用户名: 密码: 验证码:
基于小波的像素级图像融合算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像融合是将同一场景的多幅图像进行综合以得到关于该场景更加准确描述的信息处理过程。融合过程可以在不同的层次上进行,按照信息抽象程度从低到高为:信号级、像素级、特征级、符号级。像素级图像融合直接基于成像传感器获得的像素信息进行融合处理;融合结果为一幅图像,该图像通常更适合人类和机器感知,或更适合后续处理任务,如分割、特征提取或目标识别。目前绝大多数融合算法研究都集中在这一层次上。像素级图像融合在军事、遥感、医学成像、机器人、安全和监控等领域有着广泛的应用。经过二十多年的发展,像素级图像融合形成了一个以金字塔分解和小波变换方法为代表的一般性图像融合方案——基于多尺度分解的图像融合方案。
     本论文研究了基于小波的像素级图像融合算法。研究围绕解决小波图像融合算法存在的移变性和冗余性问题展开,着重对融合算法的核心——小波多尺度分解方法进行探讨。主要研究成果如下:
     1.提出了一种新的基于低冗余离散小波框架的图像融合算法。针对标准离散小波变换和无下采样离散小波变换在图像融合应用中的优缺点,提出滤波级数和重采样级数分离的概念,发展了一种扩展的小波变换模型,并证明这个模型在l2空间上的框架性;优化扩展模型的重采样策略,在确保较好移不变性的前提下,尽量降低分解系数中的冗余,得到低冗余离散小波框架;将低冗余离散小波框架应用到多尺度图像融合方案中;基于仿真和真实图像(序列)的融合实验表明基于这种框架的融合算法可以有效的克服标准小波算法存在的移变性问题,改善融合结果,同时又避免了无下采样小波算法在解决该问题时引入过大冗余从而导致计算量过大的问题。
     2.提出了一种新的基于梅花形采样离散小波框架的图像融合算法。首先证明了多维完全重构滤波器组重采样格的可替换性,并给出了可替换条件;随后证明了利用该条件构建的冗余完全重构滤波器组构成l_2 ( Z~n)空间上的紧框架。利用以上结果对可分离二维离散小波变换的矩形重采样格进行替换,得到梅花形采样离散小波框架。这种小波框架具有近似的移不变性和较低的冗余度,并且具有中间尺度,频域分辨率更高;将其应用到多尺度融合方案中可以快速的获得高质量的融合结果。
     3.提出了两种基于非线性小波的图像融合算法:基于无下采样形态学Haar小波变换和基于无下采样最大提升方案的图像融合算法。与常规线性小波变换相比,形态学Haar小波变换和最大提升方案在计算、像素信息提取和硬件实现等方面具有优势;但是由于下采样环节的存在,上述两种非线性小波变换不具备移不变性,在融合结果中会引入较严重的不一致信息。本文利用无下采样方法对两种变换进行移不变扩展;扩展后的变换应用到多尺度融合方案中得到了较好的融合效果,尤其对于医学图像融合和可见光-红外图像序列融合。
     4.基于已有的和本文提出的融合算法,开发了一套可见光与红外动态图像融合系统。该系统可以完成对可见光和红外成像传感器输出图像序列的实时配准和同步采集,并能离线的进行多种算法的融合处理以及融合结果的定量评价。
Image fusion is the process by which multiple images of the same scene are combined to generate a more accurate description of the scene than any of the individual source images. Fusion process can be performed at different levels of information representation, sorted in ascending order of abstraction: signal, pixel, feature and symbol levels. Pixel-level image fusion refers to the process directly based on the pixel information from individual sensors; fusion result is an image, which usually more suitable for human and machine perception, or further image-processing tasks, such as segmentation, feature extraction and object recognition. Almost all image fusion algorithms developed to date fall into this category. Pixel-level image fusion has a wide range of applications in military, remote sensing, medical imaging, robots, security and surveillance, etc. After over twenty years of development, pixel-level image fusion forms a generic image fusion scheme—multiscale-decomposition-based image fusion scheme, represented by the pyramid and the wavelet methods.
