用户名: 密码: 验证码:
狭长通道火灾烟气热分层及运动机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
狭长通道对于现代社会的发展必不可少,如大型建筑的房间走廊、公路或者铁路隧道、矿山井巷、城市地下轨道交通等。然而,在该类狭长通道一旦发生火灾,造成的破坏往往非常严重,特别是运输繁忙的公铁路隧道,火灾易造成群死群伤,社会影响大。根据国内外狭长通道火灾事故案例可知,在狭长通道火灾中致死致伤的主要因素是有毒有害的火灾烟气,因而狭长通道火灾防控主要在于火灾烟气的防控。可燃物的种类、火源功率、通风排烟、火源位置等都能对火灾烟气产生量及烟气热分层的稳定性产生影响,这些因素的存在增加了狭长通道火灾防控的难度,而烟气热分层的稳定性对于通道火灾烟气防控、人员疏散具有重要影响。人们对于烟气热分层展开了较多的研究,但主要集中于火源远场的研究,对火源近场缺乏研究。特别的是,当通道火灾由初始阶段发展到轰燃阶段时,由轰燃导致的空气压缩波在狭长通道的来回往复运动的存在可以导致火灾烟气的脉动,这对于烟气的防控提出了更高的要求。因此,本研究选择狭长通道火灾烟气运动作为研究对象,利用自己搭建的小尺寸狭长通道实验台,研究了火源功率、纵向风对烟气热分层的稳定性影响规律,同时通过理论分析和数值实验对狭长通道火灾烟气的脉动及迁移特性进行了研究。
     狭长通道火灾烟气的热分层的实验研究发现:(1)近火源区的火灾烟气热分层的层化强度及层化曲线可以很好地描述火灾热流场特性,是研究火灾热流场的有力工具。如在不同纵向风速转换前后的条件下,由低风速(低档位)向高风速(高档位)转换,层化强度先减小后趋于较为稳定,即形成热分层较弱的冷热层,由高风速(高档位)向低风速(低档位)转换,层化强度一度先增加后再趋于较为稳定;(2)不同火源功率对狭长通道火灾流场稳定区竖向热分层的层化强度有影响,但对层化强度极值影响较小,而纵向风速对热分层影响明显;(3)影响火灾热释放速率曲线的两个关键参考因素是:最大热释放速率和总能,其比值对于火源功率曲线平台期的出现具有重要影响,比值越大出现平台期的可能性越小,反之亦然。对于无纵向通风,即自然排烟状态下,火源功率对烟气热分层有一定的微弱影响,并存在一个最佳火源功率值,使得热分层最稳定,层化强度最大。
     针对狭长通道火灾烟气的热振荡特性展开理论和数值实验研究。对于大功率隧道火灾,火灾轰然所产生的压缩扰动波对隧道这样狭长通道流场影响明显。通过对狭长通道火灾流场的一维近似处理,推导出本征振荡值并对Runehamar隧道实验结果进行理论分析,发现其分别为4s、18s的两次实验脉动周期与理论值较为吻合并给出可能的误差原因分析。通过三维通道数值实验,明确扰动压缩波在长为300m通道内的传播过程,发现非对称周期约为1.7s,非常接近理论值1.76s;就其对通道火灾热分层的影响,火焰高温区的厚度随着压力波而呈现非对称性周期变化;对车辆进入通道形成的压缩扰动波对临近火源点的竖向烟气热分层影响进行研究,发现车辆形成的扰动波要强于火灾轰燃形成的经过多次反射分解的压力波,车辆扰动压缩波对热分层影响明显,存在热分层受到“挤压”的现象。
     借助于数值试验,对实际的一端封闭式狭长通道进行研究。针对隧道施工过程中发生火灾,为了保证现场施工人员的安全疏散,首先提出人员安全疏散的临界判据;然后根据实际的工程条件,设置相关参数及边界条件,建立物理模型,利用数值模拟软件FDS对施工隧道的火灾烟气迁移特性及规律进行研究,发现:(1)一端封闭的水平狭长通道,在只考虑纵向温度分布的情况下,通道中温度场分布呈现一定的规律:各监测点温度起变点的滞后性以及温升变化波动性等,这些与通道内风管风流搅动效应及冷却作用等具体参数及环境条件有关;各个监测点到达临界温度的温升速率是不相同的,温升速率变化与距火源距离呈现指数衰减的关系;临界温度与临界视距在各监测点测得到达的时间呈现出一定的规律性:在长为300m水平通道中,大约在距封闭端前120m,临界温度要早于临界视距出现,而此后,临界视距要早于临界温度的到来;(2)在一端封闭的狭长通道中,发现斜度对隧道中温度分布与烟气浓度变化的影响呈现一定的规律性:上向倾斜更利于烟气的流动,下向倾斜不利于烟气沿巷道纵向的运动,从而在温度变化上表现为下向倾斜温升曲线滞后于上向倾斜,在烟气浓度上表现为上向倾斜的烟气浓度曲线“跳变”早于下向倾斜;同时发现,上向倾斜对温度变化曲线与烟气浓度曲线的影响趋于一致,这可能是由于随着上向倾斜角度的增加,烟气的驱动机理发生改变而变得与斜度无关;(3)一端封闭的狭长通道斜度对达到临界温度所需时间曲线与达到临界视距所需时间曲线影响基本趋于一致,即对于距离火源较近的监测点几乎无影响,而对于距离火源较远的其他监测点,随着斜度的增加达到临界温度所需时间与达到临界视距所需时间减少;随着监测点距火源距离的变化,两曲线发生了交错与错位,两曲线交错点存在于下倾斜7.5°附近;(4)对于一端封闭的水平狭长通道火灾CO分布,总体来说,CO浓度在各个监测点的监测值都不超过400ppm;在压入式通风条件下CO浓度分布在约250s时整个分布趋于稳定,即距隧道封闭端90m之后所有隧道空间CO浓度最终趋于约为130ppm均值,同时发现在隧道前部大约90m范围内CO浓度在竖向分布呈现不稳定的层状;经过CO分布的数值模拟,可以看出CO浓度的变化规律很好的吻合烟气的运动规律,也就是说可以通过监测火灾中微量的CO浓度变化规律来揭示烟气运动规律成为可能。
     总之,本文通过理论分析、小尺寸模型试验和数值实验相结合的方法,研究了狭长通道在纵向风作用下的火灾流场特性和烟气流动特性,给出了狭长通道火灾烟气的热分层强度定义并给出其在多流场边界参数作用下的动态变化的初步规律。这些结果有助于人们更深入地认识狭长通道火灾烟气运动的机理,为此类火灾防治提供科学基础。
High Aspect Ratio Channels are required in the model society. The channels, such as large building corridors, road or railway tunnels, mining laneways, and urban underground traffics and so on, are important for the social and economic development. However, the fire in the channels once takes place the fire-induced ruined situation generally is very serious, especially for busy road or railway tunnels, where more casualties will easy happen and its bad social effect is great. So, it is necessary to study how to control this type fire in enclosure with almost closed space. According to the channel fires in the world, the main factor which can result in fatal and injured is the fire-induced poison smoke. So how to control fire smoke is very important for the channel fire controlling. As the channel fire smoke, there are many affecting factors to it, such as combustible types, fire power, ventilation and exhaust fume, fire location and so on, whose effects are on the flow and thermal stratification stability of the fire smoke, and these factors increase the difficulty of the channel fire smoke controlling. The thermal stratification stability of the hot smoke is essential for the channel fire smoke controlling and personal evacuation. Lots of researches on fire smoke thermal stratification had been carried out, but these researches mainly focus on far flow field from fire source and for near fire flow field is absent. It is especially noteworthy, when the channel fire develops from the initial stage to the flashover the air compress wave from the jump of flashover will circularly move because of its reflection on the channel end. This movement will result in the pulsation or oscillation of the channel fire smoke. So this situation generally requires more serious to control the fire smoke. Thus, the fire smoke movement in High Aspect Ratio Channel was selected as the research object. The experimental study was carried out by use of a small-scale model apparatus in order to ascertain the effect of fire power and longitudinal ventilation on the stability of the fire smoke thermal stratification in the channel. Then, with theoretical study and numeral simulation, characteristic mechanism of the fire smoke pulsation in the channel was investigated here.
