of Chemical Storage Tanks fire
     In the basis of summerizing the characteristics of chemical storage tanks fire, statistic analysis on 50 typical fire accidents of chemical storage tanks in late 30 years is made. From the point of view of accident investigation, the communal rules and traits are found, the typical types of fire accidents are summarized, the principal forms the damage fire accidents of chemial storage tanks do to external objects are analysed. The theoretical model of tank temperature rise in two heat transferring forms and different failure mechanisms the objects suffered in both internal and external fire during fire accidents are studied.
     (2). Simulated Experiment of Chemical Storage Tanks fire Characteristics
     Set up experimental platform for diesel storage tanks in minisize. Measure temperature, radiation, height, shape and other features of the storage tanks fire by two ways: contact & non-contact. Analyse developing process and boiling phenomenon of the fire. Build the relationship of height- temperature, lasting time- flame temperature and flame temperature- thermal radiation, and get the distribution of temperature field & radiation field chemical storage tanks fire have in different burning periods. Study the influence height of liquid level, aquifer, thickness of oil layer, oil's initiative temperature, fire fighting & water jetting and other factors have on the flame temperature. Analyse features and rules of disaster in the process of fire accidents of storage tanks.
     (3).Typical Physical Evidence of Chemical Storage Tanks Fire and its Forming Mechanism
     Set up physical evidence system of chemical storage tanks fire. Experimentally study the relationship between time & temperature under the influence of fire and the mechanics property of typical physical evidence, like Q345R, Q245R, 235R, etc, under the environment of simulated fire. Study rules of temperature rise rate, fire duration, water jetting have on the strength of extension, elongation and other feature parameters of metal physical evidence. Analyse the forming mechanism of metal physical evidence of fire accidents under complicated circumstances.
     (4). Numerical Simulation of Chemical Storage Tanks Fire Based On the Origin of Fire
     Conduct simulation analysis of features of chemical storage tanks by electing analogy methods of PDF non- premixed combustion and CFD turbulence models with buoyancy correction and numerical research of fire temperature & distribution rules of radiation. Check its rationality in the respect of numerical simulation of pools fire of storage tanks, by the contrast with experimental result. Do a simulation of three modes of fire accidents of chemical storage tanks using numerical simulation. Analyse the intensity and time distribution rules of inside & outside of storage tanks after a fire, offering physical evidence for the affirmation of fire's origin.
     (5). Deduction Technology of Chemical Storage Tanks Fire Origin Based on Physical Evidence
     Theoretically analyse the relationship between characteristics of fire's origin & physical evidence of fire scene, set up systematic methods for chemical storage tanks fire origin and form ordinary criteria for deduction of fire's origin. Set up deducing criteria of fire exposure temperature, fire duration and fire spreading direction based on changes of mechanical property of metal physical evidence, together with numerical simulation and simulation experiments. Analyse evaluation methods of corresponding fire parameter, offering judgement basis for the confirmation of fire's origin.
引文
[1]胡源,宋磊.火灾化学导论[M].北京:化学工业出版社, 2007
    [2]刘相臣,张秉淑.化工装备事故分析与预防[M].北京:化学工业出版社, 2003
    [3]关文玲,蒋军成.我国化工企业火灾爆炸事故统计分析及事故表征物探讨[J].中国安全科学学报, 2008, 18(3): 103-107
    [4] CSB. Investigation Report Refinery Explosion and Fire[R]. Chemical Safety and Hazard Investigation Board, 2007
    [5]吉林省安全生产信息网.关于中石油吉林石化分公司双苯厂“11.13”爆炸事故的通报[EB/OL]. http://www.jlsafety.gov.cn/manage/list.asp?id=2448, 2005-11-14.