     In this dissertation, wavelet-based pixel-level image fusion algorithms are studied. The research focuses on solving the problems of shift-variance and redundancy in wavelet algorithms. The core of wavelet algorithms—wavelet-multiscale-decomposition is discussed emphatically. The main contributions of this work are summarized as follows:
     1. A novel image fusion algorithm based on the low-redundancy discrete wavelet frame is proposed. The merits and demerits of the standard discrete wavelet transform and its undecimated version in image fusion are studied; following this, the conception of separating filtering level and resampling level is proposed, an extended model for wavelet transforms is derived, and the“frame”property of the model in l 2 space is proved. The resampling strategies of the model are optimized to decrease as possible the redundancy of decomposition coefficients under the condition of good shift invariance; as a result, the low-redundancy discrete wavelet frame is obtained. The frame is incorporated into the multiscale fusion scheme. The fusion experiments based on synthetic and real-world images (sequences) demonstrated that the fusion algorithm based on the frame does overcome the shift variance problem of the standard wavelet algorithm, improving the results of fusion; at the same time, it avoids the problem of excessive computational cost, which is caused by the undecimated wavelet algorithm in solving the same problem, due to overmuch redundancy.
     2. A novel image fusion algorithm based on the quincunx-sampled discrete wavelet frame is proposed. Firstly, the replaceability of the resampling lattice for multi-dimensional perfect reconstruction filter banks is proved, and a replacing condition is given; then, it is shown that the redundant perfect reconstruction filter banks derived by the condition constitute tight frames in l_2( Z~n) space. Following the above results, the quincunx-sampled discrete wavelet frame is obtained by replacing the rectangular resampling lattice of the standard separable two-dimensional discrete wavelet transform. The frame provides near shift invariance as well as very low redundancy; in addition, it has intermediate scales, increasing the sampling in frequency. High-quality fusion results can be generated quickly using the frame in the multiscale fusion scheme.
     3. Two nonlinear wavelet image fusion algorithms are proposed: the fusion algorithms based on the undecimated morphological Haar wavelet transform and based on the undecimated max-lifting scheme. The morphological Haar wavelet transform and the max-lifting scheme, compared with the linear wavelets, have advantages in terms of computation, pixel information extraction, hardware implementation, etc; however, two transforms lack shift invariance due to downsampling steps, resulting in severe disturbing information in fusion images. In this work, two transforms are extended for shift invariance using the undecimated method. The extended transforms are incorporated into the multiscale fusion scheme, producing inspiring results, especially in medical images fusion and visible light - infrared image sequences fusion.
     4. A visible light and infrared dynamic image fusion system is developed based on the fusion algorithms, existing and new proposed in this work. The system provides real-time registration and synchronous capture (store) to the frames generated by visible-light and infrared imaging devices; it also provides off-line fusion processing to the captured frames using various algorithms, as well as assessment for the fusion results.
引文
[1] Hall D.L. and Llinas J. An introduction to multi-sensor fusion. Proceedings of the IEEE, 1997, 85(1): 6-23.
    [2] Llinas J. and Edward W. Multisensor data fusion. Boston, MA: Artech House, 1990, 1-10.
    [3] http://www.isif.org
    [4] 敬忠良, 肖刚, 李振华, 图像融合——理论与应用, 北京, 高等教育出版社, 2007, 10.
    [5] Smith M. I., Heather J. P., A review of image fusion technology in 2005, in Proc. of SPIE, 2005, vol. 5782: 29-45.
    [6] http://www.globalsecurity.org/military/systems/ground/envg.htm
    [7] http://www.deagel.com/news/Nimrod-MRA-4-New-Sensor-Undergoing-Flight-Tests_n000000790.aspx
    [8] http://www.lockheedmartin.com/data/assets/1532.pdf
    [9] Currie N.C., Demma F.J., Ferris D.D., et al., ARPA/NIJ/Rome Laboratory concealed weapon detection program: an overview, in Proc. of SPIE, 1996, vol. 2755: 1996, 492-502.
    [10] Slamani M.A., Ramac L., Uner M., et al., Enhancement and fusion of data for concealed weapons detection, in Proc. of SPIE, 1997, vol. 3068: 8-19.
    [11] Xue Z., Blum R.S. and Li Y., Fusion of visual and IR images for concealed weapon detection, in Proc. of Int. Conf. on Information Fusion, 2002, vol. 2: 1198-1205.
    [12] Paulter N.G., Guide to the technologies of concealed weapons and contraband imaging, NIJ Guide 602-00, National Institute of Justice, Washington, D. C., USA, 2001.