     The small scale set-up was introduced first in the present study. Its configuration, measure methods and how to obtain experimental data and to analyze it were explained.
     The experimental research of the fire smoke thermal stratification in the set-up was carried out. The effect of the different fire powers and longitudinal ventilation on the fire smoke thermal stratification during the flow field quasi-steady stage was investigated in detail in the downstream of fire source. The main conclusions include as follow:(1) By the stratification intensity and curve investigations to the fire smoke thermal stratification for near fire flow field, it shows that the stratification intensity and curve are able to characterize well the fire hot flow field. So, they are powerful tools for the fire hot flow field. Such as, under the condition of different longitudinal ventilation switch, some rules about the stratification curve were obtained. When the switch changes from low air speed (namely low shift) to high one (namely high shift) the stratification intensity firstly decreases and approaches to stability (that is to say, the no strong thermal stratification between the hot layer and cold layer comes into being); when the switch changes from high air speed (namely high shift) to low one (namely low shift) the stratification intensity once increases and approaches to stability again.(2) The present study also shows that different fire powers have minor effect on the stratification intensity of hot fire smoke vertical thermal stratification in the quasi-steady zone of the channel fire flow field. However, different longitudinal ventilation has apparently effect on the stratification intensity, especially on the pole value of the stratification intensity.(3) The fire power curve was discussed theoretically. The two key factors, which were the max heat release rate (viz. HRR) and the total energy of the channel fire, were obtained. They both can affect the shape of the fire power curve and their ratio (viz. the ratio of the max HRR and the total energy) has important effect on whether the plateau stage of the fire power curve can appear. The larger the ratio is, the less probability the fire power curve with a plateau stage is; vice versa. Under the condition of nature ventilation, the fire power has minor effect on the fire smoke thermal stratification, and there is an optimal fire power, which makes the thermal stratification become the best stability and most stratification intensity.
     For the thermal oscillation character of the channel fire smoke, the theoretical analysis and numerical experiment were carried out. As the fire with big power, the air compress wave from the jump of the flashover has apparently effect on the flow field in the channel. By dealing proximately with one dimension for a channel fire flow field, its primary oscillation value was induced, and the oscillation results of the famous Runehamar tunnel fire experiment was analyzed theoretically. It was certificated that the theoretical value of the oscillation period accords well with the experimental one (viz. the period of4s and18s during the twice experiment, respectively) of the two full-scale fire investigations in the Runehamar tunnel, and the probable error analysis was given. By the numerical experiment of3dimensions channel with300m length, the movement mechanism of the flashover compress wave was ascertained. It was found that the wave asymmetry period is about1.7s, which is proximate to the channel theoretical value of1.76s. For the effect of the wave on the thermal stratification in the channel, the thickness of the hot layer near the fire changes with the asymmetry wave. Another vehicle-induced air compress wave, which has effect on the thermal stratification near the fire in the channel, was investigated. It is found that the magnitude of the vehicle-induced disturbing wave is stronger than that of the flashover-induced disturbing wave, which reflects and decomposes many times in the channel. So, the effect of the vehicle-induced disturbing wave on the thermal stratification is obvious, and the effect produces an "extrusion" phenomenon to the thermal stratification in the channel.
