用户名: 密码: 验证码:
物体视觉记忆的背景效应及其位置特效性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用迫选的再认任务对物体视觉记忆的背景效应及其位置特效性进行考察。整个研究共分为三个部分,研究一采用点线索追随范式和普通的迫选再认范式对自然场景背景和物体序列背景对物体视觉记忆的影响在间隔不同时间的情况下进行测量,考察两种背景条件下物体视觉记忆的保持。研究二考察自然场景背景及其两个成分,大的轮廓背景和邻近物体背景对物体视觉记忆作用的位置特效性。研究三考察在再认图片角度变化的情况下,自然场景背景及其两个成分对物体视觉记忆的作用及其位置特效性的特征是否发生变化,并考察背景的结构参照性。在三项子研究的基础上得出以下结论:
     1.物体视觉记忆存在背景效应,即视觉再认时,物体置于原来的背景中的再认成绩好于置于空白的灰背景中的再认成绩。
     2.背景类型的效应显著,呈现在自然场景图片中物体的视觉记忆成绩好于呈现在物体序列图片中的物体视觉记忆成绩。
     3.间隔物体数效应显著,间隔0个物体时视觉记忆的成绩最好,并且显著地高于间隔1、2、4、7个物体的情况,后四种情况下的物体视觉记忆成绩差异不显著。间隔图片数对物体的记忆成绩不存在显著作用。
     4.自然场景中,物体视觉记忆的背景效应存在位置特效性,在整体背景条件下物体呈现在原位置的视觉再认成绩高于呈现在变化位置的视觉再认成绩;灰背景条件下位置的作用不显著。
     5.无论是在背景效应还是在背景效应的位置特效性上,大的轮廓背景与整体背景的作用方式都是非常相似的。
     6.自然场景中,大轮廓背景条件下位置的作用显著,物体呈现在原位置条件的视觉再认成绩高于变化位置条件;邻近物体背景条件下位置的作用不显著。
     7.场景对物体视觉记忆的作用参照于相对的物理位置,而不是参照于观察者的绝对物理视线。
The force choice recognition task was used to investigate the context effect and position specificity on visual memory for objects. Three parts were included in this study, in the first part, the following-the-dot paradigm and the traditional force choice recognition task were used to examine the effect of object arrays and natural scenes on the visual memory of objects. In the second part, the position specificity of context effect of scenes and its two components, the large scale context and the local objects context, ware examined. In the third part, by rotating the angle of the recognition picture, the reference of the context effect was examined. The results showed: (1) Memory performance of visual form of object was more accurate when the test object alternatives were displayed within the original scene context than they were displayed in isolation. (2)Memory performance was more accurate when the objects displayed in the nature scenes than they displayed in the objects arrays. (3)Memory performance was more accurate for the recently fixated objects than the condition of 1,2,4,7 intervening objects, but the performance was not significant between the different intervening pictures. (4) Memory performance was more accurate when the test alternatives were displayed within the scene at the same position originally occupied by the target than they were displayed at a different position. (5) For natural scenes, the memory performance was more accurate when the objects displayed in the original scene context and the large scale context than they displayed in isolation. (6)For natural scenes, the position specificity was exited for the large scale context effect, but not for the local object context effect. (7) The context effect and position specificity was reference to the relative location of scenes, but not to the absolute physical location.
引文
1. Albert G, Rendaud P, Chartier S, et al. Scene perception, gaze behavior, and perceptual learning in virtual environments. Cyber Psychology & Behavior, 2004, 8: 592~600
    2. Albright T D, Stoner G R. Contextual influences on visual processing. Annual Review of Neuroscience, 2002, 25: 339~379
    3. Antes J R. The time course of picture viewing. Journal of Experimental Psychology, 1974, 103: 62~70
    4. Bar M. Visual objects in context. Neuroscience, 2004, 5: 617~629
    5. Becker M W, Pashler H. Volatile visual representations: Failing to detect changes in recently processed information. Psychonomic Bulletin & Review, 2002, 9: 744~750
    6. Bergboer N, Postma E, Herik J D. Accuracy versus speed in context-based object detection. Elsevier, 2007, 28: 686~694
    7. Biederman I, Mezzanotte R J, Rabinowitz J C. Scene perception: detecting and judging objects undergoing relational violations. Cognitive Psychology, 1982, 14: 143~177
    8. Boyce S J, Pollatsek A. Identification of objects in scenes: the role of scene background in object naming. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1992, 18: 531~543
    9. Boyce S J, Pollatsek A, Rayner K. Effect of background information on object identification. Journal of Experimental Psychology: Human Perception and Performance, 1989, 15: 556~566
    10. Brockmole J R, Castelhano M S, Henderson J M. Contextual cueing in naturalistic scenes: global and local contexts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2006, 32: 699~706
    11. Brockmole J R, Henderson J M. Prioritization of new objects in real-world scenes: evidence from eye movements. Journal of Experimental Psychology: Human Perception and Performance, 2005, 31: 857~868
    12. Brockmole J R, Henderson J M. Object appearance, disappearance, and attention prioritization in real-world scenes. Psychonomic Bulletin & Review, 2005, 12: 1061~1067
