用户名: 密码: 验证码:
自然启发的优化算法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然启发的算法是近几年来在协同进化论基础上发展起来的一种新的优化算法,为寻找复杂问题解决方案提供了新的思路。由于自然启发的优化算法具有的智能性、通用性、本质并行性和全局搜索能力,已在计算机科学、知识发现、通信网络、机器人等研究领域显示出潜力和魅力,成为智能计算领域的一个研究热点。本文对两类自然启发的优化算法:类电磁机制算法和遗传算法,进行了系统深入的研究,针对不同的优化问题提出了有效的自然启发的优化算法进行求解。
     本文的主要工作如下:
     1.针对标准类电磁机制算法中电荷溢出和参数敏感的问题,提出了新的电荷和粒子之间作用力的计算公式。任意两个粒子之间作用力的大小与两粒子的目标函数之差、粒子的距离有关,鼓励粒子沿着合力的方向朝邻近的局部最优解移动。在此基础上,提出了求解无约束优化问题的类电磁机制算法。用标准的Benchmark函数对算法的性能进行了测试,并和已有算法的比较结果表明,新算法能够快速的求出问题的最优解或近似最优解。
     2.提出了一种基于模式搜索的类电磁机制算法求解约束优化问题。引入了粒子的违反度函数,提出了约束优化问题粒子电荷的0-1计算公式,使得可行粒子的电荷总是大于不可行粒子的电荷;新的受力公式,有利于引导不可行粒子转化为满足约束条件的粒子。理论分析表明新算法以概率1收敛到问题的全局最优解。数值实验结果表明,新算法具有收敛快、求解性能好的特点,是求解约束优化问题的一种非常有潜力的算法。
     3.给出了求解多目标优化问题的一种新遗传算法。为了引导搜索向有利的方向进行,设计了有效的杂交算子和简单的变异算子,并证明了算法的全局收敛性。计算机仿真结果表明新算法可以快速的找到一组Pareto最优解。
     4.研究了一种求解图着色问题的新解法。针对整数编码的冗余性,提出了有序整数编码方式,大大缩小了搜索空间。基于图着色问题的特点,设计了一种新的、有效的杂交算子。为了提高杂交算子的搜索能力,结合了一个贪婪的局部搜索技术来改进杂交算子。在此基础上提出了求解图着色问题的一种新的遗传算法,并证明了其全局收敛性。对10个国际标准算例(图的顶点从11到1000)进行了仿真实验,与以往算法的比较结果表明,新算法是有效的、有竞争力的算法。
Nature-inspired algorithm is a new method of optimization based on co-evolution of a group of individuals in recent years and provides a new tool for complex optimization problems. Due to its advantages of intelligence, wide applicability, global search ability and parallelism, nature-inspired optimization algorithm has become a hot research area and has been widely used in many fields such as computer science, telecommunication network, knowledge discovery, robots and so on. In this dissertation, studies are focused on two typical models of nature-inspired computation: electromagnetism-like mechanism (EM) algorithms and genetic algorithms (GAs). Several novel nature-inspired optimization algorithms are proposed for different optimization problems, respectively. The main contributions of this thesis can be summarized as follows:
     1. In order to avoid the charge overflow and parameter sensitivity in standard electromagnetism-like mechanism algorithm, new formulas of particle charge and force between any two particles are presented, in which the magnitude of the force is related to the difference of their objective function values and the distance between two particle. The particle moves towards a local optimal solution in its neighborhood along the direction of total force. Based on these, an improved EM algorithm is proposed for unconstrained optimization problems. Simulation results on benchmark problems demonstrate that the proposed algorithm is effective and can find the global optimal solution quickly.
     2. An electromagnetism-like mechanism method is proposed for solving constrained optimizations on the basis of pattern search. First, the violation degree function is introduced for the constrained optimization problems. Second, inspired from the idea that feasible particles are always better than infeasible ones, the new computational equation of the particle charge is designed. Third, a formula for computing the force between two particles is presented, which can guide infeasible particles to move towards feasible ones. Furthermore, the convergence of the new algorithm is proved and the computer simulations are made. Compared with simulation results of the existing algorithms, the proposed algorithm has the advantages of quick convergence and good performance and is very potential for constrained optimization problems.