     Through the numerical experiment, the study of the channel with one closed-end was carried out. For the fire during the tunnel being constructed (viz. the channel with one closed-end), the critical criterions on safety evacuation were firstly provided in order to protect presently the constructor in the tunnel. Then, according to the factional engineering conditions, some relative characters and boundary conditions were setup and the tunnel physical model was built. Lastly, by use of the FDS, the investigation on the fire smoke evolution in the channel with one closed-end was carried out. The main conclusions include as follow:(1) For the horizontal tunnel, the related analysis shows that, only considering the temperature along tunnel longitudinal direction, the temperature distribution complies with certain rules, that is, there are a certain lag among the temperature rising curves and their fluctuation, which is relative to the detailed tunnel parameters and ambient condition, e.g. the mixing and cooling effects of air flow from the duct open on the hot plume. At the same time, the temperature rising rate is different at various inspecting points before reaching the critical temperature.(2) The analysis also shows that the cost time required for the critical temperature and the critical visibility to arrive at these points conforms to certain rule, that is, the critical temperature appearance is prior to the critical visibility before60m point in the tunnel and reverses after60m point.(3) For the influence of the tunnel inclination on the critical temperature and the critical visibility, two key inclinations are obtained by a series of numerical simulations. For the C point there is a key slope scope, namely from-5to0degree or so and the other key slope point is approximately5degree for the E point.(4) On the whole, the CO concentrations at all inspecting points are not over400ppm, namely they are always less than the critical value of500ppm, this show that the influence of the CO concentration on the occupant safety evacuation is small for the tunnel fire. In the case of forced ventilation, the CO concentration distribution tends to steady at250s in the typical one closed-end tunnel. That is to say, at that moment, before90m the CO concentration vertical distribution presents minor steady two layers and after90m the CO concentration become relative uniformity and the constant of130ppm or so in the end. By the simulation, we can see that the regularity of the CO concentration changing is very accordance with the regularity of the smoke flow. It is possible to discover the smoke flow regularity by inspecting low CO concentration changing.
     In summary, by the combine method of theoretical analysis, small-scale model and numerical experiment, the fire flow field characters and the fire-induced smoke evolution in High Aspect Ratio Channel with longitudinal ventilation were investigated here. The definition of thermal stratification intensity in the channel was given and some rules of the fire smoke movement during its dynamical state were obtained under different flow field characters. The simple disturbing theory in the channel fire was built and the law of intersection between the critical temperature and critical visibility was given. These results will be help to understand further the fire smoke movement mechanism for us and offer the science base on how to control the channel fire.
引文
[1]阳东.狭长受限空间火灾烟气分层与卷吸特性研究.合肥:中国科学技术大学博士学位论文2010.
    [2]戴国平.英法海峡隧道火灾事故剖析及其启示,铁道建筑.2001,3:6-9
    [3]张伟,姜韦华,张卫国.城市地下交通隧道火灾的防护.地下空间,2002,22(3):268-270.
    [4]W.H.Hong. The progress and controlling situation of Daegu Subway fire disaster. The 6th Asia-Oceania Symposium on Fire Seience and Technology,17-20, March,2004,Daegu, Korea, pp.28-46
    [5]黄钊.地下商业街的火灾防护.火灾科学.2002,18(6):111-119
    [6]钟喆.阿尔卑斯山的地下惨剧—法国与意大利的勃朗峰公路隧道发生特大火灾.上海消防.1999,5:34-35
    [7]王遥.地下空间火灾-城市的心腹之患.现代职业安全.2009,12:112-113
    [8]范维澄,王清安,姜冯辉,周建军.火灾学简明教程.合肥:中国科学技术大学出版社.1995
    [9]徐琳.长大公路隧道火灾热烟气控制理论分析与实验研究.上海:同济大学博士学位论文.2007.
    [10]何建红.阿塞拜疆地铁火灾.上海消防.1999,11:40-41
    [11]魏平安.巴库地铁火灾的教训.消防技术与产品信息.1996,08:33
    [12]张萍,黄强.地铁火灾的原因分析及预防.山西建筑.2010,29:50-52
    [13]杜宝玲.国外地铁火灾事故案例统计分析.消防科学与技术.2007,02:33-36
    [14]钟委,霍然,王浩波.地铁火灾场景设计的初步研究.安全与环境学报.2006,03:63-66
    [15]钟委.地铁站火灾烟气流动特性及控制方法研究.合肥:中国科学技术大学博士学位论文2007
    [16]纪杰.地铁站火灾烟气流动及通风控制模式研究.合肥:中国科学技术大学博士学位论文2008
    [17]杨立中,邹兰.地铁火灾研究综述.工程建设与设计.2005,11:8-12
    [18]孙爽.从韩国大邱市地铁火灾谈地铁的防火安全.消防科学与技术.2004,S1:109-110
    [19]王兰.韩国大邱市地铁火灾概况.消防技术与产品信息.2004,02:55-57
    [20]梁旭娟.由火灾引发的保险意识.今日新疆.2008,03:32
    [21]董大旻,左芬.从央视配楼火灾事件看建筑防火安全.建筑.2009,06:42
    [22]T. N. Guo and Z. M. Fu, The fire situation and progress in fire safety science and technology in China, Fire Safety Journal, vol.42, pp.171-182, Apr 2007.