    [13] 倪国强, 多波段图像融合算法研究及其新发展(I), 光电子技术与信息, 2001, 14(5): 11-17.
    [14] Zhang Z. and Blum R.S., A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application, Proceedings of the IEEE, 1999, 87(8): 1315-1326.
    [15] Hill D., Edwards P., and Hawkes D., Fusing medical images, Image Processing, 1994, 6(2):22-24.
    [16] Matsopoulos G.K., Marshall S., Brunt J.N.H., Multiresolution morphological fusion of MR and CT images of the human brain, IEE Proceedings on Vision, Image and Signal Processing, 1994,141(3): 137-142.
    [17] Qu G.H., Zhang D.L., and Yan P.F., Medical image fusion by wavelet transform modulus maxima, Optics Express, 2001, 9(4): 184-190.
    [18] Chavez P.S., Sides S.C. and Anderson J.A., Comparison of three difference methods to merge multiresolution and multispectral data: Landsat TM and SPOT panchromatic, Photogrammetric Engineering and Remote Sensing, 1991, 57(3): 295-303.
    [19] Daniel M.M. and Willsky A.S., “A multiresolution methodology for signal-level fusion and data assimilation with applications to remote sensing,” Proceedings of the IEEE, 1997, 85(1): 164-180.
    [20] Scheunders P., De Backer S., Multispectral image fusion and merging using multiscale fundamental forms. In Proc. of Int. Conf. on Image Processing, 2001, vol. 1: 902-905.
    [21] Choi M, Kim R.Y, Nam M.R., et al., Fusion of multispectral and panchromatic Satellite images using the curvelet transform, IEEE Geoscience and Remote Sensing Letters, 2005, 2(2): 136-140.
    [22] Li J., Pan Q., Yang T., et al., Color based grayscale-fused image enhancement algorithm for video surveillance, in Proc. of Int. Conf. on Image and Graphics, 2004: 47 - 50
    [23] Broussard R.P., Rogers S.K., Oxley M.E., et al., Physiologically motivated image fusion for object detection using a pulse coupled neural network, IEEE Transactions on Neural Networks, 1999, 10(3): 554-563.
    [24] Abidi M.A. and Gonzalez R.C., Data Fusion in Robotics and Machine Intelligence, Academic Press, 1992.
    [25] Waxman A.M, Fay D.A, Gove A.N, et al., Color night vision: fusion of intensified visible and thermal IR imagery, in Proc. of SPIE on Synthetic Vision for Vehicle Guidance and Control, 1995, vol. 2463: 58-68.
    [26] Smith S., Scarff L.A., Combining visual and IR images for sensor fusion: two approaches, in Proc. of SPIE, on Visual Data Interpretation, 1992, vol. 1868: 102-112.
    [27] Fechner T. and Godlewski G., Optimal fusion of TV and infrared images using artificial neural networks, in Proc. of SPIE on Applications and Science of Artificial Neural Networks. Washington, USA: SPIE Press, 1995: 919-925.
    [28] Li H., Zhou Y.T., Chellappa R., SAR/IR sensor image fusion and real-time implementation, in Proc. Int. Conf. on Signals, Systems and Computers. New Jersey, USA: IEEE Press, 1996: 1121-1125.
    [29] Brown L.G., A survey of image registration techniques, ACM Computing Surveys. 1992, 24(4): 325-376.
    [30] 倪国强, 刘琼, 多源图像配准技术分析与展望, 光电工程, 2004, 31(9), 1-6.
    [31] Toet A., Walraven J., New false color mapping for image fusion. Optical Engineering, 1996, 35(3): 650-658.
    [32] Lafert J.M., Heitz F., Perez P., et al., Hierarchical statistical models for the fusion of multiresolution image data, in Proc. of Int. Conf. on Computer Vision, 1995, pp. 908-913.
    [33] Jia Y.H., Fusion of Landsat TM and SAR images based on principal component analysis, Remote Sensing Technology and Application, 1998, 13 (1): 46-49.
    [34] Marr D. Vision [M]. San Francisco, CA: W. H. Freeman, 1982.
    [35] Burt P J, Adelson E. The Laplacian pyramid as a compact image code, IEEE Transactions on Communications, 1983, COM-31: 532–540.
    [36] Burt P J, Adelson E H. Merging images through pattern decomposition, in Proc. of SPIE, 1985, vol. 575: 173-181.
