用户名: 密码: 验证码:
基因OLA1(Obg Like ATPase 1)的蛋白功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     在真核细胞中,谷胱甘肽(Glutathione;GSH)是丰度最高的小分子肽。作为一种非常重要的非蛋白巯基分子,参与了一系列的细胞生理活动:其作为一种还原剂和抗氧化剂,参与了大量的细胞外源性和内源性分子的生理代谢;作为一种自由基清除剂,因为活性氧(ROS)和活性氮自由基(RNS)在细胞信号传导和许多病理发展过程中扮演了非常重要的角色,所以谷胱甘肽在含量与生理代谢上的改变被认为和很多疾病有联系,包括肿瘤,神经系统疾病,艾滋病,衰老,囊性纤维化,肝病,心脏病,中风,糖尿病以及营养不良症。
     为了进一步理解GSH的抗氧化调节及其对机体各种生理活动的影响,数年以前,我们实验组成员施正政等人用遗传学的方法在小鼠胚胎细胞中把谷氨酰半胱氨酸合成酶的重链基因敲除而得到自身不能合成GSH的小鼠胚胎,并把囊胚细胞分离出来进行体外培养。这些突变型的囊胚细胞在含有GSH或者N-乙酰半胱氨酸(N-acetylcysteine;NAC)的培养基中能够正常生长和无限繁殖,但是当GSH或者NAC没有得到补充时,细胞都会死亡。用基因芯片的技术来研究GSH被剥夺之后突变型细胞内基因表达的变化,结果分析显示有32个基因有显著的差异表达。按照生物学功能分类,这些基因的功能包括细胞周期调控,细胞凋亡调控,生理代谢调控以及未知功能。OLA1(Obg-like ATPase;GTPBP9;PTD004)就是这32个基因中的一个,而且目前生理学功能未知。
     研究内容:
     而本文将对这个未知功能的基因-OLA1(Obg-like ATPase;GTPBP9;PTD004)进行初步的研究,希望能了解该基因在细胞生理活动中的功能,并进一步理解该基因在GSH参与的细胞生长和抗氧化调节中的作用,从而增进我们对细胞内抗氧化反应和肿瘤发生发展的了解,为治疗和预防肿瘤提供新的思路和方法。研究内容共分三部分:(一)蛋白结构,表达与功能分析;(二)调控抗氧化机制研究;(三)在肿瘤转移和侵袭中的作用。
     (一)蛋白结构,表达与功能分析
     我们通过生物信息学分析表明OLA1属于Obg一类的GTPase家族,与P-loopNTPase-YchF同源。其蛋白含有396个氨基酸,已知的结构域有位于N端的Gdomain,其两侧有coiled-coil domain,还包括在C端的TGS domain。通过在GeneBank序列库对比发现,OLA1基因和蛋白序列在酵母,小鼠和人类中的同源性极高,表明OLA1是相对保守的基因。我们用Western blotting方法在16中人类肿瘤和正常细胞系中检测发现,OLA1是一个广泛表达的基因,在多种肿瘤和正常细胞系中都有表达。我们通过免疫荧光的方法和在细胞内转染GFP融合表达质粒,在荧光显微镜下观察到OLA1蛋白定位在胞浆。
     (二)调控抗氧化机制研究
     首先我们用siRNA转染的方法来降低其在细胞内的表达,并用Western blotting方法来检测其knockdown的效果,在转染48小时后,与对照相比,knockdown细胞蛋白水平下降80%以上。而且在用细胞计数,PI染色和Annexin V染色技术,发现knockdown细胞的细胞周期和增殖速率,死亡率和对照组细胞没有差异。但是当加入氧化剂包括diamide-巯基氧化剂和tert-butyl hydroperoxide(tBH)-过氧化剂处理5小时后,用MTS方法来检查细胞活力时,发现对照组细胞由于氧化压力的原因开始出现大量死亡,而knockdown细胞的死亡率却比较低,仍能维持相对正常的生理活动。另一方面,当我们用质粒瞬时转染细胞使OLA1在细胞内过表达后,过表达的细胞对这些氧化剂变得更敏感,更容易因氧化压力而死亡。但是无论是OLA1低表达或过表达都没有改变细胞对有线粒体毒性或DNA毒性的药物的敏感性,包括antimycin A,etoposide,和doxorubincine,这说明OLA1对细胞的抗氧化能力的条件是有特异性的。
     当我们用H2DCFDA染色并通过流式细胞技术来观测细胞内的活性氧水平(ROS),发现在加200μM tBH处理1小时,对照细胞中的ROS水平增加幅度显著高于knockdown细胞(71.4%vs.36%),这表明OLA1-knockdown之后能抑制应激产生的大量ROS。当用bioluminescence-based assay来检测细胞内的GSH含量时,发现在400μM tBH或者400μM diamide处理1小时,knockdown细胞内的GSH含量仍能保持在相对较高的水平。同时,我们用基因芯片的方法来研究knockdown之后细胞内基因表达的变化情况,结果显示OLA1-knockdown所带来的基因表达变化很小,在严格的统计学挑选条件下,共有13个基因发现表达有差异,而且目前的研究没有发现这些基因和细胞抗氧化能力改变有直接的因果关系。而且当加入20μg/ml cycloheximide后,细胞内的蛋白合成被阻止,但MTS检测细胞活力显示,相比对照组细胞,knockdown细胞仍表现出对这些氧化剂具有较高的抵抗力。这有力说明OLA1作为细胞抗氧化反应的负调控因子,其作用机制是不依赖新的蛋白合成,而是对现存的蛋白的修饰,调节其功能来实现的。
     (三)在肿瘤转移和侵袭中的作用
     ROS作为信号传导的中介,参与了肿瘤转移的多个环节包括肿瘤细胞迁移和侵入。而OLA1对细胞内的ROS水平具有非常迅速的调节作用,所以很有可能通过调控ROS而参与了细胞转移这个过程。在“创伤-愈合”实验中发现,knockdown细胞的迁移速率大约只有对照细胞的55%,具有迁移细胞特征的细胞数目比例减少到42%,而对照组细胞占78%,表现出迁移受阻的现象。Cell migration assay和cell invasion assay显示,在人类乳腺癌细胞MBA-MD-231中,OLA1被knockdown后,细胞的迁移和侵入被抑制,分别下降了43%和78%。而且同时knockdown细胞内应激产生的ROS水平被抑制。当我们用还原剂N-acetylcysteine 5 mM处理细胞后发现,在“创伤-愈合”实验中,无论是knockdown细胞还是对照组细胞,“创伤”两侧细胞内的ROS被显著下调,同时两组之间细胞的向“创伤”迁移的活动受阻。Cell invasion assay显示,加入N-acetylcysteine后,knockdown细胞和对照组细胞侵入活动也被明显的抑制,都只有原来的20%左右。这表明OLA1-knockdown后,对肿瘤细胞迁移和侵入能力的抑制很可能是通过调节细胞内的ROS水平来实现的。
     结论与创新:
     1.本研究首次发现一个新的细胞内抗氧化反应的负调控因子-OLA1,它对细胞内抗氧化机制具有特异的调节性,主要是针对细胞内的还原型巯基的动态平衡。
     2.本研究发现了新的抗氧化调节机制,证明OLA1对细胞抗氧化机制的调节是通过蛋白翻译后调节来实现的,而不像大部分的调节途径需要从基因转录开始,因而反应更迅速。
     3.本研究首次发现因为OLA1被knockdown之后,导致肿瘤细胞的迁移和侵入能力被抑制,转移能力下降,并且这很可能是通过调节ROS来实现的。
     而且OLA1作为一个ATPase,具有很好的作为药物靶点的结构,因此发现抑制OLA1表达和功能的小分子药物在针对抗氧化和抑制肿瘤转移的临床应用中会有很广阔的前景。