    [23]http://www.119.gov.cn/xiaofang/hztj/index.htm http://www.119.gov.cn/xiaofang/hztj/12241.htm
    [24]柯克火灾调查:第5版/[美]John D. Dehaan著;陈爱平,徐晓楠主译.北京:化学工业出版社,2006.2
    [25]http://finance.huanqiu.com/roll/2009-03/397089.html http://news.qq.com/a/20110529/000508.htm
    [26]Chien SW, Wu GY. The strategies of fire prevention on residential fire in Taipei. Fire Safety Journal 2008;43(1):71-76.
    [27]Hasofer, A.M. and I. Thomas, Analysis of fatalities and injuries in building fire statistics. Fire Safety Journal,2006.41(1):p.2-14.
    [28]Department for Communities and Local Government. Fire Statistics, United Kingdom 2006.
    [29]Department for Communities and Local Government:London,2008
    [30]Haukur Ingason, Ulf Wickstrom. Tunnel fire safety research in Europe. Industrial Fire Journal.2011,01(82):30-33
    [31]王梦恕.中国是世界上隧道和地下工程最多、最复杂、今后发展最快的国家.铁道标准设计.2003,01:1-4
    [32]杨超,王志伟.公路隧道通风技术现状及发展趋势.地下空间与工程学报.2011,04:819-824
    [33]马辉,刘仁智,陈寿根,高明忠.当前铁路隧道施工亟待解决的若干技术问题.现代隧道技术.2011,05:31-37
    [34]陈和生.深地科学实验的发展现状及我国发展战略的思考.中国科学基金.2010,02:6-8
    [35]杨瑞新,陈雪峰.高等级公路长隧道火灾特点及消防设计初探.消防科学与技术.2002,5:50-52.
    [36]K. Axler et al. Structural Materials Analyses of the Newhall Pass Tunnel Fire,2007. Office of Nuclear Material Safety and Safeguards. Center for Nuclear Waste Regulatory Analyses, Southwest Research Institute,San Antonio, Texas
    [37]http://www.nfdaily.cn/bignews/hot/content/2008-05/04/content_4393274.htm
    [38]Joseph Varon. Carbon Monoxide Poisoning:a Review for Clinicians. Journal of Emergency Medicine, Vol17, No.1, pp.87-93,1999
    [39]Kevin T. Fitzgerald et al. Smoke Inhalation. Clinical Techniques in Small Animal Practice, Volume 21, Issue 4,11,2006, P:205-214
    [40]Christopher John Wieczorek. Carbon monoxide generation and transport from compartment fires. Ph.D. Thesis. Blaekburg:Virginia Polytechnic Institute and State University, June 2003
    [41]Lizhong Y, Wenxing F, Junqi Y. Experimental research on the spatial distribution of toxic gases in the transport of fire smoke, Journal of Fire Seiences,2008,26(1):45-62
    [42]冯文兴,杨立中,方廷勇等.狭长通道内火灾烟气毒性成分空间分布的试验.中国科学技术大学学报,2006,36(1):61-64
    [43]冯文兴,杨立中,叶俊麒.火灾中烟气毒性成分向远距离房间传播的试验研究.中国科学技术大学学报,2008,38(12):1451-1454
    [44]Brian Y. Lattimer, Uri Vandsburger, Richard J.Roby. The transport of carbon monoxide from a burning compartment located on the side of a hallway. Twenty-Sixth Symposium (International) on Combustion,1996,26(1):1541-1547
    [45]Jaehark Goo. Development of the size distribution of smoke particles in a compartment fire. Fire Safety Journal.2012,47:46-53
    [46]David Purser. Behavioural impairment in smoke environments. Toxicology.1996,115:25-40
    [47]Clark Jr WR. Smoke inhalation:diagnosis and treatment. World J Surg 1992; 16:24-9.
    [48]Jialei Zhang et al. The inclination effect on CO generation and smoke movement in an inclined tunnel fire. Tunnelling and Underground Space Technology 29 (2012) 78-84
    [49]张青岚,兰彬,张文良,等.地下商业街火灾烟气流速的试验研究.消防科学与技术,2001,1:13-16.
    [50]Oka Yasushi, Atkinson Graham T. Control of smoke flow in tunnel fires.Fire Safety Journal, 1995,25(4):305-322.
    [51]G.T.Atkinson, Y.Wu. Smoke control in sloping tunnels.Fire Safety Journal,1996, 27(4):335-341.
    [52]蒋亚强.不同排烟条件下通道内火灾烟气的输运特性研究.合肥:中国科学技术大学硕士学位论文,2009
    [53]C.C.Hwang, J.C.Edwards.The critical ventilation velocity in tunnel fires-a computer simulation. Fire Safety Journal,2005,40(3):213-244.
    [54]Sung Ryong Lee, Hong Sun Ryou. A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio. Building and Environment,2006, 41(6):719-725.
    [55]Y Wu, M.Z.A. Bakar. Control of smoke flow in tunnel fires using longitudinal ventilation systems-a study of the critical velocity. Fire Safety Journal,2000,35(4):363-390.
    [56]Karim Van Maele, Bart Merci.Application of RANS and LES field simulations to predict the critical ventilation velocity in longitudinally ventilated horizontal tunnels. Fire Safety Journal,2008,43(8):598-609.