    [37] Toet A., Image fusion by a ratio of low-pass pyramid, Pattern Recognition Letters, 1989, 9(4): 245-253.
    [38] Toet A., Ruyven L.J., Valeton J.M., Merging thermal and visual images by a contrast pyramid, Optical Engineering, 1989, 28(7): 789-792.
    [39] Toet A., Ijspeert J.K, Waxman A.M, Aguilar M. Fusion of visible and thermal imagery improves situational awareness, in Proc. of SPIE on Enhanced and Synthetic Vision, 1997, vol. 3088: 177-188.
    [40] Zhou Y.T., Multi-sensor image fusion, in Proc. of Int. Conf. on Image Processing, Los Alamitos, USA: IEEE Computer Society, 1994: 193-197.
    [41] Burt P.J., A gradient pyramid basis for pattern selective image fusion, in Proc. of Society for Information Display Symposium. San Jose, USA: SID Press, 1992: 467-470.
    [42] Burt P.J., Kolczynski R.J., Enhanced image capture through fusion, in Proc. of Int. Conf. on Computer Vision, Berlin, Germany, 1993: 173-182.
    [43] Toet A., A morphological pyramidal image decomposition, Pattern Recognition Letters, 1989 9(4): 255-261.
    [44] Ranchin T., Wald L., The wavelet transform for the analysis of remotely sensed images, International Journal of Remote Sensing, 1993, 14(3): 615-619.
    [45] Chipman L.J., Orr T.M., Graham L.N., Wavelets and image fusion, in Proc. of Int. Conf. on Image Processing, 1995, vol. 3: 248-251.
    [46] Li H., Manjunath B.S., Mitra S., Multisensor image fusion using the wavelet transform, Graphical Models and Image Process, 1995, 57 (3): 235-245.
    [47] Rockinger O., “Image sequence fusion using a shift invariant wavelet transform,” in Proc. of Int. Conf. on Image Processsing, 1997, vol. 3: 288-291.
    [48] Hill P, Canagarajah N, Bull D. Image fusion using complex wavelets, in Proc. of British Machine Vision Conference, 2002: 487-496.
    [49] Hassainia F., Magafia I., et al., Image fusion by orthogonal wavelet transform and comparison with other methods, in Proc. Int. Conf. on Engineering in Medicine and Biology Society, 1992: 1246-1247.
    [50] Graham L., Adhami R., Fusion of coincident images using spatial frequency discrimination by application of the wavelet transform, in Proc. Int. Conf. on Time-Frequency and Time-ScaleAnalysis, 1994, pp. 326-329.
    [51] Wilson T. A., Rogers S. K. and Meyers L. R., Perceptual based hyperspectral image fusion using multiresolution analysis, Optical Engineering, 1995, 34(11): 3154-3164.
    [52] Koren I., Laine A. and Taylor F., Image fusion using steerable dyadic wavelet transform, in Proc. Int. Conf. on Image Processing, 1995: 232-235.
    [53] Jiang X.Y., Gao Z.Y. and Zhou L.W., Multispectral image fusion using wavelet transform, Acta Electronica Sinica, 1997, 8(25): 105-108.
    [54] Ramac L.C., Uner M.K., Varshney P.K., Morphological filters and wavelet based image fusion for concealed weapons detection, in Proc. of SPIE, 1998, vol.3376: 110-119.
    [55] Nùňez J., Otazu X., Fors O., et al., Multiresolution-based image fusion with additive wavelet decomposition, IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1204-1211.
    [56] 蒲恬, 方庆咭, 倪国强, 基于对比度的多分辨图像融合, 电子学报, 2000, 28(12): 116-118.
    [57] Li S. T., Wang Y. N., Multisensor image fusion based on tree-structure wavelet decomposition, Journal of Infrared and Millimeter Waves, 2001, 20(3): 219-222.
    [58] Yang X., Yang W.H., Pei J.H., Different focus points images fusion based on wavelet decomposition, Acta Electronica Sinica, 2001, 29(6): 846-848.
    [59] Quan H.Y., Yang Y., Song N.H., et al., An image fusion approach based on second generation wavelet transform, System Engineering and Electronics, 2001, 23(5): 74-79.
    [60] Park J.H., Kim K.K., Yang Y.K., Image fusion using multiresilution analysis, Geoscience and Remote Sensing Symposium, 2001, vol. 2: 709-711.