    [6]重庆市安全生产监督管理局.关于永川“6.20”储油罐失火爆炸事故的通报[EB/OL]. http://www.cqsafety.gov.cn/html, 2008-06-25
    [7]新华网.印度发生最大油库火灾[EB/OL]. http://news.xinhuanet.com/world, 2009-10-31
    [8]国家安全监管总局.关于中国石油天然气股份有限公司兰州石化分公司“1·7”爆炸火灾事故的通报[EB/OL]. http://www.chinasafety.gov.cn/newpage/Contents/Channel_ 5330/2010/0118/83133/content_83133.htm, 2010-01-18
    [9]国家安全监管总局公安部.关于大连中石油国际储运有限公司“7·16”输油管道爆炸火灾事故情况的通报[EB/OL]. http://www.chinasafety.gov.cn/newpage/Contents/ Channel_ 5330/2010/0723/102656/ content_102656.htm, 2010-07-23
    [10]刘汉宏,王健.化工企业雷击火灾的主要成因及现场调查.中国减灾, 1999, 9(2): 31-24
    [11]安全文化网.罐区事故统计[EB/OL]. http://bbs.anquan.com.cn/thread-118200-1-1.html, 2008-8-16
    [12]许文.化工安全工程概论[M].北京:化学工业出版社, 2002
    [13]公消[2011]43号.火灾原因认定暂行规则[S].北京:公安部消防局, 2011
    [14]金河龙.火灾痕迹物证与原因认定[M].长春:吉林科学技术出版社, 2005
    [15]刘兴华,梁军.当前我国火灾痕迹物证鉴定存在的问题与对策[J].消防科学与技术, 2005, 24(1): 170-171
    [16]蒋军成.事故调查与分析技术[M].北京:化学工业出版社, 2004
    [17] Frank Borrelli, George Capko. Recommendations of the Research Advisory Council on Post-fire Analysis-A White Paper[R]. Quincy: The Fire Protection Research Foundation,2002
    [18] Gregory E, Gorbett B. Fire Pattern Persistence through Post-Flashover Compartment Fires[R]. Sarasota: National Association of Fire Investigators , 2005
    [19] NFPA921, Guide for Fire and Explosion Investigations (1992 Edition)[S]. Quincy: National Fire Protection Association, 1992
    [20] NFPA921, Guide for Fire and Explosion Investigations (2004 Edition)[S]. Quincy: National Fire Protection Association, 2004
    [21] Haines S, Lambie I, Seymour F. International approaches to reducing deliberately lit fires: Statistical data and fire investigation Final Report[R]. Auckland: New Zealand Fire Service Commission, 2006
    [22] Pedersen K.S. Fire Investigations in Buildings[R]. Norway: International Symposium On Fire Research, 2005
    [23]郭克河,王天瑞.浅谈应用火场痕迹法认定起火点[J].消防科学与技术, 2000, 2: 73-74
    [24]朱华.逆向分析法在起火点认定中的运用[J].消防科技, 1994, 186(7): 37
    [25] GA/T 812—2008.火灾原因调查指南[S].北京:中华人民共和国公安部, 2008
    [26] Biedermann A, Taroni F, Delemont O.C et al. The evaluation of evidence in the forensic investigation of fire incidents (PartⅡ): Practical examples of the use of Bayesian networks [J]. Forensic Science International, 2005, 147(6): 59–69
    [27] Bubbico R, Marchini M. Assessment of an explosive LPG release accident: A case study [J]. Hazard.Mater, 2007, 97(11): 1-8
    [28] Sklet S. Comparison of some selected methods for accident investigation [J]. Journal of Hazardous Materials, 2004, 111(2): 29-37
    [29] Nivolianitou Z.S., Leopoulos V.N., Konstantinidou M.. Comparison of techniques for accident scenario analysis in hazardous systems [J]. Journal of Loss Prevention in the Process Industries, 2004,17 (6) : 467-475
    [30] Mine Safety and Health Administration. Mine Safety and Health Administration Safety Manual[R]. USA: Mine Safety and Health Administration, 1990