     3. For unconstrained multi-objective optimization problems (UMOP), a new algorithm is proposed. In order to guide the search along potential direction, an effective crossover operator and a simple mutation operator are presented. The convergence of the proposed algorithm is proved using the theory of probability. The simulation results show that the proposed algorithm can more quickly track the Pareto optimal solutions in comparison with other existing algorithms.
     4. A novel method for graph coloring problem (GCP) is presented. A new encoding scheme is presented to avoid the redundancy of the integer representation. An effective crossover is designed according to the characteristic of the GCP. In order to enhance its ability of exploration, a greedy local search is integrated into the crossover operator. Based on these, a novel genetic algorithm for GCP is presented and its convergence to global optimal solution with probability one is proved. The proposed algorithm was tested on 10 standard test problems with the number of vertices from 11 to 1000. Experimental results indicate that the proposed algorithm performs well and is competitive with other existing algorithms.
引文
[1]袁亚湘,孙文瑜.最优化理论与方法.北京:科学出版社,2001, 1-6.
    [2]王凌.智能优化算法及其应用.北京:清华大学出版社, 2001, 12-28.
    [3] Roder M., Cardinal J. and Hamzaoui R. Branch and bound algorithm for rate-distortion optimized media streaming. IEEE Transactions on Multimedia, 2003, Feb., 8(1): 170-178.
    [4] Johnson D. B. Efficient algorithms for shortest paths in sparse networks. Journal of the ACM, 1977, 24(1): 1-13.
    [5] Huang P. Y., Hong T. P., Horng G. and Kao C. Y. Extending the Palmer algorithm to solve group flexible flow-shop problems. Proceeding of the 30th Annual Conference of IEEE on Industrial Electronics Society, 2004, 2: 1902-1907.
    [6] Nawaz M., Enscore E. E. and Ham I. A heuristic algorithm for the m-machine, n-job flowshop sequencing problem. OMEGA, 1983, 11: 91-95.
    [7] Lin S. and Kernighan B. W. An effective heuristic algorithm for the traveling salesman problem. Operations Research, 1973, 21: 498-516.
    [8] Holland J. H. Adaptation in nature and artificial systems. University of Michigan Press, 1975.
    [9] Tsai H. K., Yang J. M., Tsai Y. F., et al. A genetic algorithm for large traveling salesman problems. IEEE Transactions on System, Man and Cybernetics, 2004, 34(4): 1718-1729.
    [10] Cedeno W. and Agrafiotis D. K. Using particle swarms for the development of QSAR models based on K-nearest neighbor and kernel regression. Journal of Computer-Aided Molecular Design, 2003, Feb., 17(2): 255-263.
    [11] Romeijn H. E. and Smith R. L. Simulated annealing for constrained global optimization. Journal of Global Optimization, 1994, 5: 101-126.
    [12] Yang R. L. Convergence of the simulated annealing algorithm for continuous global optimization. Journal of Optimization Theory and Application, 2000, March, 104(3): 691-716.
    [13] Birbil S. I. and Fang S. C. An electromagnetism-like mechanism for global optimization. Journal of Global Optimization, 2003, March, 25(3): 263-282.
    [14] Birbil S. I., Fang S. C. and Sheu R. L. On the convergence of a population-based global optimization algorithm. Journal of Global Optimization, 2004, November,30(2): 301-318.
    [15] Birbil S. I. Stochastic global optimization techniques. Doctor Dissertation of North Carolina State University, 2002.
    [16]王晓娟,高亮,陈亚洲.类电磁机制算法及其应用.计算机应用研究, 2006, 6: 67-70.
    [17]高亮,王晓娟.一种改进的类电磁机制算法.华中科技大学学报(自然科学版), 2006, 34(11): 4-6.
    [18] Kaelo P. and Ali M. M. Differential evolution algorithms using hybrid mutation. Computation Optimum Application. 2007, 37: 231-246.
    [19] Rocha A. M. A. C. and Fernandes E. M. G. P. A modified electromagnetism-like algorithm based on exploratory moves. Proceeding of the 2nd Conference on Optimization Methods & Software, Prague, Czech Republic, July 4-7, 2007.