    [61] Tseng D.C., Chen Y.L., Liu M.S.C., Wavelet-based multispectral image fusion, Geoscience and Remote Sensing Symposium, 2001, vol. 4: 1956-1958.
    [62] Yan D.M., Zhao Z.M., Wavelet decomposition applied to image fusion, in Proc. Int. Conf. on Info-tech and Info-net, 2001: 291-295.
    [63] Li S.T., James T.K., Wang Y., Using the discrete wavelet frame transform to merge Landsat TM and SPOT panchromatic images, Information Fusion, 2002, 3(1): 17-23.
    [64] Lewis J.J., O’Callaghan R.J., Nikolov S.G., et al., Region based fusion using complex wavelets, in Proc. of Int. Conf. on Information Fusion, Stockholm, Sweden, 2004: 555-562.
    [65] Pajares G. and de la Cruz J.M., A wavelet-based image fusion tutorial, Pattern Recognition. 2004, 37(9): 1855-1872.
    [66] Amolins K., Zhang Y. and Peter D., Wavelet based image fusion techniques - An introduction, review and comparison, ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(4): 249-263.
    [67] Mallat S.G., A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
    [68] Vetterli M. and Herley C., Wavelets and filter banks: theory and design, IEEE Transactions on Signal Processing, 1992, 40(9): 2207-2232.
    [69] Rioul O., A discrete-time multiresolution theory, IEEE Transactions on Signal Processing, 1993, 41(8): 2591-2606.
    [70] Strang G.T., Wavelets and dilation equations: A brief introduction, SIAM Review, 1989, 31(4): 614-627.
    [71] Simoncelli E.P., Freeman W.T., Adelson E.H. et al., Shiftable multiscale transforms, IEEE Transactions on Information Theory, 1992, 38(2): 587-607.
    [72] Kingsbury N.G., Image processing with complex wavelets, Philosophical Transactions of the Royal Society of London A, 1999, 357: 2543-2560.
    [73] Kingsbury N.G., Complex wavelets for shift invariant analysis and filtering of signals, Applied and Computational Harmonic Analysis, 2001, 10(3):234-253.
    [74] Selesnick I.W., Baraniuk R.G. and Kingsbury N.G., The dual-tree complex wavelet transform - A coherent framework for multiscale signal and image processing, IEEE Signal Processing Magazine, 2005, 22(6): 123-151.
    [75] Shensa M.J., The discrete wavelet transform: Wedding the à trous and Mallat algorithms, IEEE Transactions on Signal Processing, 1992, 40(10): 2464-2482.
    [76] Coifman R.R. and Donoho D.L., Translation-invariant denoising, Lecture Notes in Statistics, Springer Verlag, 1995: 125-150
    [77] Unser M., Texture classification and segmentation using wavelet frames, IEEE Transactions on Signal Processing, 1995, 4(11): 1549-1560.
    [78] Yang B. and Jing Z. L., A Simple Method to Build Oversampled Filter Banks and Tight Frames, IEEE Transactions on Image Processing, 2007, 16(11): 2682-2687.
    [79] Rioul O. and Vetterli M., Wavelets and signal processing, IEEE Signal Processing Magazine, 1991, 8(4): 11-38.
    [80] Daubechies I., Ten Lectures on Wavelets. Philadelphia, PA: SIAM, 1992.
    [81] Antonini M., Barlaud M., Mathieu P., et al., Image coding using wavelet transform, IEEE Transactions on Image Processing, 1992, 1(2): 205-220,.
    [82] Vetterli M. and Kova?evi? J., Wavelets and Subband Coding, Upper Saddle River, NJ: Prentice-Hall, 1995.
    [83] de Queiroz R., Choi C., Huh Y., et al., Wavelet transforms in a JPEG-like image coder, IEEE Transactions on Circuits System Video Technology, 1997, 7(2): 419-424.
    [84] Crouse M.S., Nowak R.D. and Baraniuk R.G., Wavelet-based signal processing using hidden Markov models, IEEE Transactions on Signal Processing, 1998, 46(4): 886-902.
    [85] Luo J., de Queiroz R.L. and Fan Z., A robust technique for image descreening based on the wavelet transform, IEEE Transactions on Signal Processing, 1998, 46(4): 1179-1185.
    [86] Dragotti P.L. and Vetterli M., Wavelet footprints: Theory, algorithms and applications, IEEE Transactions on Signal Processing, 2003, 51(5): 1306-1323.
