用户名: 密码: 验证码:
叶片—转子系统振动特性与参数辨识方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速旋转机械作为一类被广泛使用的机械设备,在许多行业(如航空航天、电力、冶金等)中都发挥着重要的作用,转子系统作为高速旋转机械的重要组成部分,其研究一直受到广泛关注,近年来由于转子系统的故障产生的恶性事故给企业造成过极大的损失,因此对转子系统进行准确的建模以及故障和参数的辨识,逐渐受到关注。
     本文以转子系统为主要研究对象,建立了叶片-转子-轴承耦合系统的非线性动力学模型,并将改进的差分进化算法应用到失谐叶盘系统的优化排序以及转子系统的结构参数和故障参数的辨识中。为了进一步提高运算效率,提出了多点加点Kriging代理模型和改进的差分进化算法相结合的参数辨识方法,高效准确的实现了线性和非线性转子系统的参数辨识工作。本文的主要工作有以下几个方面:
     1、建立了能够全面考虑叶片弯曲振动的叶片-转子-轴承系统的非线性动力学模型。首先,利用集中质量法将转子系统离散。其次,为分析叶片对转子系统的惯性效应并考虑系统的时变性,将叶片模化为悬臂梁结构,利用假设模态法对叶片进行离散分析,同时根据叶片的循环对称性对系统的微分方程进行简化降阶。对于叶片数量较多的叶片-转子-轴承系统可以实现明显的维数降低的效果。利用数值方法对系统动力学方程进行求解,并通过分岔图、最大Lyapunov指数曲线、相图、Poincar6截面映射、时域波形、幅值谱图等分析了该系统在非线性油膜力作用下的弯扭耦合振动特性。最后,讨论了叶片的存在以及叶片长度对系统非线性演化过程的影响。
     2、建立了叶片-圆盘系统的集中参数化模型,分析了叶盘系统自由振动和受迫振动下的振动特性,并讨论了失谐叶盘系统各阶模态的局部化程度以及失谐叶盘系统响应影响的一般规律。结合所得规律,提出了一种评价失谐叶盘系统振动优劣的新的评价参数。最终将差分进化算法应用到失谐叶盘系统叶片排序的优化研究中。在兼顾降低振幅和平衡叶片间振幅大小的情况下,使各叶片较均匀的分担系统的整体振动能量,以达到降低疲劳、延长寿命的目的。
     3、在基本差分进化算法的基础上提出了适用于转子系统参数辨识的遗传-自适应混合差分进化算法。由于转子系统待辨识参数过大或者过小同时待辨识区间范围较大,因此首先引入具有全局搜索能力的遗传算法以缩小问题的寻优区间,其次为了防止问题陷入局部最优,提出了自适应Cauchy变异和自适应Caussian变异策略,用以修正差分进化算法原有的变异策略。并以考虑不平衡量的线性转子模型和考虑油膜力和碰摩力共同作用下的非线性转子模型为对象进行仿真分析,验证了所提出方法在转子系统参数辨识中的可行性和准确性。最后与基本差分进化算法和遗传算法进行比较,结果显示本文提出的GA-AHDE优化算法能够快速有效的逼近全局最优解。
     4、在原有Kriging代理模型的基础上,结合改进的自适应混合差分进化算法设计了新的转子系统参数辨识方法,在每次更新Kriging代理模型时,增加当前由差分进化算法得到的最优设计点,以提高模型的全局预测精度。通过数值算例和实验,验证了该方法在转子系统参数辨识中的高效性和准确性。在此基础上又将新的多点加点准则引入到Kriging代理模型中,即在每次更新模型时除了增加当前最优设计点外,还根据搜索进程加入相关度较大或较小的点,从而进一步提高了Kriging代理模型的精度,更大程度的提高了搜索效率。最后通过完成线性算例和非线性算例的辨识工作,讨论了多点加点的Kriging代理模型与改进的差分进化算法相结合的参数辨识方法在不同情况下的的辨识结果,并分析了该方法的适用条件。
High speed rotating machinery is widely used in many fields, such as aerospace, electric power, metallurgical and so on. It is necessary to pay close attention to build an effective modelling strategy and identify the faults and parameters of high speed rotating machinery, which can reduce the mechanical faults and improve the safety and reliability of high speed rotating machinery.