    [20] Alikhani M. G., Javadian N. and R. T. A novel hybrid approach combining electromagnetism-like method with Solis and Wets local search for continuous optimization problems. Journal of Global Optimization, 2008, July,
    [21] Tsou C. S. and Kao C. H. An electromagnetism-like meta-heuristic for multi-objective optimization. Proceeding of 2006 IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, July 16-21, 2006, 1172-1178.
    [22] Wu P., Yang K. J. and Fang H. C. F. A revised EM-like Algorithm +K-OPT method for solving the traveling salesman problem. Proceeding of the 1st International Conference on Innovative Computing, Information and Control, 2006, 1: 546-549.
    [23] Javadian M., Alikhani M. G. and Reza T. M. A discrete binary version of the electromagnetism-like heuristic for solving traveling salesman problem. Lecture Notes in Computer Science, Advanced Intelligent Computing Theories and Applications with Aspects of Artificial Intelligence, 2008, 123-130.
    [24] Chen S. H., Chang P. C., Chan C. L. and Mani V. A hybrid electromagnetism-like algorithm for single machine scheduling problem. D. S. Huang, L. Heutte, and M. Loog (Eds.): ICIC 2007, LNAI 4682: 543-552.
    [25]巍巍.类电磁机制的全局优化算法研究.武汉:华中科技大学,2004.
    [26]程虎.类电磁机制算法在流水车间调度中的应用研究.武汉:华中科技大学,2005.
    [27] Debels D., Reyck B. D., Leus R. and Vanhoucke M. A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. European Journal of Operational Research, 2006, March, 169(2): 638-653.
    [28] Debels D. and Vanhoucke M. An electromagnetism meta-heuristic applied to the resource-constrained project scheduling problem. Lecture Notes in ComputerScience, 2006, 3871: 259-270.
    [29] Wang X. J., Gao L. and Zhang C. Y. Electromagnetism-like mechanism based algorithm for neural network training. Lecture Notes in Computer Science, Advanced Intelligent Computing Theories and Applications with aspects of Artificial Intelligence, 2008.
    [30]袁琨.基于类电磁机制的神经网络训练算法研究.武汉:华中科技大学,2005.
    [31] Wu P. S., Yang K. J. and Huang Y. Y. The study of electromagnetism-like mechanism based fuzzy neural network for learning fuzzy if-then rules. Lecture Notes in Computer Science, Knowledge-based Intelligent Information and Engineering Systems, 2005, 3684: 382-388.
    [32] Rocha A. M. A. C. and Fernandes E. M. G. P. Implementation of the electromagnetism-like algorithm with a constraint-handling technique for engineering optimization problems. Proceeding of the 8th International Conference on Hybrid Intellignet System, Sept. 10-12, 2008, 690-695.
    [33] Rocha A. M. A. C. and Fernandes E. M. G. P. Feasibility and dominance rules in the electromagnetism-like algorithm for constrained global optimization. Lectures Notes in Computer Science, 2008, 5073: 768-783.
    [34] Rocha A. M. A. C. and Fernandes E. M. G. P. Numerical experiments with a population shrinking strategy within an electromagnetism-like algorithm. International Journal of mathematics and Computers in Simulation, 2007, 3(1): 238-243.
    [35] Holland J. H. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. 1st edition, Ann Arobor, MI: The University of Michigan Press, 1975; 2nd edition, Cambridge, MA: MIT Press, 1992.
    [36] Bulmer M. G. The mathematical theory of quantitive genetics. Oxford University Press, New York, 1980.
    [37]杜布赞斯基.遗传学与物种起源.谈家桢等译.北京科学出版社, 1964年8月, 1982年11月重印.
    [38]李敏强,寇纪凇等.遗传算法的基本理论与应用.北京:科学出版社,2002.
    [39] Suzuki D. T., Griffiths A. J. F. and Lewontin R. C. An introduction to genetic analysis (second edition), San Fracisco, 1981.
    [40] De J. An analysis of the behavior of a class of genetic adaptive systems. Doctor Thesis, University of Michigan Press, Ann Arbor, 1975, 76-9381.