    [87] Figueiredo M. and Nowak R., An EM algorithm for wavelet-based image restoration, IEEE Transactions Image Processing, 2003, 12(8): 906-916.
    [88] Yang B. and Jing Z.L., Image fusion using a low-redundant and nearly shift-invariant discrete wavelet frame, Optical Engineering, 2007, 46(10).
    [89] Vetterli M., Multi-dimensional sub-band coding: Some theory and algorithms, Signal Processing,1984, 6(2): 97-112.
    [90] Vaidyanathan P.P., Quadrature mirror filter banks, M-band extensions and perfect- reconstruction technique, IEEE Acoustics, Speech, Signal Processing Magazine, 1987, 4(3): 4-20.
    [91] Vetterli M. and LeGall D.J., Perfect reconstruction FIR filter banks: Some properties and factorizations, IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(6): 1057-1071.
    [92] Vaidyanathan P.P., Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial, Proceeds of the IEEE, 1990, 78(1): 56-93.
    [93] Wavelet Families: Additional Discussion, Matlab 7.0 Help Documents, The MathWorks
    [94] Huntsberger T, Jawerth B., Wavelet based sensor fusion, in Proc. of SPIE, 1993, vol. 2059: 488-498.
    [95] Piella G.A., Region-based multiresolution image fusion algorithm, in Proc. of Int. Conf. on Information Fusion, 2002: 1557-1564.
    [96] Zhang Z. and Blum R., Region-based image fusion scheme for concealed weapon detection, in Proc. of the 31st Annual Conference on Information Sciences and Systems, 1997: 168-173.
    [97] Viola P.A., Alignment by maximization of mutual information, Artificial Intelligence Laboratory, MIT, USA, Technical Report No. 1548, 1995.
    [98] Qu G., Zhang D., Yan P., Information measure for performance of image fusion, Electronics Letters, 2002, 38: 313-315.
    [99] Xydeas C.S., Petrovi? V., Objective image fusion performance measure, Electronics Letters, 2000, 36(4): 308-309.
    [100] Petrovi? V., Subjective tests for image fusion evaluation and objective metric validation, Information Fusion, 2007, 8(2): 208-216.
    [101] Smith M. I., Ball A., and Hooper D., Real-time image fusion: a vision aid for helicopter pilotage, in Proc. of SPIE, 2002, vol. 4666: 83-94.
    [102] Duffin R.J. and Schaeffer A.C., A class of nonharmonic Fourier series, Transactions of the American Mathematical Society, 1952, 72: 341–366.
    [103] Selesnick I.W., The double density DWT, Wavelets in Signal and Image Analysis: From Theory to Practice, A. Petrosian and F. G. Meyer, Ed., Kluwer, 2001.
    [104] Selesnick I.W., A higher-density discrete wavelet transform, IEEE Transactions Signal Processing, 2006, 54(8): 3039-3048.
    [105] Guo H. and Burrus C.S., Convolution using the undecimated discrete wavelet transform, in Proc. of Int. Conf. on Acoustics, Speech, and Signal Processing, 1996, vol. 3: 1291-1294.
    [106] Dubois E., The sampling and reconstruction of time-varying imagery with application in video systems, Proceedings of the IEEE, 1985, 73(4): 502-522.
    [107] Vaidyanathan P.P., Perfect reconstruction QMF banks for two-dimensional applications, IEEE Transactions on Circuits Systems, 1987, CAS-34(8): 976-978.
    [108] Vetterli M., Kova?evi? J., and LeGall D.J., Perfect reconstruction filter banks for HDTV representation and coding, Image Communication, 1990, 2(3): 349-364.
    [109] Karlsson G. and Vetterli M., Theory of two-dimensional multirate filter banks, IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(6): 925-937.
    [110] Viscito E. and Allebach J.P., The analysis and design of multidimensional FIR perfect reconstruction filter banks for arbitrary sampling lattices, IEEE Transactions on Circuits System, 1991, 38(1): 29-42.
    [111] Chen T. and Vaidyanathan P.P., Multidimensional multirate filters and filter banks derived from one-dimensional filters, IEEE Transactions on Signal Processing, 1993, 41(5): 1749-1765.
    [112] Kova?evi? J. and Vetterli M., FCO sampling of digital video using perfect reconstruction filter banks, IEEE Transactions on Image Processing, 1993, 2(1): 118-122.