    [57]丁良平.高速铁路长大隧道列车火灾安全疏散研究.上海:同济大学硕士学位论文2008.
    [58]涂文轩.铁路隧道火灾的试验研究.消防技术与产品信息,1997,10:32-36.
    [59]Eui Ju Lee et al. Smoke extraction experiments in case of fire in a tunnel. Tunnelling and Underground Space Technology.2010,25:600-606
    [60]R.O. Carvel, A.N. Beard, P.W. Jowitt The influence of longitudinal ventilation systems on fires in tunnels. Tunnelling and Underground Space Technology 16(2001)3-21
    [61]O. Vauquelin, O. Megret. Smoke extraction experiments in case of fire in a tunnel Fire Safety Journal 37 (2002) 525-533
    [62]O. Vauquelin, Y. Wu. Influence of tunnel width on longitudinal smoke control. Fire Safety Journal 41 (2006) 420-426
    [63]彭伟.公路隧道火灾中纵向风对燃烧及烟气流动影响的研究.合肥:中国科学技术大学博士学位论文,2008
    [64]冯炼,梁园,常莉.不同竖井送排风方式下半横向通风隧道火灾特性与烟气发展规律研究.安全与环境学报.2008,3:103-106
    [65]张娜,戴国平,郭光玲,马世杰.坡度隧道中烟气控制的CFD模拟研究.公路.2005,5:180-182
    [66]周庆,倪天晓,周湘川.纵向通风下坡度隧道火灾烟气特性数值模拟研究.中国安全科学学报2011,03:42-47
    [67]李炎锋,付成云,李俊梅,杜修力.城市交通隧道坡度对火灾烟气扩散影响研究.中国安全生产科学技术.2011,05:10-15
    [68]高立新,陆效英,孙绍增.非直线型公路隧道火灾烟气迁移特性的数值模拟.公路.2011,05:238-242
    [69]闫治国,杨其新,朱合华.火灾时隧道内烟流流动状态试验研究.土木工程学报.2006,4:95-99
    [70]王洪德,林琳,赵轶.地铁隧道火灾事故通风方式数值模拟.辽宁工程技术大学学报(自然科学版).2010,2:177-181
    [71]易亮,杨洋,徐志胜,吴德兴,李伟平.纵向通风公路隧道火灾拱顶烟气最高温度试验研究.燃烧科学与技术.2011,2:109-114
    [72]雷兵.公路隧道火灾烟气流动的数值模拟.华南理工大学学报(自然科学版).2008,2:64-69
    [73]刘晓阳,李炎锋,张靖岩,赵明星,孙晓龙.通过模型试验与数值模拟对隧道火灾烟气控制策略的研究.建筑科学.2012,1:70-73
    [74]王春生.山岭公路单洞双向隧道火灾中烟气运动特性分析.铁道运输与经济.2009,3:87-92
    [75]姜学鹏,胡杰,徐志胜,赵红莉,刘琪.铁路隧道火灾烟气逆流的计算模型.中南大学学报(自然科学版).2011,9:2837-2842
    [76]徐志胜,李冬,姜学鹏,赵红莉,李洪.纵向通风隧道内火灾温度场分布规律研究.中国安全科学学报.2010,3:51-56
    [77]王军,张旭.多向风流耦合作用对隧道火灾温度场的影响.铁道标准设计.2008,S1:50-53
    [78]舒宁,徐建闽,钟汉枢,林钢.计算流体力学在纵向式公路隧道火灾通风中的仿真.水动力学研究与进展(A辑).2001,4:511-516
    [79]王婉娣,张靖岩,冯炼,赵纯刚.纵向通风对长大隧道火灾烟流控制分析.中国安全生产科学技术.2010,3:28-32
    [80]周延.一个新的水平隧道火灾烟气逆流层长度模型研究. 中国矿业大学学报.2007,5:569-572
    [81]李婷婷,唐娴.长大隧道内火灾烟雾运动和温度分布数值模拟.武汉理工大学学报2010,12:66-69(87)
    [82]Emmons H. The Home Fire Viewed as a Scientific System [J]. Society of Fire Protection Engineers SFPE Annual Seminar,1977,77-85
    [83]James G. Quintiere. Compartment Fire Modeling (3)162-170 in:SFPE Handbook of Fire Protection Engineering. Third Edition. Edited by Philip J. Di Nenno et al.
    [84]H.W. Emmons, The Ceiling Jet in Fires, Fire Safety Science, Proceedings of the Third International Symposium (G. Cox and B. Langford, eds.), Elsevier Applied Science, New York, pp.249(1991).
    [85]H.W. Emmons, Some Observations on Pool Burning, The Use of Models in Fire Research, Publication 786 NAS-NRC, Washington, DC, pp.50-67 (1961).
    [86]H.W. Emmons, H.E. Mitler, and L.N. Trefethen, Computer Fire Code Ⅲ, Home Fire Proj. Tech Rept. No.25, Harvard Univ. Cambridge, MA (1978).
    [87]Tony Lemaire, Yvonne Kenyon. Large Scale Fire Tests in the Second Benelux Tunnel.Fire Technology.2006,42:329-350.
    [88]韩新,崔力明.国内外隧道火灾试验研究进展简述.地下空间与工程学报,2008,4(3):544-549.
    [89]Newman J.S. Experimental evaluation of fire-induced stratification. Combustion and Flame. 1984,57:33-39.
    [90]Strang E.J. Fernando H.J.S. Entrainment and mixing in stratified shear flows. J.Fluid Mech, 2001,428:349-386.