    [41] Annals of Math and AI. Special Issue on Genetic Algorithms and AI.5 5, 1993, 10.
    [42] IEEE Transactions on Neural Networks, Special Issue on Genetic Computation, 1995, 5(1).
    [43] Statistics and Computing, Special on Genetic Computation, 1994, 4(2).
    [44] IEEE Transactions on System, Man, and Cybernetics, Part B, Special Issue on Memtic Algorithms, 2005.
    [45] Forrest S. (Eds.). Emergent Computation. North-Hollandn, Amerserdama, 1990.
    [46] S. Forrest. Emergent computation: Self-organizing, collective, and cooperative phenomena in natural and artificial computing networks, 1990, 42: 1-11.
    [47] Forrest S. Emergent behavior in classifier systems. PhD. Dissertation, 1990.
    [48] Tsai H. K., Yang J. M., Tsai Y. F. and Kao C. Y. An evolutionary algorithm for large traveling salesman problem. IEEE Transaction on SMC-part B, 2004, 34(4): 1718-1729.
    [49] Bauer R. J. Genetic algorithms and investment strategies. New York: John Wiley & Sons, Inc., 1994.
    [50]刘明广,郭章林.基于GA-ANN的震灾风险预测模型研究.中国工程科学, 2006, 8(3): 83-86.
    [51] Wang D. S. and Xu X. H. Genetic neural network and application in welding robot error compensation. Proceedings of 2005 International Conference on Machine Learning and Cybernetic, 2005, 7: 18-21.
    [52]刑宗义,张永,候远龙,贾利民.基于模糊聚类和遗传算法的具备解释性和精确性的模糊分类系统设计.电子学报, 2006, 34(1): 83-88.
    [53]罗中先,王强,王进戈.一种基于遗传模糊算法的足球机器人射门方法.哈尔滨工业大学学报, 2006, 37(7): 966-968.
    [54] Baker B. M. and Ayechew M. A. A genetic algorithm for the vehicle routing problem. Computers & Operations Research, 2003, 30: 787-800.
    [55]马剑鸿,杨随先,李彦基.基于遗传算法的产品人机形态设计研究.现代制造工程. 2006, 3: 10-13.
    [56] Jung S. and Moon B. R. Toward minimal restriction of genetic coding and crossover for the 2-D Euclidean TSP. IEEE Transactions on Evolutionary Computation, 2002, December, 16(6): 557-565.
    [57] Baraglia R., Ihidalgo J. and Perego R. A hybrid heuristic for the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 2001, December, 5(6): 613-622.
    [58] Tsai H. K., Yang J. M. and Kao C. Y. A genetic algorithm for traveling salesman problems. In Proceeding of Evolutionary Computation Conference, San Francisco,California, July 7-11, 2001, 2: 687-693.
    [59] Ying W. and Bin L. Job-shop scheduling using genetic algorithm. IEEE International Conference on Systems, Man and Cybernetics, Oct. 14-17, 1996, 3: 1994-1999.
    [60] Su S. and Zhan D. New genetic algorithm for the fixed charge transportation problem. Proceeding of the 6th Congress on Intelligent Control and Automation, June 21-23, Dalin, China, 2006, 7039-7044.
    [61] Murty K. G. and Kabadi S. N. Some NP complete problems in quadratic and nonlinear programming. Mathematical Programming, 1987, 39: 117-129.
    [62] Kan A. H.G. R. and Timmer G. T. Global optimization. In: G. L. Nemhauser, A. H. G. Rinooy Kan, M. J. Todd (Eds.), Hand-books in Operation Research and Management Science, 1988, 1: 21-24.
    [63] Leung Y. W. and Wang Y. P. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(1): 41-53.
    [64] Huyer W. and Neumaier A. Global optimization by multilevel coordinate search. Journal of Global Optimization, 1999, 14: 331-355.
    [65] Dixon L. C. and Szeg? G. P. The global optimization problem: an introduction. Towards Global Optimization 2, North-Holland, Amsterdam, 1978, 1-15.