    [31] Livingston A.D., Jackson G., Priestley K. Root causes analysis: Literature review[R]. Norwich: Health and Safety Executive, 2001
    [32] Willie H, Dennis P. Occupational Safety Management and Engineering [M]. Fifth Edition.北京:清华大学出版社, 2003
    [33] American Petroleum Institute. API Guide to Report Process Safety Incidents[R]. Americ-an Petroleum Institute, 2007
    [34] GB6442-86.企业职工伤亡事故调查分析规则[S].北京:中华人民共和国, 1986
    [35]梁万成,李联选.火灾原因调查分析中逻辑方法的运用[A].中国科协2005年学术年会第24分会场论文集[C].乌鲁木齐:中国科协, 2005: 309-312
    [36]魏吴晋.使用HAZOP分析法对重大事故进行调查分析[J].中国安全科学学报, 2006, 16(3): 119-123
    [37]李佳,孙娟.人工智能理论在火灾调查中的应用探索[J].中国公共安全·学术版,2008, 12(3): 93-94
    [38]徐海涛.基于人工神经网络的火因认定技术的研究[J].消防技术与产品信息, 2006, (8): 3-5
    [39]王兵建,周心权,张亚伟等.虚拟现实在煤矿重大事故调查分析中的应用[J].煤矿安全, 2006, 382(9): 14-18
    [40] A.Biedermann, F.Taroni, O.Delemont et al. The evaluation of evidence in the forensic investigation of fire incidents (Part I): an approach using Bayesian networks [J]. Forensic Science International, 2005, 147(5): 49–57
    [41] Garbolino P; Taroni F; Evaluation of scientific evidence using Bayesian networks [J]. Forensic Science International. 2002, 125: 149–155
    [42]刘文生,曾凤章.贝叶斯网络在煤矿生产系统安全评价中的应用[J].工矿自动化, 2008, 1(2):1-4
    [43]邓亮.火灾调查制度研究[D].北京:中国政法大学硕士学位论文, 2007
    [44]李建林.火灾事故调查改革与发展[J].消防科学与技术, 2005, 24(6): 773-776
    [45]王宁.我国火灾事故调查改革研究[D].重庆:重庆大学工程硕士论文, 2005
    [46]廖光煊,宗若雯,刘乃安等.火灾科学的重要分支-火灾调查研究.中国科协2005年学术年会第24分会场论文集[C].乌鲁木齐:中国科协, 2005: 388-391
    [47]胡晔.火灾物证的分析鉴定[J].消防技术与产品信息, 2004, (4): 33-36
    [48] Putorti, A.D..Full Scale Room Burn Pattern Study (NIJ Report 601-97) [R]. Washington, D.C.: National Institute of Justice, 1997
    [49] Putorti, A.D.. Flammable and Combustible Liquid Spill/Burn Patterns (NIJ Report 604-00) [R]. Gaithersburg: National Institute of Justice, 2001
    [50] A.Y.Elghazouli, B.A.Izzuddin. Analytical assessment of the structural performance of composite floors subject to compartment fires [J]. Fire Safety Journal, 2001, 36(8): 769-793
    [51] Lilley D.G.. Fire Dynamics: Technical appreciation can help the fire investigation [A]. Proceedings of the Intersociety Energy Conversion Engineering Conference[C]. Honolulu: IECEC, 1997: 670-674
    [52] Lee E.P., Hideo Ohtani, Yoshiyuki Matsubara et al. Study on discrimination between primary and secondary molten marks using carbonized residue [J]. Fire Safety Journal, 2002, 37(4): 353-368
    [53] Lilley D.G.. Fire investigation: Origin, cause and responsibility [A]. Proceedings of the Intersociety Energy Conversion Engineering Conference[C]. Honolulu: IECEC, 1997: 631-635
    [54] Vytenis Babrauskas. Charring rate of wood as a tool for fire investigations [J]. Fire Safety Journal, 2005, 40(6): 528–554
    [55] David W.L.. Copper Metallurgy as a Diagnostic Tool for Analysis of the Origin of Building Fires [J]. Fire Technology, 1977, 13(3): 211-222
    [56] Marley R.K. Value of glass in the fire investigation process [J]. Fire Engineering. 1997, 150(1): 79-84