    [91]Fernando HJS. Turbulent mixing in stratified fluids. J. Fluid Mech.1991,23:455-493.
    [92]阳东等.纵向风对通道火灾烟气竖向分层特性的影响.燃烧科学与技术.2010,3:22-29
    [93]D.Yang., L.H.Hu. Experimental study on buoyant flow stratification induced by a fire in a horizontal channel. Applied Thermal Engineering.30(2010)872-878
    [94]胡隆华,霍然,王浩波等.公路隧道内火灾烟气温度及层化高度分布特征试验.中国公路学报.2006,19(6):79-82.
    [95]胡隆华.隧道火灾烟气蔓延的热物理特性研究.合肥:中国科学技术大学博士学位论文.2006.
    [96]Kunsch J P. Critical velocity and range of a fire-gas plume in a ventilated tunnel [J]. Atmospheric Environment,1998,33(1):13-24
    [97]Anders Lonnermark, Bror Persson, Haukur Ingason. Pulsations during large-scale fire tests in the Runehamar tunnel. Fire Safety Journal, Volume 41, Issue 5, July 2006, Pages 377-389
    [98]Yaping He, Paula Beever. Buoyancy driven flow in building enclosures subjected to fires. In:13th Australasian Fluid Mechanics Conference Monash University, Melbourne, Australia 13-18 December 1998
    [99]G. Bisio, G. Rubatto. Sondhauss and Rijke oscillations-thermodynamic analysis, possible applications and analogies. Energy, Volume 24, Issue 2, February 1999, Pages 117-131.
    [100]Maria A. Heckl, M.S. Howe.Stability analysis of the Rijke tube with a Green's function approach.Journal of Sound and Vibration, Volume 305, Issues 4-5,11 September 2007, Pages 672-688.
    [101]M. Elsari, A. Cummings. Combustion oscillations in gas fired appliances: Eigen-frequencies and stability regimes. Applied Acoustics, Volume 64, Issue 6, June 2003, Pages 565-580
    [102]J. Kopitz, W. Polifke. CFD-based application of the Nyquist criterion to thermo-acoustic instabilities. Journal of Computational Physics, Volume 227, Issue 14,1 July 2008, Pages 6754-677
    [103]Feldman KT. Review of the literature on Sondhauss thermoacoustic phenomena. J Sound Vib 1968,7:71-82.
    [104]Feldman KT. Review of the literature on the Rijke thermoacoustic phenomena. J Sound Vib 1968,7:83-9.
    [1]谈庆命.量纲分析.合肥:中国科学技术木学出版社.2005.
    [2]程曙霞.工程实验理论.合肥:安徽科学技术出版社.1992,156-220
    [3]范维澄,王清安,姜冯辉,周建军.火灾学简明教程.合肥:中国科学技术大学出版社.1995
    [4]Quintiere.J. Mccaf&ey.BJ & Kashiwagi T. A scaling study of a corridor subject to a room fire. Combustion Seience and Technology.1978,18:1-18
    [5]Neloson P.B. Scaling compartment fires-reduced and full-scaled enclosure burns [C]. International conference on fire research and engineering,1995,10-15
    [5]A. Capote, D. Alvear, O. V. Abreu, M. La'zaro, P. Espina. Scale tests of smoke filling in large atria. Fire Technology,2009(45),201-220.
    [1]L.Y. Cooper, M. Harkleroad, J. Quintiere, et al. An experimental study of upper hot layer stratification in full-scale multi-room fire scenarios, J. Heat Transfer 104 (1982) 741-749.
    [2]Quintiere JG, Steckler K, Corley D. An assessment of fire induced flows in compartments. Fire Sci Technol,1984;4(1):1-14.
    [3]Janssens ML, Tran HC. Data reduction of room tests for zone model validation. J Fire Sci, 1992;10:528-555.
    [4]Emmons HW. Vent flows. In:The SFPE Handbook of Fire Protection Engineering,3nd Edn, P. J. DiNenno. Society of Fire Protection Engineers, Boston,2002, pp.2.32-2.41.
    [5]R.D. Peacock, W.W. Jones, R.W. Bukowski, Verification of a model of fire and smoke transport, Fire Safety J.21 (2) (1993) 89-129.
    [6]Y. He, A. Fernando, M. Luo, Determination of interface height from measured parameter profile in enclosure fire experiment, Fire Safety J.31 (1) (1998) 19-38.
    [7]D.Yang, L.H.Hu. Experimental study on buoyant flow stratification induced by a fire in a horizontal channel. Applied Thermal Engineering 30(2010)872-878
    [8]J.S. Newman. Experimental evaluation of fire-induced stratification, Combust. Flame 57 (1984)
    [9]阳东,狭长受限空间火灾烟气分层与卷吸特性研究,博士学位论文,中国科学技术大学,合肥2010.
    [10]方廷勇,自然通风状况下的烟气在典型建筑结构中的迁移及危害性评价的研究,博士学位论文,中国科学技术大学,合肥2006.
    [11]Calculation and design of tunnel ventilation systems using a two-scale modeling approach F. Colella, G. Rein, R. Borchiellini, R. Carvel, J.L. Torero, V. Verd. Building and Environment 44 (2009)2357-2367
    [12]Anders L nnermark, Haukur Ingason. Gas temperatures in heavy goods vehicle fires in tunnels Fire Safety Journal 40 (2005) 506-527
    [13]钟委,霍然,史聪灵.热释放速率设定方式的几点讨论.自然灾害学报,2004,2:64-69
    [14]Haukur Ingason. Design fire curves for tunnels. Fire Safety Journal 44(2009)259-265
    [15]H. Ingason, Design fires in tunnels, Conference Proceedings of Asia flam95, Hong Kong, 15-16 March,1995, pp.77-86.