    [66] Murtagh B. A. and Saunders M. A. MINOS 5.4 user’s guide. Report SOL 83-20R Systems Optimization Laboratory, Stanford University, 1983.
    [67] CONOPT. http://www.gams.com/dd/docs/solvers/conopt.pdf, ARKI Consulting and Development Bagsvaerd, Denmark.
    [68] Richardson J. T., Palmer M. R., Liepins G., et al. Some guidelines for genetic algorithms with penalty functions. Proceeding of the 3rd International Conference, Genetic Algorithm (ICGA-89), Georage Mason University, Morgan Kaufman Publishers, 1989, 191-197.
    [69] Van Le T. A. A fuzzy evolutionary approach to constrained optimization problem. Proceeding of the 2nd IEEE Conference on Evolutionary Computation, Perth, 1995, 274-278.
    [70] Deb K. and Agrawal S. A niched-penalty approach for constraint handling in genetic algorithm. Artificial Neural Nets and Genetic Algorithms. Proceeding of the International Conference in Portoroz Slovenia, Andrej Dobnikar etal (Eds.), Springer-verlag, New York, 1999, 235-243.
    [71] Angel Fernando K. M. and Je?us G. G. Penalty function methods for constrainedoptimization with genetic algorithms: a statistical analysis. Proceeding of the second Mexican International Conference on Artificial Intelligence: Advances in Artificial Intelligence, 2002, 2313: 187-200.
    [72] Coelol Carlos A. Theoretical and numerical constraint handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanic and Engineering, 2002, 191(11): 1245-1287.
    [73] Schaffer J. D. Multiobjecitve optimization with vector evaluated genetic algorithms. Proceeding of the First International Conference on Genetic Algorithms and their Application, Pittsburgh, 1985.
    [74] Aguirre A. H., Rionda S. B., Carlos A. Coello Coello, et al. Handling constraints using multiobjective optimization concepts. International Journal for Numerical Methods in Engineering, 2004, 59: 1989-2017.
    [75] Carlos A. Coello Coello. Constraint handling using an evolutionary multiobjective optimization technique. Civil Engineering System, 2000, 17: 319-346.
    [76] C. A. Coello Coello. Treating constraints as objective for single objective evolutionary optimization. Engineering Optimization, 2000, 32: 275-308.
    [77] Patrik D. S. and Nicholas J. R. The COMOGA method: constrained optimization by multiobjective genetic algorithms. Control and Cybernetics, 1997, 26: 391-412.
    [78] Paredis J. Coevolutionary computation. Artificial Life 2, MIT Press, 1995, 355-375.
    [79] Paredis J. Coevolutionary life-time learning parallel problem solving from nature IV. Proceeding of the International Conference of Evolutionary Computation, Voigt H. M. (Eds.), Springer-verlag, 1996.
    [80] Homaifar A., Lai S. and Qi X. Constrained optimization via genetic algorithms. Simulation, 1994, 62(4): 242-254.
    [81] Michalewitz Z. and Nazhiyaath G. GenocopⅢ: A co-evolutionary algorithm for numerical optimization problems with nonlinear constraints. Proceeding of the 2nd IEEE International Conference on Evolutionary Computation, Fogel D. B. (Ed.), Piscataway, 1995, 647-651.
    [82] Joines J. and Houck C. On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with genetic algorithms. Proceeding of the First IEEE International Conference on Evolutionary Computation, Piscataway, NJ: IEEE Press, 1994, 579-584.
    [83] Michalewicz Z. and Attia N. Evolutionary optimization of constrained problems. Proceeding of the Third Annual Conference on Evolutionary Programming, River Edge, NJ: World Scientific, 1994, 98-108.
    [84] Michalewicz Z. A survey of constraint handling techniques in evolutionary computation methods. Proceeding of the Fourth Annual Conference on Evolutionary Programming, Cambridge, MA: MIT Press, 1995, 135-155.
    [85] Powell D. and Skolnick M. M. Using genetic algorithms in engineering design optimization with nonlinear constraints. Proceeding of the Fifth International Conference on Genetic Algorithms, San Mateo, CA: Morgan Kaufmann, 1993, 424-430.