     In this paper, we research on the rotor system. Firstly, a coupling nonlinear dynamical model of the blade-rotor-bearing system is developed to analyse the interaction of the rotor, blade and bearing. Secondly, the improved differential evolution is used to optimize the installation arrangement of mistuned blades and identify the faults and parameters of the rotor system. To improve the operation efficiency, a new identification method combined with multi-points added Kriging surrogate model and improved differential evolution algorithm is presented, which identifies the faults and parameters of linear and nonlinear rotor system effectively and exactly. The main works in this paper are as follows:
     1. The nonlinear coupling model of blade-rotor-bearing system is established by the Lagrange approach. Simplifying the rotor system with the lumped mass method. The baldes are modeled as a cantilever beam and simplified with the assumed mode method. The motion equations are simplified owing to cyclic symmetric property. According to this, the dimension of blade-rotor-bearing system can be reducted, especially for too many blades. Considering the bending-torsion coupling motion with nonlinear oil film, the motion differential equations are solved. The bifurcation diagrams, maximum Lyapunov exponent diagrams, phase plane portraits, Poincare maps, time domain waveform, amplitude-frequency curve are used to analyse the motion state of blade-rotor-bearing system. The nonlinear dynamic characteristics of the rotor system with or without blades and the effect of blade length on onlinear dynamic characteristics are discussed.
     2. A lumped parameter model of blade-disk system is established. At the beginning, we analyse the dynamic characteristics of free vibration and forced vibration and discuss the effect of mistuning on mode localization of various orders. Based on the rules, a new formula which evaluates the degree of mode localization of mistuned blade-disk is proposed. At the end, the differential evolution algorithm is used to optimize the installation arrangement of mistuned blades. Both reducing vibration and tuning amplitudes are considered which makes each blade share vibration energy evenly and bring down the material fatigue of blades.
     3. An improved differential evolution algorithm is proposed. It is suitable for identifying the faults and parameters of rotor system. Because of the large range of parameter interval, the genetic algorithm based on its global searching ability is used to reduce the optimization interval firstly. Secondly, in order to prevent reaching the dilemma problem and the local optimal solution, the adaptive Cauchy mutation and adaptive Gaussian mutation are put forward to modify the original mutation strategy of the differential evolution. A linear rotor system with unbalance and a nonlinear rotor system are as the numerical examples. The results prove that the improved differential evolution algorithm is efficient and accurate on faults and parameters identification of rotor system.
     4. A new parameter identification method is designed based on the Kriging surrogate model and the improved differential evolution algorithm. This identification method updates the Kriging surrogate model by adding current optimal point, which improves the accuracy of the Kriging surrogate model in global approximation. A numerical example and the experiment are analysed to vertify the effectiveness and accuracy of the method on parameter identification of rotor system. After that, a new multi-points addition criterion is joined in the Kriging surrogate model. It means that not only the current optimal point, but also the correlated points are add to update the Kriging surrogate model, which can improve the precision of Kriging surrogate model in a short time. At the end, the linear and nonlinear examples are analysed. We discuss the identification results using the multi-points added Kriging-AHDE, and the applicable condition of this method.
引文
[1]钟一锷,何衍宗,王正等.转子动力学[M].北京:清华大学出版社,1987.
    [2]张文.转子动力学理论基础[M].北京:科学出版社,1990.
    [3]闻邦椿,顾家柳,夏松波等.高等转子动力学-理论、技术与应用[M].北京:机械工业出版社,1999.
    [4]闻邦椿,武新华,丁千等.故障旋转机械非线性动力学的理论与实验[M].北京:科学出版社,2004.
    [5]Khanlo H M, Ghayour M, Ziaei-Rad S. Chaotic vibration analysis of rotating, flexible, continuous shaft-disk system with a rub-impact between the disk and the stator [J]. Commun Nonlinear Sci,2011,16(1):566-582.
    [6]Xia Z P, Qiao G, Zheng T S, et al. Nonlinear modeling and dynamic analysis of the rotor-bearing system [J]. Nonlinear Dynam,2009,57(4):559-577.
    [7]Bladh R, Castanier M P, Pierre C. Reduced order modeling and vibration analysis of mistuned bladed disk assemblies with shrouds [J]. J Eng Gas Turb Power,1999,121(3):515-522.