    [57] Kennedy P.M., Kennedy K.C., Hopkins R.L.. Depth of Calcination Measurement in Fire Origin Analysis [J]. Fire and Materials, 2003, 11(1): 1-11
    [58] Beland D.B.. Arcing Phenomenon as Related to Fire Investigation [J]. Fire Technology, 1981, 17 (3): 189-201
    [59] Chen C.Y., Ling Y.C., Wang J.T.. SIMS depth profiling analysis of electrical arc residues in fire investigation [J]. Applied Surface Science, 2003, 203-204 (1): 779-784
    [60]叶文霞.论火灾物证鉴定制度[D].北京:中国政法大学, 2004
    [61] Chang Q., Tashtoush G., Akihiko I. et al. Structure of large scale pool fires [A]. International Conference on Fire Research and Engineering[C]. Orlando: Science Press, 1995: 2134-2140
    [62] Hiroshi Koseki, Yusaku lwata. Tomakomai Large Scale Crude Oil Fire Experiments [J]. Fire Technology, 2000, 36(1): 24-38
    [63] Hiroshi Koseki. Combustion Properties of Large Liquid Pool Fires [J]. Fire Technology, 1989, 15(8): 241-255
    [64] Gritzo L.A., Boucheron E.A.. Fuel temperature distribution and Burning Rate in Large Pool Fires [J]. Fire Safety Journal, 1996, 28(10): 75-83
    [65] Hamins A., Fischer S.J., Ashiwagi T.. Heat feedback to the fuel surface in pool fires [J]. Combustion Science and Technology, 1994, 97(3): 37-62
    [66] Steinhaus T., Welch S., Carvel R.. Large-Scale pool fires [J]. Thermal Science Journal,2007, 11(2): 101-118
    [67] Anthony Hamins, Takashi Kashiwagi, Buch R.R.. Characteristics of pool fire burning [A]. Totem G.E.. Proceedings. ASTM STP[C]. Philadelphia, PA: American Society for Testing and Materials (ASTM), 1996, 1478-1485
    [68] Muqoz M, Arnaldos J, Casal J, et al. Analysis of the geometric and radiative characteristics of hydrocarbon pool fires [J]. Combustion and Flame. 2004, 139(3): 263-277
    [69]谭家磊,宗若雯,赵祥迪.小尺度油品扬沸火灾火行为的实验研究.安全与环境学[J]. 2007, 7(6): 92-96
    [70]庄磊,陆守香.航空煤油池火焰高度特征研究[J].中国科学技术大学学报, 2009, 39(7): 763-769
    [71]陈思维,杜杨,王博.油罐中油气爆炸规律研究[J].安全与环境学报, 2007, 7(3): 102-104
    [72]魏东,赵大林,薛岗等.油罐火灾燃烧速度的动态变化特性[J].消防技术与产品信息, 2005, 15(1): 33-37
    [73]魏东,赵大林,杜玉龙等.油罐火灾燃烧速度的实验研究[J].燃烧科学与技术, 2005, 11(3): 286-291
    [74] Woodcock K., Drury C.G., Smile A.. Using simulated investigations for accident investigation studies [J]. Applied Ergonomics, 2005, 36(1): 1-12
    [75]蒋勇,邱榕,钟茂华等.火灾调查理论框架建立探讨[J].中国安全生产科学技术, 2005, 1(4): 8-12
    [76]廖彦秋.计算机模拟重构技术在火灾调查中的应用[J].亚洲消防, 2007, (6): 40-47
    [77] Evans D.D.. Use of Fire Simulation in Fire Safety Engineering and Fire Investigation [R]. San Antonio, TX: U.S./Japan Government Cooperative Program on Natural Resources (UJNR), 2000
    [78] Delemont O., Martin J.C.. Application of Computational Fluid Dynamics modelling in the process of forensic fire investigation: Problems and solutions [J]. Forensic Science International, 2007, 167: 127-135
    [79] Tzu-Sheng Shen, Yu-Hsiang Huang, Shen-Wen Chien. Using fire dynamic simulation to reconstruct an arson fire scene [J]. Building and Environment. 2008, 43 (6): 1036-1045