    [86] L. Davis. Handbook of genetic algorithms. Van Nostrand Reinhold, New York, 1991.
    [87] Schoenauer M. and Michalewicz Z. Evolutionary computation at the edge of feasibility. Proceeding of the Fourth International Conference on Parallel Problem Solving from Nature. Berlin: Springer-Verlag, 1996.
    [88] Waagen D., Diercks P. and Mcdonnell J. The stochastic direction set algorithm: a hybrid technique for finding function extreme. Proceeding of the First Annual Conference on Evolutionary Programming, La Jolla, CA: Evolutionary Programming Society, 1992, 35-42.
    [89] Myung H., Kim J. H. and Fohel D. Preliminary investigation into a two-stage method of evolutionary optimization on constrained problems. In Mcdonnell H. R., R. G. Reynolds and D. B. Fogel (Eds.), Proceeding of the Fourth Annual Conference on Evolutionary Programming, Cambridge, MA: MIT Press, 1995, 449-463.
    [90] Maa C. and Shanblatt M. A two-phase optimization neural network. IEEE Transactions on Neural Networks, 1992, 3(6): 1003-1009.
    [91] Hart W. E. Evolutionary pattern search algorithms for unconstrained and linearly constrained optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(4): 388-397.
    [92] Bogani G., Gasparo M. G. and Papini A. Pattern search method for discrete L1-approximation. Journal of Optimization Theory Application, 2007, 134: 47-59.
    [93] Lewis R. M. and Torczon V. Pattern Search Algorithm for Bound Constrained Minimization. SIAM J. Optim., 1999, 9(4): 1082-1099.
    [94]盛骤,谢式千,潘承毅.概率论与数理统计(第二版).北京:高等教育出版社,2002.
    [95]王宇平,刘大莲.基于平滑技术和一维搜索的全局优化进化算法及其收敛性.计算机学报, 2006, 29(4): 670-675.
    [96] Francesco D. P., Soon T. K. and Dragan A. S. An investigation on preference order ranking scheme for multiobjective evolutionary optimization. IEEE transaction onEvolutionary Computation, 2007, 11(1): 17-45.
    [97] Das I. A preference ordering among various Pareto optimal alternatives. Structural Optimization, 1999, 18: 30-35.
    [98] Busacca D., Marseguerra M. and Zio E. Multiobjective optimization by genetic algorithms: Application to safety systems. Reliability Engineering and System Safety, 2001, 72: 59-74.
    [99] Chen Y. and Liu C. Multiobjective VAR planning using the goal attainment method. IEEE Proceedings on Generation, Transmission and Distribution, 1994, 141: 227-232.
    [100] Fonseca C. M. and Fleming P. J. Genetic algorithm for multiobjectivee optimization: formulation, discussion and generalization. In S. Forest (ed.), Proceeding of the Third International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, 1993, 416-423.
    [101] Fourman M. P. Compactation of symbolic layout using Gas. Proceeding of the First International Conference on Genetic Algorithms and Their Application, Lawrence Erlbaum, 1985, 141-153.
    [102] Gandibleux X. and Ehrgott M. A survey and annotated bibliography of multiobjective combinatorial optimization, 1997, 33: 39-42.
    [103] Hanne A. On the convergence of multiobjective evolutionary algorithms. European Journal of Operational Research, 1999, 117: 553-564.
    [104] Jaszkiewicz A. Genetic local search for multi-objective combinatorial optimization. European Journal of Operational Research, 2002, 137: 50-71.
    [105] Ritzel B. J., Eheart W. and Ranjithan S. Using genetic algorithm to solve a multiple objective groundwater pollution containment problem. Water Resources Research, 1994, 30: 1589-1603.
    [106] Sakawa M. and Yauchi K. Interative decision making for multiobjective nonconvex programming problems with fuzzy numbers through coevolutionary genetic algorithms. Fuzzy sets and systems, 2000, 114: 151-165.
    [107] Sarker R., Liang K. and Newton C. A new multiobjective evolutionary algorithm. European Journal of Operational Research, 2002, 140: 12-23.