    13. Carlson-Radvansky L A. Memory for relational information across eye movements. Perception & Psychophysics, 1999, 61: 919~934
    14. Castelhano M S, Henderson J M. Initial scene representations facilitate eye movement guidance. Journal of Experimental Psychology: Human Perception and Performance, 2007, 33: 753~763
    15. Chamizo J M G, Guilló A F, López J A. Image labeling in real conditions. Kybernetes, 2006, 34: 1587~1597
    16. Chun M M. Contextual cueing of visual attention. Trends in Cognitive Science, 2000, 4: 170~178
    17. Chun M M, Jiang Y H. Contextual cueing: implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 1998, 36: 28~71
    18. Currie C, McConkie G, Carlson-Radvansky L A, et al. The role of the saccade target object in the perception of a visually stable world. Perception & Psychophysics, 2000, 62: 673~683
    19. Davenport J L. Consistency effects between objects in scenes. Memory & Cognition, 2007, 35: 393~401
    20. Davenport J L, Potter M C. Scene consistency in objects and background perception. Psychology Science, 2004, 15: 559~564
    21. De Graef P, Christiaens D, d'Ydewalle G. Perceptual effect of scene context on object identification. Psychology Review, 1990, 52: 317~329
    22. Di Lollo V. Temporal integration in visual memory. Journal of Experimental Psychology: Gerneral, 1980, 109: 75~97
    23. Diwadkar V A, McNamara T P. Transsaccadic memory and integration during real-world object perception. Psychological Science, 1997, 8: 51~55
    24. Donnely N, Davidoff J. The mental representations of faces and house: issues concerning parts and wholes. Visual Cognition, 1999, 6: 319~343
    25. Easton R D, Sholl M J. Object-array structure, frames of reference, and retrieval of spatial knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1995, 21: 483~500
    26. Epstein R, Kanwisher N. A cortical representation of the local visual environment. Nature, 1998, 392: 598~601
    27. Friedman A. Framing pictures: the role of knowledge in automatized encoding and memory for gist. Journal of Experimental Psychology: General, 1979, 108: 316~335
    28. Gordon R D. Attentional allocation during the perception of scenes. Journal of Experimental Psychology: Human Perception and Performance, 2004, 30: 760~777
    29. Grier J B. Nonparametric indexes for sensitivity and bias: computing formulas. Psychological Bulletin, 1971, 75: 424~429
    30. Hassabis D, Maguire. Deconstructing episodic memory with construction. Trends in Cognitive Science, 2007, 11: 299~307
    31. Hayhoe M M. Vision using routines: A functional account of vision. Visual Cognition, 2000, 7: 43~64
    32. Henderson J M, Antes M D. Effects of object-file review and type priming on visual identification within and across eye fixations. Journal of Experimental Psychology: Human Perception and Performance, 1994, 20: 826~839
    33. Henderson J M, Hollingworth A. High-level scene perception. Annual Review of Psychology, 1999, 50: 243~271
    34. Henderson J M, Hollingworth A. Eye movements and visual memory: Detecting changes to saccade targets in scenes. Perception & Psychophysics, 2002, 65: 58~71
    35. Henderson J M, Hollingworth A. Global transsaccadic change blindness during scene perception. Psychological Science, 2003, 14: 493~497
    36. Henderson J M, Phillip A, Hollingworth A. The effects of semantic consistency on eye movements during complex scene viewing. Journal of Experimental Psychology: Human Perception and Performance, 1999, 25: 210~228
    37. Henderson J M, Pollatsek A, Rayner K. Covert visual attention and extrafoveal information use during object identification. Perception & Psychophysics, 1989, 45: 196~208
    38. Henderson J M, Pollatsek A, Rayner K. Effects of fovea priming and extrafoveal preview on object identification. Journal of Experimental Psychology: Human Perception and Performance, 1987, 13: 449~463
    39. Henderson J M, Siefert A B C. Types and tokens in transsaccadic object identification: effects of spatial position and left-right orientation. Psychonomic Bulletin & Review, 2001, 8: 753~760
    40. Hoffmann J, Sebald A. Local contextual cuing in visual search. Experimental Psychology, 2005, 52: 31~38
    41. Hollingworth A. Constructing visual representations of natural scenes: the roles of short-and long-term visual memory. Journal of Experimental Psychology: Human Perception and Performance, 2004, 30: 519~537
    42. Hollingworth A. Failures of retrieval and comparison constrain change detection in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 2003, 29: 388~403