Glutathione (L-γ-glutamyl-L-cysteinyl-glycine; GSH), the most prevalent non-protein thiol in mammalian cells and the most abundant low molecular weight peptide present in eukaryotic cells. Today the implication of GSH in many cellular functions has been recognized. GSH acts as a reducing agent and an antioxidant, is involved in the metabolism of xenobiotics and different cell molecules, is a free-radical scavenger, and has a role in cell-cycle regulation and microtubular-related mechanisms. Due to these functions and to the roles of reactive oxygen (ROS) and nitrogen (RNS) species in cell signaling and in many human pathological processes, alterations in GSH levels and metabolism have been associated with different human diseases, including cancer, neurodegenerative diseases, acquired immune deficiency syndrome (AIDS), aging, cystic fibrosis, liver diseases, heart attack, stroke, seizure, diabetes, sickle cell anemia, and kwashiorkor.
     In order to further study the effects of lack of glutathione on cellular physiological activities, we developed mice deficient in the heavy subunit ofγ-glutamyl cysteine synthetase. We have successfully isolated cell lines from homozygous mutant blastocysts by culturing them in medium containing GSH. SuchγGCS-deficient cells grew for only a few days in the absence of GSH or NAC: cellular GSH drops to an undetectable level within 24 hours and cells eventually die. The microarray was applied to study the gene expression changes during this process. We have identified 32 candidate clones the expression of which either increases or decreases at least twofold 24 hours after the withdrawal of GSH. Database analysis suggested that these genes fell within the functional categories of cell cycle, apoptosis, metabolism, and unknown function. In the present study, we have performed functional characterizations on one of the gene products, originally named GTPBP9 or PTD004, and recently defined as a new member of the Obg-like ATPase family-OLA1, in human cells.
     OLA1, as the homolog of the E. coli P-loop NTPase YchF, is a member of the Obg-related family of GTPases belonging to the TRAFAC (translation factors) class. The deduced 396-amino acid protein consists of an N-terminal G domain, flanked on either side by an inserted coiled-coil, and a C-terminal TGS domain. It is a conserved gene and ubiquitinly expressed in many cell lines.
     When OLA1 was knocked down with short interference RNA (siRNA), cells gained more resistance to the cytotoxicity of diamide, a glutathione oxidation agent, and tert-butyl hydroperoxide (tBH), a peroxide oxidant. On the other hand, when OLA1 is overexpressed by plasmid transfection, cells became more sensitive to these stressors. However, knockdown of OLA1 exhibited no changes in the sensitivity of cells to mitochondria- or DNA-damaging agents including antimycin A, etoposide, and doxorubincine. Moreover, no notable difference in cell proliferation and baseline apoptosis was seen in the OLA1-knockdown cells.
     We further investigated the levels of reactive oxygen species (ROS) in the Ola1-knockdown cells by flow cytometry after DCFDA staining, and confirmed a significant decrease in ROS production of intracellular ROS when the cells were briefly challenged with tBH, as compared with the cells transfected with non-targeting siRNA. Meanwhile we have shown that the OLA1-knockdown cells maintained a higher level of reduced glutathione from the very beginning of the treatment of either diamide or tBH. In order to understand why the cells possess more reduced glutathione and/or can better sustain the oxidation of glutathione, we performed a genome-wide expression assay using the Agilent microarrays. Surprisingly, the knockdown of OLA1 caused only a minimal genomic response, and neither genes encoding antioxidant enzymes and enzymes for producing antioxidants (such as glutathione) were found to have any detectable changes at the mRNA level. Moreover, when de novo protein synthesis was blocked by cycloheximide in OLA1-knockdown cells, they continued to demonstrate increased resistance to both tBH and diamide. These data demonstrate that OLA1 suppresses the antioxidant response through nontranscriptional mechanisms.