    [8]Al-Nassar Y N, Kalyon M, Pakdemirli A, et al. Stability analysis of rotating blade vibration due to torsional excitation [J]. J Vib Control,2007,13(9-10):1379-1391.
    [9]袁惠群,李东,周硕等.涡摆耦合悬臂双盘碰摩转子的稳定性分析[J].振动与冲击,2008,27(007):109-112.
    [10]Alonso J M, Alvarruiz F, Desantes J M, et al. Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions [J]. Ieee T Evolut Comput,2007,11(1):46-55.
    [11]吴震宇,袁惠群.蚁群支持向量机在内燃机故障诊断中的应用研究[J].振动与冲击,2009,28(3):83-86.
    [12]霍天龙,赵荣珍,胡宝权.基于熵带法与PSO优化的SVM转子故障诊断[J].振动、测试与诊断,2011,31(3):279-284.
    [13]刘贵立,张国英.模拟退火算法在旋转机械故障诊断中的应用[J].风机技术,2000,3(1):54-56.
    [14]Chivens D R. The natural frequencies and critical speed of a rotating flexible shaft-disk system [J]. Arizone:Arizone State University,1973,
    [15]袁惠群,李东,周硕等.涡摆耦合悬臂双盘碰摩转子的稳定性分析[J].振动与冲击,2008,27(7):109-112.
    [16]姚学诗,刘万荣.转子的弯扭耦合振动研究[J].汽轮机技术,2009,51(2):119-121.
    [17]Mohiuddin M A, Khulief Y A. Coupled bending torsional vibration of rotor using finite element [J]. J Sound Vib,1999,223(2):297-316.
    [18]Tejas H P, Ashish K D. Coupled bending-torsional vibration analysis of rotor with rub and crack [J]. J Sound Vib,2009,326:740-752.
    [19]林海英,崔颖.非线性油膜力作用下转子弯扭耦合振动特性研究[J].北京航空航天大学学报,2010,36(5):588-591.
    [20]李朝峰.耦合故障复杂转子-轴承非线性系统的运行稳定性及实验研究[M].博士学位论文,2009,沈阳:东北大学.
    [21]柴山,高连勇.多转子系统弯扭耦合振动分析的整体传递矩阵法[J].机械设计,2005,22(10):8-10.
    [22]袁惠群,寇海江,李东.双跨弹性转子系统弯扭耦合非线性故障特征分析[J].东北大学学报,2010,31(10):1470-1474.
    [23]Crandall S H, Dugundji J. Forced backward whirling of aircraft propeller-engine system [J]. IMechE, C290/80,1980,51(463):555-564.
    [24]Crawley E F, Mokadam D R. Stagger angle dependence of inertial and elastic coupling in bladed disks [J]. J Vib Acoust Stress,1984,106(2):181-188.
    [25]Lee C W, Jia H S, Kim C S, et al. Tuning of simulated natural frequencies for a flexible shaft multiple flexible disk system [J]. J Sound Vib,1997,207(4):435-451.
    [26]Huang S C, Ho K B. Coupled shaft-torsion and blade-bending vibrations of a rotating shaft-disk-blade unit [J]. J Eng Gas Turb Power,1996,118(1):100-106.
    [27]Yang C H, Huang S C. Coupling vibrations in rotating shaft-disk-blades system [J]. J Vib Acoust, 2007,129(1):48-57.
    [28]Chiu Y J, Huang S C. The influence on coupling vibration of a rotor system due to a mistuned blade length [J]. Int J Mech Sci,2007,49(4):522-532.
    [29]Al-Bedoor B O. Reduced-order nonlinear dynamic model of coupled shaft-torsional and blade-bending vibrations in rotors [J]. J Eng Gas Turb Power,2001,123(1):82-88.
    [30]Al-Bedoor B O, Al-Qaisia A A. Stability analysis of rotating blade bending vibration due to torsional excitation [J]. J Sound Vib,2005,282(3-5):1065-1083.
    [31]Yang C H, Huang S C. The influence of disk's flexibility on coupling vibration of shaft-disk-blades systems [J]. J Sound Vib,2007,301(1-2):1-17.