    [16]D. Lacroix, New French recommendations for fire ventilation in road tunnels,9th Internationl Conference on Aerodynamics and Ventilation of Vehicle Tunnels, Aosta Valley, Italy,6-8 October,1997.
    [17]Thematic network on fires in tunnels(FIT)-technicalreportpart1-design fire scenarios, European Commission under the 5th Framework Program 2001-2004.
    [18]F. Numajiri, K. Furukawa, Short communication mathematical expression of heat release rate curve and proposal of'Burning Index' Burning Index', Fire Mater.22(1998)39-442.
    [19]F. Numajiri, K. Furukawa. Short communication:mathematical expression of heat release rate curve and proposal of'Burning Index'. Fire Mater.22 (1998)39-42.
    [1]黄亚东,吴珂,黄志义,等.长隧道火灾烟气运动三维数值模拟.消防科学与技术.2011,09:777-780
    [2]黄志义,吴珂.考虑燃烧作用的隧道火灾三维数学模型.自然灾害学报.2008,04:111-117
    [3]谢宁,冯炼,王婉娣,等.隧道火灾三维数值模拟的瞬态分析.中国铁道科学.2005,06:89-92
    [4]J.O. Hinze. Turbulence. McGraw-Hill Publishing Co., New York,1975.
    [5]Fluent Inc. The Boussinesq Model. In:FLUENT 6.2 User's Guide. Fluent Inc. Centerra Resource Park 10 Cavendish Court Lebanon,2005, pp.12.123-12.128
    [6]ь.B.拉乌申巴赫.振荡燃烧.北京:科学出版社.1965
    [7]孙祥海.流体力学.上海:上海交通大学出版社.2000
    [8]Anders Lonnermark, Bror Persson, Haukur Ingason. Pulsations during large-scale fire tests in the Runehamar tunnel. Fire Safety Journal, Volume 41, Issue 5, July 2006, Pages 377-389
    [9]G. Bisio, G. Rubatto. Sondhauss and Rijke oscillations-thermodynamic analysis, possible applications and analogies. Energy, Volume 24, Issue 2, February 1999, Pages 117-131.
    [10]Y.L. Sinai. Exploratory CFD modelling of pool fire instabilities without cross-wind. Fire Safety Journal 35 (2000) 51-61
    [11]Pierre Ricco, Arturo Baron, Paolo Molteni. Nature of pressure waves induced by a high-speed train travelling through a tunnel. Journal of Wind Engineering and Industrial Aerodynamics 95 (2007) 781-808
    [12]Xue, H., Ho, J. C. and Cheng, Y. M., Comparison of Different Combustion Models in Enclosure Fire Simulation, Fire Safety Journal,36, pp.37-54 (2001).
    [13]Kevin McGrattan, Howard Baum, Ronald Rehm, William Mell, Randall McDermott. Fire dynamics simulator (version 5)-technical reference guide[M]. NIST Special Publication 1018-5 Baltimore, Maryland:National Institute of Standards and Technology; 2009.
    [14]Maria A. Heckl, M.S. Howe.Stability analysis of the Rijke tube with a Green's function approach.Journal of Sound and Vibration, Volume 305, Issues 4-5,11 September 2007, Pages 672-688.
    [15]M. Elsari, A. Cummings. Combustion oscillations in gas fired appliances:Eigen-frequencies and stability regimes. Applied Acoustics, Volume 64, Issue 6, June 2003, Pages 565-580
    [16]J. Kopitz, W. Polifke. CFD-based application of the Nyquist criterion to thermo-acoustic instabilities. Journal of Computational Physics, Volume 227, Issue 14,1 July 2008, Pages 6754-6778
    [17]Tritton, D.J. Physical Fluids Dynamics,2nd ed. Oxford Science Publications,1988.
    [1]MA Hongzhang(马红章),LI Yonghong(李永红)Ventilation Technology Of 8km Heading at one End in "North Tianshan Tunnel北天山长大隧8km独头掘进通风技术[J].Railway Construction Technology(铁道建筑技术).2009,(5):119-122.
    [2]王新,金先龙,杨培中,吴惠明.盾构机外部失火隧道内烟气传播数值模拟.消防科学与技术.2010,06:470-473
    [3]Brian J. Meacham. Integrating Human Factors Issues into Engineered Fire Safety Design [J]. Fire Mater.,1999,23:273-279.
    [4]Wieczorek CJ, Dembsey NA. Engineering Guide for Predicting 1st and 2nd Degree Skin Burns[M]. prepared for the SFPE Engineering Task Group on Engineering Practices, SFPE, Bethesda, MD, USA,1997,3.
    [5]Operation School BurningfM]. National Fire Protection Association,1959,25.
    [6]Powell P. Learning Ure and life safety fundamentals. Fire and Life Safety Educator[M].2nd edn, International Fire Service Training Association:Oklahoma State University, Stillwater, OK,1997.
    [7]Hartzell GE. Combustion products and their effects on life safety[M]. Fire Protection Handbook,17th edn., National Fire Protection Association:Quincy, Massachusetts,1991
    [8]Tadahisa Jin. Visibility and Human Behavior in Fire Smoke [M]. Paper 2-42 2-53, Japan. In: SFPE Handbook of Fire Protection Engineering, Philip J. DiNenno et al. Third Edition.
    [9]T. Jin. Visibility through Fire Smoke[J]. J. of Fire & Flammability,1978,9:135-157.