    [113] Kova?evi? J. and Vetterli M., Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for R n, IEEE Transactions on Information Theory, 1992, 38(2): 533-555.
    [114] Kova?evi? J. and Vetterli M., Nonseparable two- and three-dimensional wavelets, IEEETransactions on Signal Processing, 1995, 43(5): 1269-1273.
    [115] Yang B. and Jing Z.L., Replacing Resamplers in Filter Banks without Losing Perfect Reconstruction, Electronics Letters, 2007, 43(16): 864-865.
    [116] O'Rourke T. and Stevenson R., Human visual system based wavelet decomposition for image compression, Journal of Visual Communication and Image Representation, 1995, 6(4): 109-121.
    [117] Belogay E. and Wang Y., Arbitrarily smooth orthogonal nonseparable wavelets in Rn, SIAM Journal on Mathematical Analysis, 1999, 30(3): 678-697.
    [118] Kova?evi? J. and Sweldens W., Wavelet families of increasing order in arbitrary dimensions, IEEE Transactions on Image Processing, 2000, 9(3): 480-496.
    [119] Gouze A., Antonini M., Barlaud, M., et al., Design of signal-adapted multidimensional lifting scheme for lossy coding, IEEE Transactions on Image Processing, 2004, 13(12): 1589-1603.
    [120] Feilner M., Van De Ville D. and Unser M., An orthogonal family of quincunx wavelets with continuously adjustable order, IEEE Transactions on Image Processing, 2005, 14(4): 499-510.
    [121] Van De Ville D., Blu T. and Unser M., Isotropic polyharmonic B-splines: scaling functions and wavelets, IEEE Transactions on Image Processing, 2005, 14(11): 1798-11813.
    [122] Cassels J., An Introduction to the Geometry of Numbers, Berlin: Springer-Verlag, 1971.
    [123] Newman M., Integral Matrices, New York: Academic Press, 1972.
    [124] Rosiles J.G. and Smith M.J.T., A low complexity overcomplete directional image pyramid, in Proc. of Int. Conf. Image Processing, 2003, vol. 1: 1049-1052.
    [125] da Cunha A.L., Zhou J., and Do M.N., The nonsubsampled contourlet transform: Theory, design, and applications, IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101.
    [126] Starck, J.L., Fadili, J. and Murtagh, F., The undecimated wavelet decomposition and its reconstruction, IEEE Transactions Image Processing, 2007, 16 (2): 297-309.
    [127] Park S., Smith M.J.T., and Mersereau R.M., Improved structures of maximally decimated directional filter banks for spatial image analysis, IEEE Transactions on Image Processing, 2004, 13(11): 1424-1431.
    [128] Temizel A. and Vlachos T., Wavelet domain image resolution enhancement using cycle-spinning, Electronics Letters, 2005, 41(3): 119-121.
    [129] Pei S.C. and Chen F.C., Subband decomposition of monochrome and color images by mathematical morphology, Optical Engineering, 1991, 30(7): 921-933.
    [130] Pei S.C. and Chen F.C., Hierarchical image representation by mathematical morphology subband decomposition, Pattern Recognition Letters, 1995, 16(2): 183-192.
    [131] Egger O. and Li W., Very low bit rate image coding using morphological operators and adaptive decompositions, in Proc. of Int. Conf. on Image Processing, 1994, vol. 2: 326-330.
    [132] Egger O., Li W. and Kunt M., High compression image coding using an adaptive morphological subband decomposition, Proceedings of the IEEE, 1995, 83(2): 272-287.
    [133] Florêncio D.A.F. and Schafer R.W., A nonexpansive pyramidal morphological image coder, in Proc. of Int. Conf. on Image Processing, 1994, vol. 2: 331-335.
    [134] Florêncio D.A.F., A new sampling theory and a framework for nonlinear filter banks, Ph.D. dissertation, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 1996.
    [135] Cha H. and Chaparro L.F., Adaptive morphological representation of signals: Polynomial and wavelet methods, Multidimensional Systems Signal Process, 1997, 8(3): 249-271.
    [136] de Queiroz R.L., Florêncio D.A.F., and Schafer R.W., Nonexpansive pyramid for image coding using a nonlinear filterbank, IEEE Transaction on Image Processing, 1998, 7(2): 246-252.