    [32]马晓秋,王亲猛,张锦等.带干摩擦阻尼结构叶、盘系统动力学分析[J].航空动力学报,2002,17(1):110-114.
    [33]Genta G, Tonoli A. A harmonic finite element for the analysis of flexural, torsional and axial rotordynamic behavior of blade arrays [J]. J Sound Vib,1997,207(5):693-720.
    [34]Chun S B, Lee C W. Vibration analysis of shaft-bladed disk system by using substructure synthesis and assumed modes method [J]. J Sound Vib,1996,189(5):587-608.
    [35]Wang L G, Cao D Q, Huang W H. Nonlinear coupled dynamics of flexible blade-rotor-bearing systems [J]. Tribol Int,2010,43(4):759-778.
    [36]Cao D Q, Wang L G, Chen Y S, et al. Bifurcation and chaos of the bladed overhang rotor system with squeeze film dampers [J]. Sci China Ser E,2009,52(3):709-720.
    [37]Genta G. On the stability of rotating blade arrays [J]. J Sound Vib,2004,273(4-5):805-836.
    [38]杨建刚.大型旋转机械叶片-轴弯扭耦合振动问题的研究[J].动力工程,2003,8(23):2569-2573.
    [39]王文亮,张锦,陈向钧.盘-叶耦合系统的固有模态分析-CN群上对称结构的模态综合[J].固体力学学报,1988,9(1):15-23.
    [40]王文亮,杜作润.盘-叶系统模态分析的群论辅助子结构技术[J].复旦学报,1989,28(1):73-77.
    [41]刘廷毅,张锦.叶片-轮盘-轴系统的耦合振动分析[J].燃气涡轮试验与研究,1993,1(1):30-34.
    [42]JacquetRichardet G, Ferraris G, Rieutord P. Frequencies and modes of rotating flexible bladed disc-shaft assemblies:A global cyclic symmetry approach [J]. J Sound Vib,1996,191(5):901-915.
    [43]Chatelet E, D'Ambrosio F, Jacquet-Richardet G. Toward global modelling approaches for dynamic analyses of rotating assemblies of turbomachines [J]. J Sound Vib,2005,282(1-2):163-178.
    [44]郭力,朱均.汽轮发电机组转子-轮盘-叶片系统耦合扭转振动研究[J].汽轮机技术,2001,43(4):226-228.
    [45]王立刚.叶片-转子-轴承耦合系统的非线性动力学特性分析[M].博士学位论文,2009,哈尔滨:哈尔滨工业大学.
    [46]王立刚,胡超,黄文虎.叶片-转子-轴承系统的非线性动力学问题研究[J].应用力学学报,2007,24(2):170-174.
    [47]王立刚,曹登庆,黄文虎.叶片振动影响下双盘转子-轴承系统的稳定性与分岔[J].力学季刊,2009,30(1):14-22.
    [48]王立刚,曹登庆,王晋麟等.椭圆轴承—转子系统的稳定性与分岔[J].航空动力学报,2008,23(2):263-269.
    [49]Anderson P W. Absence of diffusion in certain random lattices [J]. Physical review,1958,109(5): 1492-1505.
    [50]Mott N F, Anderson P W. Nobel lectures in physics for 1977 [J]. Rev. Mod. Physics,1978,50: 191-208.
    [51]Whitehead D S. Torsional flutter of unstalled cascade blades at zero deflection [M]. HM Stationery Office,1966.
    [52]Hodges C H. Confinement of vibration by structural irregularity [J]. J Sound Vib,1982,82(3): 411-424.
    [53]Huang W H. Vibration of some structures with periodic random parameters [J]. Aiaa J,1982,20(7): 1001-1008.
    [54]Hodges C H, Woodhouse J. Vibration isolation from irregularity in a nearly periodic structure-theory and measurements [J]. J Acoust Soc Am,1983,74(3):894-905.
    [55]Ibrahim R A. Structural dynamics with parameter uncertainties[J]. Applied Mechanics Reviews,1987, 40:309-328.
    [56]Li D, Benaroya H. Dynamics of periodic and near-periodic structures[J]. Applied Mechanics Reviews, 1992,45(12).
    [57]Pierre C, Castanier M P, Chen W J. Wave localization in multi-coupled periodic structures:application to truss beams[J]. Applied Mechanics Reviews,1996,49:65.