    [80] Madrzykowski D, Forney G.P., Walton W.D.. Simulation of the Dynamics of a Fire in a Two-Story Duplex-Iowa, December 22, 1999[R]. Gaithersburg: Building and Fire Research Laboratory National Institute of Standards and Technology, 2002
    [81] Madrzykowski D, Bryner N, Kerber S.I. The NIST Station Nightclub Fire Investigation: Physical Simulation of the Fire[R]. Fire Protection Engineering, 2006, (3): 1-4
    [82] Robert L., Madrzykowski D, Walton W.D.. Simulation of the Dynamics of a Fire in a One-Story Restaurant-Texas, February 14, 2000[R]. Gaithersburg: Building and Fire Research Laboratory National Institute of Standards and Technology, 2002
    [83]李一涵,邱榕,蒋勇.数值模拟方法在壁面烧损痕迹的应用[J].火灾科学, 2006, 15(2): 102-110
    [84]姜蓬,邱榕,蒋勇.基于数值模拟的某大厦特大火灾过程调查[J].燃烧科学与技术, 2007, 13(1): 76-80
    [85]陈琨等. FDS数值模拟技术在某“商住合用”建筑火灾调查中的应用[J].消防技术与产品信息, 2008, (7): 46-49
    [86]文全等.计算机模拟技术在火灾调查中的应用[J].武警学院学报, 2008, 24(4): 38-40
    [87]谈讯等.面向事故调查的某民居火灾数值模拟研究[J].消防科学与技术, 2008, 27(7): 542-544
    [88]伍和员.南京炼油厂油罐火灾原因的论证[J].消防科技, 1995(1): 33-35
    [89] Kefalas D.A., Christolis M.N., Nivolianitou Z., et al. Consequence analysis of an open fire incident in a pesticide storage plant [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(1): 78-88
    [90]罗艾民.扁平圆环局限空间蒸气云爆炸数值模拟及其在事故调查中的应用[J].中国安全科学学报, 2008, 18(1): 95-99
    [91]杨君涛,魏东,李思成等.基于油罐火灾数值模拟的模型选取与分析.中国安全科学学报, 2004, 14(1): 91-96
    [92]宇德明.易燃、易爆、有毒危险品储运过程定量风险评价[M].北京:中国铁道出版社, 2000
    [93]李思成,杜玉龙,张学魁等.油罐火灾的统计分析[J].消防科学与技术, 2000, 23(2): 117-121
    [94] Chang J. I., Lin C.C.. A study of storage tank accidents [J]. Journal of Loss Prevention in the Process Industries, 2006, 19(1): 51–59
    [95] Cuchi E.P., Montiel H., J Casal.. A survey of the origin, type and consequences of fire accidents in process plants and in the transportation of hazardous materials [J]. Trans IchemE, 1997, 7(1): 53-8
    [96]魏海俊.从吉化双苯厂爆炸事故处置解读化工火灾扑救对策[J].武警学院学报,2006, 22(6): 27-29
    [97]陈岩.“6.27”特大火灾事故的原因分析[J].消防科学与技术, 2005, 24(2): 245-48
    [98]钟群鹏,陈良材.北京东方化工厂“6·27”特大火灾事故分析结论意见及其技术依据的简介[J].化工安全与环境, 2001(5): 4-5
    [99]钟群鹏,陈良材.关于北京东方化工厂“6·27”特大事故原因的认定[J].化工安全与环境, 2001(5): 6-7
    [100]耿惠民.火灾原因调查案例集[M].天津:天津科学技术出版社, 2010
    [101] Morrison D.R., Ogle R.A.; Viz M.J.. Investigating chemical process accidents:examples of good practices[J]. Process Safety Progress, 2006, 25(1): 71-77
    [102]中国安全生产科学研究院.危险化学品事故案例[M].北京:化学工业出版社, 2005
    [103]闪淳昌.国内外危险化学品重特大典型事故案例[M].国家安全生产监督管局, 2002
    [104]化工劳动保护编辑部. 50年中国化工大事故记[J].化工劳动保护, 1999, 20: 403-406
    [105]Zheng Bin, Chen Guohua. Storage Tank Fire Accidents [J]. Process Safety Progress, 2011, 30(3): 291-293
    [106]Gunasekera M.Y., Alwis A. P.. Process industry accidents in Sri Lanka: Analysis and basic lessons learnt [J]. Process Safety and Environment Protection, 2008, 86(6): 421–426