    [108] Koski J. Multi-criterion optimization in structural design. In Attek E., Gallagher R. H., and Ragsdell K. M., et al. Ed. New Directions in Optimization Structural Design. New York, Wiley, 1984: 483-508.
    [109] Laumanns M. Analysis and applications of evolutionary multiobjective optimization algorithms. Ph. D. Dissertation, Swiss Federal Institute of Technology,Zurich, 2003.
    [110] Purshouse R. C. On the evolutionary optimization of many objective. Ph. D Dissertation, Dept. Autom. Constrol Syst. Eng., Univ. Sheffield, U. K., 2003.
    [111] Wang Y. P., Liu D. L. and Cheung Y. M. Preference bi-objective evolutionary algorithm for constrained optimization. CIS 2005, December, 15-19, Xi’an, China, 2005, LNAI 3801: 184-191.
    [112] Liu C. A. and Wang Y. P. Dynamic multi-objective optimization evolutionary algorithm. Proceeding of the ICNC 2007, Hainan, China, IEEE Press, Part IV, 2007, 456-459.
    [113] Wang Y. P., Du J. L. and Dang C. Y. Gobal optimization using evolutionary algorithm based on level set evolution and Latin square. DEAL2005, July, 6-8, Brisbrane, Australia, 2005, LNCS 3578: 540-545.
    [114]刘淳安,王宇平.基于一种新模型的多目标遗传算法及性能分析.控制理论与应用, 2006, 23(3): 425-428.
    [115] Schaffer J. D. Multiple objective optimization with vector evaluated genetic algorithms. Proceeding of the First International Conference on Genetic Algorithms and Their Application. Lawrence Erlbaum, 1985, 93-100.
    [116] Horn J., Nafpliotis N. and Goldberg D. E. A niched Pareto genetic algorithm for multiobjective optimization. Proceeding of the ICEC International Conference, 1994, 82-87.
    [117] Srinivas N. and Deb K. Multiobjective Function optimization using nondominated sorting genetic algorithm. Evolutionary Computation, 1995, 2(2): 221-248.
    [118] Deb K. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
    [119] Zitzler E., Deb K. and Thiele L. Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary Computation, 2000, 8(2): 1-24.
    [120] Hajela P. and Lin C. Y. Genetic search strategies in multicriterion optimal design. Structure Optimization, 1992, 4: 99-107.
    [121] Farina M., Deb K. and Amato P. Dynamic multiobjective optimization problems: Test cases, approximation, and applications. Proceeding of the Evolutionary Multiobjective Optimization International Conference, Faro, Portugal, 2003, 311-326.
    [122]王宇平,焦永昌,张福顺.解多目标优化的均匀正交遗传算法.系统工程学报, 2003, 18(6): 481-486.
    [123]王宇平,焦永昌,张福顺.解无约束非线性全局优化的一种新进化算法及其收敛性.电子学报, 2002, 30(12):1867-1869.
    [124] Van Veldhuizen D. A. Multiobjective evolutionary algorithms: classification, analysis, and new innovations. Doctoral Dissertation, Graduate School of Engineering of the Air Force Institute of Technology, WPAFB, OH, USA, August, 1999, 22-24.
    [125] Deb K. Multi-objective genetic algorithms: Problem difficulties and construction of test problems. Evolutionary Computation, 1999, 7(3): 205-230.
    [126] Leung Y. W. and Wang Y. P. A quality measure for multi-objective programming. IEEE Transactions on System, Man and Cycbernetics-Part A: Systems and Human, 2003, 33(2): 337-343.
    [127] Karp R. M. Reducibility among combinatorial problems. In: Raymond E. Miller and James W. Thather: eds. Complexity of Computer Computations, Plenum Press, 1972, 85-103.
    [128] Jensen T. R. and Toft B. Graph coloring problems. New York: A Wiley-interscience Publication, 1995.
    [129] Bondy J. A. and Murty U. S. R. Theory with application. The Macmillan Press LTD London, Basingtoke and New York, 1976.
    [130] Gibbons A. Algorithm graph theory. Cambridge University Press. Cambridge, London, New York, 1985.
    [131] Pablocoll J. M., Isabel M. D. and Paula Z. Facets of the graph coloring polytope. Annals of Operations Research, 2002, 116: 79-90.