    [58]Vakakis A F, Manevitch L I, Mikhlin Y V, et al. Normal modes and localization in nonlinear systems [M]. Wiley-VCH,2008.
    [59]Pierre C, Dowell E H. Localization of vibrations by structural irregularity [J]. J Sound Vib,1987, 114(3):549-564.
    [60]Pierre C. Mode Localization and eigenvalue loci veering phenomena in disordered structures [J]. J Sound Vib,1988,126(3):485-502.
    [61]Pierre C, Murthy D V. Aeroelastic modal characteristics of misruned blade assemblies-mode localization and loss of eigenstructure [J]. Aiaa J,1992,30(10):2483-2496.
    [62]Wei S T, Pierre C. Localization phenomena in mistuned assemblies with cyclic symmetry.1. free-vibrations [J]. J Vib Acoust Stress,1988,110(4):429-438.
    [63]Wei S T, Pierre C. Localization phenomena in mistuned assemblies with cyclic symmetry.2. forced vibrations [J]. J Vib Acoust Stress,1988,110(4):439-449.
    [64]Happawana G S, Bajaj A K, Nwokah O D I. A Singular perturbation perspective on mode localization [J]. J Sound Vib,1991,147(2):361-365.
    [65]Happawana G S, Bajaj A K, Nwokah O D I. A Singular perturbation analysis of eigenvalue veering and model sensitivity in perturbed linear periodic system [J]. J Sound Vib,1993,160(2):225-242.
    [66]Happawana G S, Nwokah O D I, Bajaj A K, et al. Free and forced response of mistuned linear cyclic systems:A singular perturbation approach [J]. J Sound Vib,1998,211(5):761-789.
    [67]G O, C P. Vibration localization in mono-and bi-coupled bladed disks-A transfer matrix approach [J]. //AIAA/ASME/ASCE/AHS/ASC 34th Structures, Structural Dynamics, and Materials Conference, 1993,1(1):3683-3697.
    [68]Ottarsson G, Pierre C. A transfer matrix approach to free vibration localization in mistuned blade assemblies [J]. J Sound Vib,1996,197(5):589-618.
    [69]王建军,姚建尧,李其汉.刚度随机失谐叶盘结构概率模态特性分析[J].航空动力学报,2008,23(2):256-262.
    [70]Griffin J H, Hoosac T M. Model development and statistical investigation of turbine blade mistuning [J]. J Vib Acoust Stress,1984,106(2):204-210.
    [71]廖海涛,王建军,李其汉.随机失谐叶盘结构失谐特性分析[J].航空动力学报,2010,25(1):160-168.
    [72]王红建,贺尔铭.叶片失谐对叶盘结构振动特性的影响[J].西北工业大学学报,2009,27(5):645-650.
    [73]王红建.复杂耦合失谐叶片-轮盘系统振动局部化问题研究[M].博士学位论文,2006,陕西:西北工业大学.
    [74]胡超,李凤明,邹经湘等.失谐叶片-轮盘结构振动模态局部化问题的研究[J].中国电机工程学报,2003,23(11):189-194.
    [75]Slater J C, Minkiewicz G R, Blair A J. Forced response of bladed disk assemblies-a survey [J]. Shock and Vibration Digest,1999,31(1):17-24.
    [76]Rahimi M, Ziaei-Rad S. Uncertainty treatment in forced response calculation of mistuned bladed disk [J]. Math Comput Simulat,2010,80(8):1746-1757.
    [77]陈晓敏,王科.基于退火单亲遗传算法的压气机叶片排序算法[J].西南师范大学学报,2009,34(4):156-158.
    [78]唐绍军,王旭,朱斌.遗传算法对压气机叶片排序的应用[J].航空动力学报,2005,20(3):518-522.
    [79]袁惠群,杨少明,吴震宇等.基于蚁群算法和模态局部化参数的失谐叶盘减振研究[M].东北大学学报,2010,31(011):1611-1614.
    [80]袁惠群,张亮,韩清凯等.基于蚁群算法的航空发动机失谐叶片减振排布优化分析[J].振动与冲击,2012,31(11):169-172.
    [81]杨少明.航空发动机失谐叶盘系统振动特性与减振研究[M].硕士学位论文,2010,沈阳:东北大学.