    [107]北川彻三(日).爆炸事故的分析[M].黄九华;刘陪德译.北京:化学工业出版社, 1984: 9-15
    [108]惠中玉.工业企业防火工程[M].北京:中国人民公安大学出版社, 1994
    [109]傅智敏.油罐火灾热平衡及辐射热估算[J].消防科学与技术, 2000, 8(3): 11-14
    [110]杜扬.油料火灾科学导论[M].北京:中国石化出版社, 2010
    [111]Fay.J.A.. Model of large pool fires[J]. Journal of Hazardous Materials, 2006, 126(2): 219–232
    [112]Cuchi E.P., Casal J.. Modeling Temperature Evolution in Equipment Engulfed in a Pool-fire [J]. Fire Safety Journal, 1998, 30(3): 251-268
    [113]张新梅.化工园区事故多米诺效应风险仿真原理及应用研究[D].广州:华南理工大学博士学位论文, 2009
    [114]王保国等.传热学[M].北京:机械工业出版社, 2009
    [115]丁军,李国强,蒋首超.火灾下钢结构构件的温度分析[J].钢结构, 2002, 17(2): 53-56
    [116]赵金城,沈祖炎.钢结构抗火设计的燃烧模型及温度传播[J].工业建筑, 1994, (7): 12-28
    [117]夏璐,孙强.火灾高温下钢构件临界温度的确定方法[J].安徽建筑工业学院学报(自然科学版), 2009, 17(1): 6-10
    [118]杨立中.工业热安全工程[M].合肥:中国科学技术大学出版社, 2001
    [119]Rew P.J., Hulbert W.G.. Development of Pool Fire Thermal Radiation Model[R]. Epsom: HSE Contract Research Report, 1996
    [120]Lin C.H., Ferng Y.M., Hsu W.S, et al. Investigations on the Characteristics of Radiative Heat Transfer in Liquid Pool Fires [J]. Fire Technology, 2010, 46(2): 321-345
    [121]McGrattan K.B., Baum H.R., Hamins A. Thermal Radiation from Large Pool Fires[R]. Gaithersburg: National Institute of Standards and Technology, 2000
    [122]徐志胜,吴振营,何佳.池火灾模型在安全评价中应用的研究[J].灾害学, 2007, 22(4): 25-28
    [123]谭家磊.油品扬沸火灾重构与防治对策研究[D].合肥:中国科学技术大学博士学位论文, 2008
    [124]庄磊,陈国庆,孙志友等.大型油罐火灾的热辐射危害特性[J].安全与环境学报, 2008, 8(4): 110-114
    [125]J.L.Torero, S.M.Olenick, J.P. Garo. Determination of the Burning Characteristics of a Slick of Oil on Water [J]. Spill Science & Technology Bulletin, 2003, 8(4): 379–390
    [126]谭家磊,宗若雯,廖光煊等.油品扬沸火灾特征参量实验研究[J].中国科学技术大学学报, 2009, 39(7): 748-754
    [127]孙志友,庄磊,陆守香.正方形煤油池火燃烧特性研究[J].火灾科学, 2008, 17(2): 93-98
    [128]Fossa M., Devia F.. A model for radiation evaluation and cooling system design in case of fire in tank farms [J]. Fire Safety Journal, 2008, 43(1): 42-49
    [129]Hiroshi K. Radiation properties and flame structure of large hydrocarbon pool fires[R]. Tokyo: Nakahara Mitaka, 1997, 41-50
    [130]Raj P.K.. LNG fires: A review of experimental results, models and hazard prediction challenges [J]. Journal of Hazardous Materials, 2007, 140: 444–464
    [131]Vytenis Babrauskas. Estimating Large Pool Fire Burning Rates [J]. Fire Technology, 1983, 19(4): 251-261
    [132]REW P.J., HULBERT W.G., Deaves D.M.. Trans IChemE, Part B [J]. 1997, 75(5): 81-89
    [133]Akihiko Ito, Tadashi Konishi, Kozo Saito. Scale Effects on Flame Structure in Medium-Size Pool Fires [J]. Progress in Scale Modeling, 2008, Part I, 99-107
    [134]黄金印,傅智敏译.烃类池火灾火焰温度分布[J]. Journal of Hazardous Materals, 1998, 62: 231- 241
    [135]Eulalia Planas-Cuchi, L'opez Carlos, Amaldos Josep et al. Determination of flame emissivity in hydrocarbon pool fires using infrared thermograph [J]. Fire Technology, 2003,(39): 261-273
    [136]傅苏红,曹广军,李继锋等.油池火灾温度模拟计算及实际试验研究[J].工程热物理学报, 2010, (8): 1411-1414