    [137] Sweldens W., The lifting scheme: A new philosophy in biorthogonal wavelet constructions, in Proc. of SPIE on Wavelet Applications Signal Image Processing III, 1995, vol. 2569: 68-79.
    [138] Sweldens W., The lifting scheme: A custom-design construction of biorthogonal wavelets, Applied and Computational Harmonic Analysis, 1996, 3(2): 186-200.
    [139] Sweldens W., The lifting scheme: A construction of second generation wavelets, SIAM Journal on Mathematical Analysis archive, 1998, 29(2): 511-546.
    [140] Hampson F.J. and Pesquet J.C., A nonlinear subband decomposition with perfect reconstruction,
    in Proc. of Int. Conf. on Acoustics, Speech and Signal Processing, 1996, vol. 3: 1523-1526.
    [141] Hampson F.J. and Pesquet J.C., M-band nonlinear subband decompositions with perfect reconstruction, IEEE Transactions on Image Processing, 1998, 7(11): 1547-1560.
    [142] Claypoole R.L, Davis G., Sweldens W., et al., Nonlinear wavelet transforms for image coding, in Proc. 31st Asilomar Conf. on Signals, Systems and Computers, 1997, vol. 1: 662-667.
    [143] Claypoole R.L., Baraniuk R.G. and Nowak R.D., Adaptive wavelet transforms via lifting, in Proc. of Int. Conf. on Acoustics, Speech and Signal Processing, 1998. vol. 3: 1513-1516.
    [144] Claypoole R.L., Baraniuk R.G. and Nowak R.D., Lifting construction of nonlinear wavelet transforms, in Proc. of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1998: 49–52.
    [145] Claypoole R.L., Baraniuk R.G. and Nowak R.D., Adaptive wavelet transforms via lifting, Department of Electrical and Computer Engineering, Rice University, Houston, TX, Technical Report 9304, 1999.
    [146] Heijmans H.J.A.M. and Goutsias J., Some thoughts on morphological pyramids and wavelets, in Proc. of the IX European Signal Processing Conference, 1998, vol. 1: 133-136.
    [147] Goutsias J. and Heijmans H.J.A.M., An axiomatic approach to Multiresolution signal decomposition, in Proc. of Int. Conf. on Image Processing, 1998, vol. 2: 237-241.
    [148] Heijmans H.J.A.M. and Goutsias J., Morphology-based perfect reconstruction filter banks, in Proc. of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1998: 353-356.
    [149] Heijmans H.J.A.M. and Goutsias J., Constructing morphological wavelets with the lifting scheme, in Proc. of Int. Conf. on Pattern Recognition and Information Processing, 1999: 65-72.
    [150] Goutsias J. and Heijmans H.J.A.M., Multiresolution signal decomposition schemes—Part 1: Linear and morphological pyramids, Center for Mathematics and Computer Science, Amsterdam, The Netherlands, Technical Report PNA-R9810, 1998.
    [151] Heijmans H.J.A.M. and Goutsias J., Multiresolution signal decomposition schemes—Part 2:Morphological wavelets, Center for Mathematics and Computer Science, Amsterdam, The Netherlands, Technical Report PNA-R9905, 1999.
    [152] Goutsias J. and Heijmans H.J.A.M., Nonlinear multiresolution signal decomposition schemes—Part I: Morphological pyramids, IEEE Transactions on Image Processing, 2000. 9(11): 1862-1876.
    [153] Heijmans H.J.A.M. and Goutsias J., Nonlinear multiresolution signal decomposition schemes—Part II: Morphological wavelets, IEEE Transactions on Image Processing, 2000. 9(11): 1897-1913.
    [154] Serra J., Image Analysis and Mathematical Morphology. London, U.K.: Academic Press, 1982.
    [155] Heijmans H.J.A.M., Morphological Image Operators. Boston, MA: Academic, 1994.
    [156] Daubechies I. and Sweldens M., Factoring wavelet transforms into lifting steps, The Journal of Fourier Analysis and Applications, 1998, 4(3): 247-269.
    [157] 李振华,像素级多源图像融合研究, 上海交通大学博士学位论文, 2005.
    [158] 刘刚, 基于多分辨率的多传感器图像融合研究, 上海交通大学博士学位论文, 2005.
    [159] 刘从义, 红外与可见光动态图像融合方法及应用研究, 上海交通大学硕士学位论文, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700