    [82]李志农,吴昭同,丁启全等.基于高阶谱分析的转子裂纹的诊断[J].机械科学与技术,2002,21(6):981-982.
    [83]Wu Y, Du R. Feature extraction and assessment using wavelet packets for monitoring of machining processes [J]. Mech Syst Signal Pr,1996,10(1):29-53.
    [84]Staszewski W J. Identification of damping in MDOF systems using time-scale decomposition [J]. J Sound Vib,1997,203(2):283-305.
    [85]张君.小波分析技术在汽轮机故障诊断中的应用研究[M].博士学位论文,2005,重庆:华北电力大学.
    [86]Rangwala S S, Dornfeld D A. Learning and optimization of machining operations using computing abilities of neural networks [J]. Ieee T Syst Man Cyb,1989,19(2):299-314.
    [87]钟敏.大型旋转机械转子故障诊断的组合神经网络专家系统[M].博士学位论文,1994,北京:清华大学.
    [88]Kuo R J, Chou C L. Multi-sensor fusion based diagnosis for turbine blade faults via artificial neural networks [J]. Intelligent Engineering Systems Through Artificial Neural Networks,1993,3(1):14-17.
    [89]李永强.高速旋转机械故障的若干非线性动力学问题及故障诊断方法的研究[M].博士学位论文,2003,沈阳:东北大学.
    [90]Ungar L H, Powell B A, Kamens S N. Adaptive networks for fault-diagnosis and process-control [J]. Comput Chem Eng,1990,14(4-5):561-572.
    [91]陈岳东,蒋林.机械故障信号的分离[J].中国机械工程,1995,6(2):48-49.
    [92]杨世锡,胡小平.大型旋转机械状态监测与故障诊断系统的面向对象建模研究[J].机电工程,1999,3(1):44-47.
    [93]张小栋,苗晓燕,朱均.模糊神经网络诊断模型理论及应用研究[J].航空动力学报,2000,15(2):196-200.
    [94]何学文.基于支持向量机的故障智能诊断理论与方法研究[M].博士学位论文,2004,长沙:中南大学.
    [95]袁胜发,褚福磊.支持向量机及其在机械故障诊断中的应用[J].振动与冲击,2007,26(11):29-35.
    [96]Tiwari R, Chakravarthy V. Simultaneous identification of residual unbalances and bearing dynamic parameters from impulse responses of rotor-bearing systems [J]. Mech Syst Signal Pr,2006,20(7): 1590-1614.
    [97]Tiwari R, Lees A W, Friswell M I. Identification of speed-dependent bearing parameters [J]. J Sound Vib,2002,254(5):967-986.
    [98]De Santiago O C, Andres L S. Field methods for identification of bearing support parameters-Part I: Identification from transient rotor dynamic response due to impacts [J]. J Eng Gas Turb Power,2007, 129(1):205-212.
    [99]De Santiago O C, Andres L S. Field methods for identification of bearing support parameters-Part Ⅱ: Identification from rotor dynamic response due to imbalances [J]. J Eng Gas Turb Power,2007, 129(1):213-219.
    [100]Chen J H, Lee A C. Estimation of linearized dynamic characteristics of bearings using synchronous response [J]. Int J Mech Sci,1995,37(2):197-219.
    [101]Chen J H, Lee A C. Identification of linearized dynamic characteristics of rolling element bearings [J]. J Vib Acoust,1997,119(1):60-69.
    [102]Renders J M, Flasse S P. Hybrid methods using genetic algorithms for global optimization [J]. Ieee T Syst Man Cy B,1996,26(2):243-258.
    [103]Kennedy J, Eberhart R. Particle swarm optimization [J]. Neural Networks,1995 Proceedings, IEEE International Conference on IEEE,1995,4(1):1942-1948.
    [104]Soliman S A, Mantaway A H, El-Hawary M E. Simulated annealing optimization algorithm for power systems quality analysis [J]. Int J Elec Power,2004,26(1):31-36.
    [105]Dorigo M, Maniezzo V, Colorni A. Ant system:Optimization by a colony of cooperating agents [J]. Ieee T Syst Man Cy B,1996,26(1):29-41.
    [106]Lin C, Qing A Y, Feng Q Y. A comparative study of crossover in differential evolution [J]. J Heuristics,2011,17(6):675-703.