    [137]庄磊.航空煤油池火热辐射特性及热传递研究[D].合肥:中国科学技术大学博士学位论文, 2008
    [138]金河龙.火灾痕迹物证与原因认定[M].长春:吉林科学技术出版社, 2005
    [139]Center for Chemical Process Safety (CCPS). Guidelines for investigating chemical process incidents. 2nd edition [M]. New York: American Institute of Chemical Engineers, 2003
    [140]杨隽,金河龙.根据金属被烧痕迹判定起火部位[J].消防科学与技术, 2000, (1): 58-59
    [141]张辉,任松发,邹红等.石油化工火灾爆炸事故分析中断裂失效样品的选取方法[J].消防科学与技术, 2001, 1(1): 54-56
    [142]GB/T 9978.1-2008,建筑构件耐火试验方法[S].北京:中华人民共和国公安部, 1999
    [143]吴波.火灾后钢筋混凝土结构的力学性能[M].北京:科学出版社, 2003
    [144]周涛.火灾下钢结构反应实验与仿真模拟研究[D].合肥:合肥工业大学硕士学位论文, 2006
    [145]任中.面向事故调查的火灾数值再现方法研究及应用[D].上海:上海交通大学, 2009
    [146]蔡波.基于场模拟的火灾重构方法研究[D].合肥:中国科学技术大学, 2005
    [147]G Rein; Amnon Bar-Ilan; A.C Fernandez-Pello. A Comparison of Three Models for the Simulation of Accidental Fires [J]. Journal of Fire Protection Engineering, 2006, 16(8): 183-209
    [148]刘霞,葛新锋. FLUENT软件及其在我国的应用[J].能源研究与利用, 2003, 15(2): 36-38
    [149]李慧.工业罐区池火灾灾害过程的数值模拟研究[D].南京:南京工业大学, 2005
    [150]李进良,李承曦,胡仁喜等.精通FLUENT6.3流场分析[M].北京:化学工业出版社, 2009
    [151]汪箭,范维澄.油池火蔓延过程的数值模拟[J].中国科学技术大学学报, 1992, 22(3): 361-364
    [152]温正,石良辰,任毅如. Fluent流体计算应用教程[M].北京:清华大学出版社, 2009
    [153]Sivathanu Y.R. Faeth G.M.. Generalized State Relationships for Scalar Properties in Non-Premixed Hydrocarbon/Air Flames [J]. Combustion and Flame, 1990, (82): 211-230
    [154]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社, 2004
    [155]于勇. Fluent入门与进阶教程教程[M].北京:清华大学出版社, 2008
    [156]蔡丽辉.池火灾沸溢早期特性数值模拟研究[D].南京:南京工业大学硕士学位论文, 2006
    [157]Ferng Y M; Lin C H. Investigation of appropriate mesh size and solid angle number for CFD simulating the characteristics of pool fires_with experiments assessment[J]. Nuclear Engineering and Design, 2010, 240(4): 816-822
    [158]弋明涛.池火与喷射火联合作用下液化气储罐的热及力学响应研究分析[D].郑州:郑州大学硕士学位论文, 2007
    [159]王晓宁,李丽霞,王明贤.有风情况下池火灾的数值模拟[J].江苏大学学报(自然科学版), 2006, 27(4): 328-331
    [160]李丽霞.储罐区池火灾状态下防火间距的理论基础研究[D].南京:南京工业大学硕士学位论文, 2004
    [161]谢建兵,周家铭,施祖建等.危险化学品火灾爆炸事故鉴证[J].中国安全科学学报, 2007, 17(4): 131-135
    [162]Ogle A.R., Lucas J.R., Morrison D.R.. The Scientific Investigation of Arson Fires[M]. Chicago: Exponent Failure Analysis Associates, 2003: 117-130
    [163]王凯全,邵辉等.事故理论与分析技术[M].北京:化学工业出版社, 2004
    [164]郑斌,陈国华.化工火灾事故调查方法研究[J].中国安全科学学报, 2010, 20(7): 63-70
    [165]Cleavera P, Johnsona M, Ho B. A summary of some experimental data on LNG safety [J]. Journal of Hazardous Materials. 2007, 140(3): 429-438
    [166]许文.化工安全工程概论[M].北京:化学工业出版社, 2002
    [167]NFPA 921, Guide for Fire and Explosion Investigations[S]. Quincy: National Fire Protection Association, 2008
    [168]Mark P., Sandercock L.. Fire investigation and ignitable liquid residue analysis-A review: 2001-2007[J]. Forensic Science International, 2007, 176(9): 93-110
    [169]鲁志宝.火灾现场中易燃液体物证鉴定方法的研究[D].天津:天津大学工程硕士论文, 2003
    [170]王凯全.炼油厂生产事故分析与预防[M].北京:中国石化出版社, 2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700