    [132] Isabel M. D. and Paula Z. A branch-and-cut algorithm for graph coloring. Discrete Applied Mathematics, 2006, 154(5): 826-847.
    [133] Lucet C., Mendes F. and Moukrim A. An exact method for graph coloring. Computer and Operations Research, 2006, 2189-2207.
    [134] Isabel M. D. and Paula Z. A cutting plane algorithm for graph coloring. Discrete Applied Mathematics, 2008, 156(2): 159-179.
    [135] Werra D. de. Heuristics for graph coloring, Computing, 1990, 7: 191-208.
    [136] Blum A. New approximation algorithms for graph coloring. Journal of the ACM, 1994, 41(3): 470-516.
    [137] Galinier P. and Hertz A. A survey of local search methods for graph coloring. Computers and Operations Research, 2006, 33(9): 2547-2562.
    [138] Lim P. and Wang F. Meta-heuristics for robust graph coloring problem. Proceeding of the 16th International Conference on Tools with ArtificialIntelligence, 2004, 514-518.
    [139] Lim A., Zhu Y., Lou Q. and Rodrigues B. Heuristic methods for graph coloring problems. Proceedings of the 2005 ACM Symposium on Applied Computing, 2005, 933-939.
    [140] Hertz A. and Werra D. de. Using tabu search technique for graph coloring. Computing. 1987, 39(4): 345-351.
    [141] Manuel L. and Rafael M. A GRASP coloring sparse graphs. Computational Optimization and Applications, 2001, 19(2): 30-39.
    [142] Daniel C., Alain H. and Clivier D. Embedding a sequential procedure within an evolutionary algorithm for coloring problems in graphs. Journal of Heuristics, 1995, 1(1): 105-128.
    [143] Dorne R. and Hao J. K. A new genetic local search for graph coloring. Proceedings of the 5th International Conference on Parallel Problem Solving from Nature, 1998, 745-754.
    [144] Eiben P. E., Van Der Hauw J. K. and Van Hemert H. I. Graph coloring with adaptive evolutionary algorithms. Journal of Heuristics, 1998, 4(1): 25-46.
    [145] Galinier P. and Hao J. K. Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization, 1999, 3: 379-397.
    [146] Dimitris A. F., Spiridon D. L. and Stamatis K. S. An evolutionary annealing approach to graph coloring. E. J. Boers et al. (Eds.) Evoworkshop, Springer-Verlag Berlin Heidelberg, 2001, LNCS 2037: 120-129.
    [147] Anna M., Adam P. B. and Celia A. G. Improve graph colouring with linear programming and genetic algorithms. Proceeding of the 2000 Genetic and Evolutionary Computation Conference, 2000, 240-245
    [148] Celia A. G. and Adam P. B. Genetic algorithm for graph coloring: exploration of Galinier and Hao’s algorithm. Journal of Combinatorial Optimization, 2003, 7: 229-236.
    [149] Zbigniew K., Marcin K. and Krzysztof K. Parallel genetic algorithm for graph coloring problem. M. Bubak et al. (Eds.): ICCS, Springer-Verlag Berlin Heidelberg, 2004, LNCS 3036: 215-222.
    [150] Yu J. Q. and Yu P. N. A novel parallel genetic algorithm for the graph coloring problem in VLSI channel routing. Proceeding of the Third International Conference on National Computation (ICCN), 2007, 101-105.
    [151] Christine L. Mumford. New Order-based crossover for the graph coloring problem. Springer-Verlag Berlin Heidelberg, T. P. Runarsson et al. (Eds): The ninthinternational conference on parallel problem solving form nature PPSN IX, Reykjavik, Iceland, September 9-13 , 2006, LNCS 4193: 880-889.
    [152] Szymon L., Zbigniew K. and Grzegorz S. Parallel simulated annealing algorithm for graph coloring problem. Lectures Notes in Computer Science, 2008, 4967, 229-238.
    [153]乔维声.离散数学.西安:西安电子科技大学出版社,80-99.
    [154] T. B?ck. Evolutionary algorithm in theory and practice, Oxford University Press: New York, 1996, 129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700