    [107]郭鹏.差分进化算法改进研究[M].博士学位论文,2012,天津:天津大学.
    [108]Wang Y, Cai Z X, Zhang Q F. Enhancing the search ability of differential evolution through orthogonal crossover [J]. Inform Sciences,2012,185(1):153-177.
    [109]Storn R, Price K. Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces [J]. J Global Optim,1997,11(4):341-359.
    [110]Zielinski K,Peters D,and Law R. Run time analysis regarding stopping criteria for differential evolution and particle swarm optimization [J]. In Proceedings of 1st Interantional Conference on Expert Process System Modeling Simulation Optimization,2005,
    [111]Zielinski K, Weitkemper P, Laur R, et al. Parameter study for differential evolution using a power allocation problem including interference cancellation [J]. Evolutionary Computation,2006 CEC 2006 IEEE Congress on IEEE,2006,1857-1864.
    [112]Zaharie D. On the explorative power of differential evolution [J]. In Proceedings of 3rd Interantional Workshop on Symbolic Numerical Algorithms and Scientific Computation,2001,
    [113]Kaelo P, Ali M M. Differential evolution algorithms using hybrid mutation [J]. Comput Optim Appl, 2007,37(2):231-246.
    [114]Liu P K, Wang F S. Hybrid differential evolution including geometric mean mutation for optimization of biochemical systems [J]. J Taiwan Inst Chem E,2010,41(1):65-72.
    [115]Ali M, Pant M. Improving the performance of differential evolution algorithm using Cauchy mutation [J]. Soft Comput,2011,15(5):991-1007.
    [116]Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution:A comparative study on numerical benchmark problems [J]. Ieee T Evolut Comput,2006,10(6): 646-657.
    [117]Zou D X, Liu H K, Gao L Q, et al. An improved differential evolution algorithm for the task assignment problem [J]. Eng Appl Artif Intel,2011,24(4):616-624.
    [118]Maulik U, Saha I. Automatic fuzzy clustering using modified differential evolution for image classification [J]. Ieee T Geosci Remote,2010,48(9):3503-3510.
    [119]Bandurski K, Kwedlo W. Training neural networks with a hybrid differential evolution algorithm [J]. Zeszyty Naukowe,2009,4(1):5-17.
    [120]Vardakos S, Gutierrez M, Xia C C. Parameter identification in numerical modeling of tunneling using the Differential Evolution Genetic Algorithm (DEGA) [J]. Tunn Undergr Sp Tech,2012, 28:109-123.
    [121]Casciati S. Stiffness identification and damage localization via differential evolution algorithms [J]. Struct Control Hlth,2008,15(3):436-449.
    [122]Subudhi B, Jena D. A differential evolution based neural network approach to nonlinear system identification [J]. Appl Soft Comput,2011,11(1):861-871.
    [123]Ho W H, Chou J H, Guo C Y. Parameter identification of chaotic systems using improved differential evolution algorithm [J]. Nonlinear Dynam,2010,61(1-2):29-41.
    [124]Booker A J, Dennis Jr J E, Frank P D, et al. Optimization using surrogate objectives on a helicopter test example [J]. Computational Methods for Optimal Design and Control Birkhauser Boston,1998, 49-58.
    [125]Matheron G. Principles of geostatistics [J]. Economic geology,1963,58(8):1246-1266.
    [126]Lee K H, Park G J. A global robust optimization using kriging based approximation model [J]. Jsme Int J C-Mech Sy,2006,49(3):779-788.
    [127]Sasena M J. Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations [J]. University of Michigan,2002,
    [128]Siem A Y D, Den Hertog D. Kriging models that are robust with respect to simulation errors [J]. Available at SSRN 1012291,2007,
    [129]Giunta A A, Watson L T. A comparison of approximation modeling techniques:polynomial vs [J]. interpolating models AIAA,1998.
    [130]Lucifredi A, Mazzieri C and Rossi M. Application of multi-regerssive linear models, Dynamic kriging models and neural network models to predietive maintenance of hydroelectric powe systems [J]. Mechanieal Systems and Signal Poreessing,2000,14(3):471-494.