    43. Hollingworth A. The relationship between online visual representation of a scene and long-term scene memory. Journal of Experimental Psychology: Human Perception and Performance, 2005, 31: 396~411
    44. Hollingworth A. Scene and position specificity in visual memory for object. Journal of Experimental Psychology: Human Perception and Performance, 2006, 32: 58~69
    45. Hollingworth A, Henderson J M. Accurate visual memory for previously attended objects in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 2002, 28: 113~136
    46. Intraub H. The presentation of visual scenes. Trends in Cognitive Science, 1997, 1: 217~222
    47. Irwin D E. Memory for position and identity across eye movement. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1992, 18: 307~307
    48. Irwin D E. Information integration across saccadic eye movement. Cognitive Psychology, 1991, 23: 420~456
    49. Irwin D E, Gordon R D. Eye movements, attention, and transsaccadic memory. Visual Cognition, 1998, 5: 127~155
    50. Irwin D E, Yantis S, Jonides J. Evidence against visual integration across saccadic eye movements. Perception & Psychophysics, 1983, 34: 35~46
    51. Irwin D E, Yeomans J M. Sensory registration and informational persistence. Journal of Experimental Psychology: Human Perception and Performance, 1986, 12: 343~360
    52. Irwin D E, Zelinsky G J. Eye movements and scene perception: Memory for things observed. Perception & Psychophysics, 2002, 64: 882~895
    53. Jiang Y, Olson I R, Chun M M. Organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2000, 26: 683~702
    54. Jiang Y, Song J H. Hyper-specificity in visual implicit learning: Learning of spatial layout is contingent on item identity. Journal of Experimental Psychology: Human Perception and Performance, 2005, 31: 1439~1448
    55. Jiang Y, Wangner L C. What is learned in spatial contextual cueing: configuration or individual locations? Perception & Psychophysics, 2004, 66: 454~463
    56. Kahneman D, Treisman A, Gibbs B J. The reviewing of object files: object-specific integration of information. Cognitive Psychology, 1992, 24: 175~219
    57. Loftus G R. Eye fixation and recognition memory for pictures. Cognitive Psychology, 1972, 3: 525~551
    58. Loftus G R, Mackworth N H. Cognitive determinants of fixation location during picture viewing. Journal of Experimental Psychology: Human Perception and Performance, 1978, 4: 565~572
    59. Luck S J, Vogel E K. The capacity of visual working memory for features and conjunctions. Nature, 1977, 390: 279~281
    60. Mandler J M, Parker R E. Memory for descriptive and spatial information in complex pictures. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1976, 2: 38~48
    61. Mandler J M, Richey G H. Long-term memory for pictures. Journal of Experimental Psychology: Human Perception and Performance, 1977, 3: 386~396
    62. Mathis K M. Semantic interference from objects both in and out of a scene context. Journal of Experimental Psychology: Learning, Memory, and Cognition, 2002, 28: 171~182
    63. McConkie G W, Currie C B. Visual stability across saccades while viewing complex pictures. Journal of Experimental Psychology: Human Perception and Performance, 1996, 22: 563~581
    64. McConkie G W, Zola D. Is visual information integrated? Perception & Psychophysics, 1979, 25: 221~244
    65. Mou W, Fan Y, McNamara, et al. Intrinsic frames of reference and egocentric viewpoints in scene recognition. Cognition, 2008, 106: 750~769
    66. Murphy G L, Wisniewski E J. Categorizing objects in isolation and in scenes: what a superordinate is good for. Journal of Experimental Psychology: Learning, Memory, and Cognition, 1989, 15: 572~586
    67. Nijboer, et al. Recognising the forest, but not the trees: an effect of colour on scene perception and recognition. In press, 2007
    68. O’Regan J K. Solving the “real” mysteries of visual perception: the world as an outside memory. Canadian Journal of Psychology, 1992, 46: 461~488
    69. O’Regan J K, Deubel H, Clark J J, et al. Picture changes during blinks: looking without seeing and seeing without looking. Visual Cognition, 2000, 7: 191~212
    70. O’Regan J K, Le′vy-Schoen A. Integrating visual information from successive fixations: does trans-saccadic fusion exist? Visual Research, 1983, 23: 765~768
    71. Oliva A, Schyns P G. Diagnostic colors mediate scene recognition. Cognitive Psychology, 2000, 41: 176~210
    72. Oliva A, Schyns P G. Coarse blobs or fine edges? evidence that information diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology, 1997, 34: 72~107