     Moreover, we found that OLA1 played a very important role in cancer metastasis. Reactive oxygen species (ROS) are proposed to be signaling intermediates involved in metastatic processes including cell migration and invasion. We found that siRNA-mediated knockdown of OLA1 significantly inhibited cell migration and invasion in breast cancer cell line MBA-MD-231, as assessed by in vitro cell migration and invasion assays, respectively. Knockdown of OLA1 caused no changes in cell growth but affected ROS production. In wound-healing assays, decreased ROS in OLA1-knockdown cells were in situ associated with the cells' decreased motile morphology. Further, treatment of N-acetylcysteine, a general ROS scavenger, blunted the motility and invasiveness of MDA-MB-231, similar to the effect of OLA1-knockdown. These results suggest that knockdown of OLA1 inhibits breast cancer cell migration and invasion through a mechanism that involves the modulation of intracellular ROS levels.
     Taken together, our data suggest that OLA1 is a novel negative regulator specifically for the cellular anti-oxidative response system, and that this regulation is through a post-translational mechanism (e.g., enzymatic activity modulation and protein degradation). And knockdown of OLA1 could impair the cell migration and invasion ability, meaning a potential clinical application. Further, since the OLA1 protein is an ATPase, a common druggable structure, the above beneficial effects associated with the OLA1-knockdown may implicate OLA1 as a drug target for anti-oxidative and anti-metastasis therapy.
引文
Alexandrova, A.Y., Kopnin, P.B., Vasiliev, J.M.Kopnin, B.P., 2006. ROS up-regulation mediates Ras-induced changes of cell morphology and motility. Exp Cell Res.312(11): 2066-73.
    Alia, M., Ramos, S., Mateos, R., Bravo, L.Goya, L., 2005. Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2). J Biochem Mol Toxicol. 19(2): 119-28.
    Ames, B.N., Gold, L.S.Willett, W.C., 1995. The causes and prevention of cancer. Proc Natl Acad Sci U S A. 92(12): 5258-65.
    Arrick, B.A.Nathan, C.F., 1984. Glutathione metabolism as a determinant of therapeutic efficacy: a review. Cancer Res. 44(10): 4224-32.
    Arrigo, A.P., Simon, S., Gibert, B., Kretz-Remy, C, Nivon, M., Czekalla, A., Guillet, D.,Moulin, M., Diaz-Latoud, C.Vicart, P., 2007. Hsp27 (HspBl) and alphaB-crystallin (HspB5) as therapeutic targets. FEBS Lett. 581(19): 3665-74.
    Barron, E.S., 1953. The importance of sulfhydryl groups in biology and medicine. Tex Rep Biol Med. 11(4): 653-70.
    Bjelakovic, G., Nikolova, D., Gluud, L.L., Simonetti, R.GGluud, C, 2007. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. Jama. 297(8): 842-57.
    Brown, N.M., Torres, A.S., Doan, P.E.O'Halloran, T.V., 2004. Oxygen and the copper chaperone CCS regulate posttranslational activation of Cu,Zn superoxide dismutase. Proc Natl Acad Sci U S A. 101(15): 5518-23.
    Bump, E.A.Brown, J.M., 1990. Role of glutathione in the radiation response of mammalian cells in vitro and in vivo. Pharmacol Ther. 47(1): 117-36.
    Burdon, R.H., 1995. Superoxide and hydrogen peroxide in relation to mammalian cell proliferatioa Free Radic Biol Med. 18(4): 775-94.
    Calabrese, V., Cornelius, C., Mancuso, C., Pennisi, G,. Calafato, S., Bellia, F., Bates,T.E., Giuffrida Stella, A.M., Schapira, T., Dinkova Kostova, A.T.Rizzarelli, E.,2008. Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity.Neurochem Res. 33(12): 2444-71.
    