    [131]Simpson T W, Lin D K J, Chen W. Sampling strategies for computer experiments:design and analysis [J]. International Journal of Reliability and Applications,2001,2(3):209-240.
    [132]Martin J D, Simpson T W. A study on the use of kriging models to approximate deterministic computer models [J]. Proceedings of DETC,2003,3(1):2-6.
    [133]Simpson T W, Mauery T M, Korte J J, et al. Comparison of response surface and kriging models for multidisciplinary design optimization [J]. AIAA paper 98,1998,4758(7).
    [134]王晓锋,席光,王尚锦. Kriging与响应面方法在气动优化设计中的应用[J].工程热物理学报,2005,26(3):423-425.
    [135]Sakata S, Ashida F, Zako M. Structural optimization using Kriging approximation [J]. Comput Method Appl M,2003,192(7-8):923-939.
    [136]Sakata S, Ashida F, Zako M. An efficient algorithm for Kriging approximation and optimization with large-scale sampling data [J]. Comput Method Appl M,2004,193(3-5):385-404.
    [137]张崎.基于Kriging方法的结构可靠性分析及优化设计[M].博士学位论文,2005,大连:大连理工大学.
    [138]张柱国,姚卫星,刘克龙.基于进化Kriging模型的金属加筋板结构布局优化方法[J].南京航空航天大学学报,2008,40(4):497-500.
    [139]Koch P N, Wujek B, Golovidov O, et al. Facilitating probabilistic multidisciplinary design optimization using kriging approximation models [J].9th AIAA/ISSMO Symposium on Multidisciplinary Analysis & Optimization (September 2002) AIAA paper,2002,5415.
    [140]马晓光.基于kriging的汽轮机基础稳健优化[M].硕士学位论文,2011,大连:大连理工大学.
    [141]高月华.基于kriging代理模型的优化设计方法及其在注塑及成型中的应用[M].博士学位论文,2008,大连:大连理工大学.
    [142]Welch W J, Buck R J, Sacks J, et al. Screening, predicting, and computer experiments [J]. Technometrics,1992,34(1):15-25.
    [143]Sacks J, Welch W J, Mitchell T J, et al. Design and analysis of computer experiments [J]. Statistical science,1989,4(4):409-423.
    [144]Lucifredi A, Mazzieri C, Rossi M. Application of multiregressive linear models, dynamic kriging models and neural network models to predictive maintenance of hydroelectric power systems [J]. Mech Syst Signal Pr,2000,14(3):471-494.
    [145]Lee S H, Kim H Y, Oh S I. Cylindrical tube optimization using response surface method based on stochastic process [J]. J Mater Process Tech,2002,130(490-496.
    [146]Ewins D J. Vibration characteristics of bladed disk assemblies [J]. J Mech Eng Sci,1973,15(3): 165-186.
    [147]Ewins D J. Vibration modes of mistuned bladed disks [J]. J Eng Power-T Asme,1976,98(3): 349-355.
    [148]Ewins D J, Han Z S. Resonant vibration levels of a mistuned bladed disk [J]. J Vib Acoust Stress, 1984,106(2):211-217.
    [149]Ewins D J, Imregun M. Vibration modes of packeted bladed disks [J]. J Vib Acoust Stress,1984, 106(2):175-180.
    [150]张海,浦健,张啸澄.基于退火单亲算法的压气机叶片排序[J].燃气轮机技术,2009,22(4):49-53.
    [151]赵德胜.多约束条件下基于改进遗传算法的叶片优化排序[J].机械设计与制造,2010,12(9):12-14.
    [152]Edwards S, Lees A W, Friswell M I. Experimental identification of excitation and support parameters of a flexible rotor-bearings-foundation system from a single run-down [J]. J Sound Vib,2000, 232(5):963-992.
    [153]Kim Y H, Yang B S, Tan A C C. Bearing parameter identification of rotor-bearing system using clustering-based hybrid evolutionary algorithm[J]. Structural and Multidisciplinary Optimization, 2007,33(6):493-506.
    [154]Islam S M, Das S, Ghosh S, et al. An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization [J]. Ieee T Syst Man Cy B,2012,42(2): 482-500.
    [155]Rahnamayan S, Tizhoosh H R, Salama M M A. Opposition-based differential evolution [J]. Ieee T Evolut Comput,2008,12(1):64-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700