    73. Oliva A, Torralba A. Building the gist of a scene: the role of global image features in recognition. In press, 2006
    74. Palmer S E. The effects of contextual scenes on the identification of objects. Memory & Cognition, 1975, 3: 519~526
    75. Phillips W A. On the distinction between sensory storage and short-term visual memory. Perception & Psychophysics, 1974, 16: 283~290
    76. Pollatsek A, Rayner K, Collins W E. Integrating pictorial information across eye movements. Journal of Experimental Psychology: General, 1984, 113: 426~442
    77. Pollatsek A, Rayner K, Henderson J M. Role of spatial location in integration of pictorial information across saccades. Journal of Experimental Psychology: Human Perception and Performance, 1990, 16: 199~210
    78. Potter M C. Short-term conceptual memory for pictures. Journal of Experimental Psychology: Human Learning and Memory, 1976, 2: 509~524
    79. Potter M C, Staub A, O'Connor D H. Pictorial and conceptual representation of glimpsed pictures. Journal of Experimental Psychology: Human Perception and Performance, 2004, 30: 478~489
    80. Potter M C, Staub A, Rado J, et al. Recognition memory for briefly presented pictures: the time course of rapid forgetting. Journal of Experimental Psychology: Human Perception and Performance, 2002, 28: 1163~1175
    81. Rayner K. Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 1998, 124: 372~422
    82. Rayner K, McConkie G R. Eye movements and integrating information across fixations. Journal of Experimental Psychology: Human Perception and Performance, 1978, 4: 527~546
    83. Rayner K, Pollatsek A. Is visual information integrated across saccades? Perception & Psychophysics, 1983, 34: 39~48
    84. Reinitz M T, Wright E, Loftus G R. Effects pf semantic priming on visual encoding of pictures. Journal of Experimental Psychology: General, 1989, 118: 280~297
    85. Rensink R A. The dynamic representation of scenes. Visual Cognition, 2000a, 7: 17~42
    86. Rensink R A. Seeing, sensing, and scrutinizing. Vision Research, 2000b, 40: 1469~1487
    87. Riesenhuber M, Poggio T. Hierarchical models of object recognition in cortex. Nature Neuroscience, 1999, 2: 1019~1025
    88. Rue H, Hurn M A. Bayesian object identification. Biometrika, 1999, 86: 649~660
    89. Ryan J D, Cohen N J. The nature of change detection and online representations of scenes. Journal of Experimental Psychology: Human Perception and Performance, 2004, 30: 988~1015
    90. Scholl B J. Attenuated change blindness for exogenously attended items in a flicker paradigm. Visual Cognition, 2000, 7: 377~396
    91. Schyns P G, Oliva A. From blobs to boundary edges: evidence from time and spatial scale dependent scene recognition. Psychology Science, 1994, 5: 195~200
    92. Shelton A L, McNamara T P. Systems of spatial reference in human memory. Cognitive Psychology, 2001, 43: 274~310
    93. Simons D J. n sight, out of mind: When object representations fail. Psychological Science, 1996, 7: 301~305
    94. Simons D J, Levin D T. Change blindness. Trends in Cognitive Science, 1997, 1: 261~267
    95. Singh M, Hoffman D D. Constructing and representing visual objects. Trends in Cognitive Science, 1997, 1: 98~103
    96. Standing L, Conezio J, Haber R N. Perception and memory for pictures: Single-trial learning of 2500 visual stimuli. Psychonomic Science, 1970, 19: 73~74
    97. Tanaka J W, Sengco J. Features and their configuration in face recognition. Memory & Cognition, 1997, 25: 583~592
    98. Torralba A, Oliva A, Scatelhano M S, et al. Contextual guidance of eye movements and attention in real-world scenes: the role of global features on object search. Psychological Review, 2006, 113: 766~789
    99. Treisman A. Features and objects: the fourteenth Bartlett memorial lecture. Quarterly Journal of Experimental Psychology: Human Experimental Psychology, 1988, 40: 201~237
    100.Wheeler M E, Treisman A M. Binding in short-term visual memory. Journal of Experimental Psychology: General, 2002, 131: 48~64
    101.Zelinsky G J, Loschky L C. The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 2004, 15: 106~111
    102.Zelinsky G J, Loschky L C. Eye movements serialize memory for objects in scenes. Perception & Psychophysics, 2005, 67: 676~690
    103.陈萍,迟立忠编著. 发展心理学. 长春:吉林教育出版社, 2002, 93~94
    104.葛列众,王松琴,何灿群. 背景线索效应的研究综述. 心理科学, 2004, 27: 1451~1452
    105.韩玉昌. 观察不同形状和颜色时眼动的顺序性. 心理科学, 1997, 20: 140~143
    106.牟炜民,赵民涛,李晓鸥. 人类空间记忆和空间巡航. 心理科学进展, 2006, 14: 497~504
    107.闫国利著. 眼动分析法在心理学研究中的应用. 天津:天津教育出版社, 2004, 284~287
    108.张亚旭,周晓林编著. 认知心理学. 长春:吉林教育出版社, 2002, 64~66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700