    [10]T. Jin and T. Yamada. Irritating Effects of Fire Smoke on Visibility [J]. Fire Science & Technology,1985,5,1:79-89.
    [11]T. Jin. Studies of Emotional Instability in Smoke from Fires[J]. J. of Fire & Flammability, 1981,12:130-142.
    [12]T. Jin. Studies on Decrease of Thinking Power and Memory in Fire Smoke[M]. Bull. of Japanese Assoc. of Fire Science & Eng.,1982,2:43-47.
    [13]Joseph Varon. Carbon Monoxide Poisoning:a Review for Clinicians. Journal of Emergency Medicine, Vol17, No.1, pp.87-93,1999
    [14]Kevin T. Fitzgerald et al. Smoke Inhalation. Clinical Techniques in Small Animal Practice, Volume 21, Issue 4,11,2006, P:205-214
    [15]Jaehark Goo. Development of the size distribution of smoke particles in a compartment fire. Fire Safety Journal 47(2012)46-53
    [16]David Purser. Behavioural impairment in smoke environments. Toxicology 115 (1996) 25-40
    [17]Clark Jr WR. Smoke inhalation:diagnosis and treatment. World J Surg 1992;16:24-9.
    [18]Yang LZ, Feng WX, Ye JQ. Experimental research on the spatial distribution of toxic gases in the transport of fire smoke [J]. JOURNAL OF FIRE SCIENCES, JAN 2008,26 (1): 45-62.
    [19]Yang LZ, Fang TY, Zhou XD, Feng WX, Huang R, Zhai GL, Fan WC. Establishment of a new dynamic RRC model in smoke toxicity evaluation and engineering application[J]. PROGRESS IN NATURAL SCIENCE, MAR 2005,15 (3):262-266.
    [20]Hu LH, Fong NK, Yang LZ, Chow WK, Li YZ, Huo R. Modeling fire-induced smoke spread and carbon monoxide transportation in a long channel:Fire Dynamics Simulator comparisons with measured data[J]. JOURNAL OF HAZARDOUS MATERIALS, FEB 9 2007,140 (1-2):293-298.
    [21]John D DeHaan. Kirk's fire investigation [M]. US:Pearson Education, Inc.,2002:563-569.
    [22]Joelle DeJoseph. Analysis of fire conditions in a closed-end tunnel [D]. The Faculty of the Graduate School of the University of Maryland,2004.
    [23]Emmerich S, McGrattan KB. Application of large eddy simulation model to study room air flow[J].ASHRAE Trans,1998,104(1 B):1128-40.
    [24]Hwang CC, Edwards JC. CFD Modeling of smoke reversal[S]. In:Proceedings of the international conference on engineering fire protection design. Bethesda, Maryland, USA: Society of Fire Protection Engineers; 2001,376-87.
    [25]Kevin McGrattan, Howard Baum, Ronald Rehm, William Mell, Randall McDermott. Fire dynamics simulator (version 5)-technical reference guide[M]. NIST Special Publication 1018-5 Baltimore, Maryland:National Institute of Standards and Technology; 2009.
    [26]G.T. Atkinson, Y. Wu. Smoke control in sloping tunnels[J]. Fire Safety Journal, 1996,27:335-341.
    [27]Sung Ryong Lee, Hong Sun Ryou. An experimental study of the effect of the aspect ratio on the critical velocity in longitudinal ventilation tunnel fires[J]. Journal of Fire Sciences, 2005,23:119-138.
    [28]Sung Ryong Lee, Hong Sun Ryou. A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio[J]. Building and Environment, 2006,41:719-725.
    [29]A Haack. Current safety issues in traffic tunnels [J]. Tunn Undergr Sp Technol,2002,17: 117-127.
    [30]Hwang CC, Edwards JC. The critical ventilation velocity in tunnel fires a computer simulation [J]. Fire Safety J,2005,40:213-244.
    [31]Joelle DeJoseph. Analysis of fire conditions in a closed-end tunnel [D]. The Faculty of the Graduate School of the University of Maryland,2004.
    [32]Atkinson GT, Wu Y. Smoke control in sloping tunnels [J]. Fire Safety J,1996,27:335-341.
    [33]Kevin McGrattan, Howard Baum, Ronald Rehm, William Mell, Randall McDermott. Fire dynamics simulator (version 5)-technical reference guide [G]. NIST Special Publication 1018-5 Baltimore, Maryland,2009.
    [34]Sung Ryong Lee, Hong Sun Ryou. An experimental study of the effect of the aspect ratio on the critical velocity in longitudinal ventilation tunnel fires [J]. J of Fire Sci,2005,23: 119-138.
    [35]Sung Ryong Lee, Hong Sun Ryou. A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio [J]. Building and Environment,2006, 4(1):719-725.
    [36]Juan Abanto, Marcelo Reggio, Daniel Barrero, Eddy Petro. Prediction of fire and smoke propagation in an underwater tunnel [J]. Tunn Undergr Sp Technol,2006,22:90-95.
    [37]Jojo SM Li, WK Chow. Numerical studies on performance evaluation of tunnel ventilation safety systems [J]. Tunn Undergr Sp Technol,2003,18:435-452.
    [38]Jurij Modic. Fire simulation in road tunnels [1]. Tunn Undergr Sp Technol,2003,18: 525-530.
    [39]Gao PZ, Liu SL, Chow WK, Fong NK. Large eddy simulations for studying tunnel smoke ventilation [J]. Tunn Undergr Sp Technol,2004,19:577-586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700