    Caldon, C.E.March, P.E., 2003. Function of the universally conserved bacterial GTPases. Curr Opin Microbiol. 6(2): 135-9.
    
    Caldon, C.E., Yoong, P.March, P.E., 2001. Evolution of a molecular switch: universal bacterial GTPases regulate ribosome functioa Mol Microbiol. 41(2): 289-97.
    
    Calvert, P., Yao, K.S., Hamilton, T.C.O'Dwyer, P.J., 1998. Clinical studies of reversal of drug resistance based on glutathione. Chem Biol Interact. 111-112: 213-24.
    
    Carretero, J., Obrador, E., Anasagasti, M.J., Martin, J.J., Vidal-Vanaclocha, F.Estrela,J.M., 1999. Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells. Clin Exp Metastasis. 17(7):567-74.
    
    Carretero, J., Obrador, E., Esteve, J.M., Ortega, A., Pellicer, J.A., Sempere, F.V.Estrela,J.M., 2001. Tumoricidal activity of endothelial cells. Inhibition of endothelial nitric oxide production abrogates tumor cytotoxicity induced by hepatic sinusoidal endothelium in response to B16 melanoma adhesion in vitro. J Biol Chem. 276(28): 25775-82.
    
    Chene, P., 2002. ATPases as drug targets: learning from their structure. Nat Rev Drug Discov. 1(9): 665-73.
    
    Chiang, K.P., Niessen, S., Saghatelian, A.Cravatt, B.F., 2006. An enzyme that regulates ether lipid signaling pathways in cancer annotated by multidimensional profiling.Chem Biol. 13(10): 1041-50.
    
    Conway, J.G., Neptun, D.A., Garvey, L.K.Popp, J.A., 1987. Carcinogen treatment increases glutathione hydrolysis by gamma-glutamyl transpeptidase. Carcinogenesis. 8(7): 999-1004.
    Crawford, D.R.Davies, K.J., 1994. Adaptive response and oxidative stress. Environ Health Perspect. 102 Suppl 10: 25-8.
    Crook, T.R., Souhami, R.L., Whyman, GD.McLean, A.E., 1986. Glutathione depletion as a determinant of sensitivity of human leukemia cells to cyclophosphamide. Cancer Res. 46(10): 5035-8.
    DeGraff, W.G, Russo, A.Mitchell, J.B., 1985. Glutathione depletion greatly reduces neocarzinostatin cytotoxicity in Chinese hamster V79 cells. J Biol Chem.260(14): 8312-5.
    Deneke, S.M.Fanburg, B.L., 1989. Regulation of cellular glutathione. Am J Physiol.257(4 Pt 1): L163-73.
    Diener, H.C., Lees, K.R., Lyden, P., Grotta, J., Davalos, A., Davis, S.M., Shuaib, A.,Ashwood, T., Wasiewski, W., Alderfer, V., Hardemark, H.GRodichok, L., 2008.NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II Trials. Stroke. 39(6): 1751-8.
    Dierickx, P.J., Nuffel, GV.Alvarez, I., 1999. Glutathione protection against hydrogen peroxide, tert-butyl hydroperoxide and diamide cytotoxicity in rat hepatoma-derived Fa32 cells. Hum Exp Toxicol. 18(10): 627-33.
    Estrela, J.M., Obrador, E., Navarro, J., Lasso De la Vega, M.C.Pellicer, J.A., 1995.Elimination of Ehrlich tumours by ATP-induced growth inhibition, glutathione depletion and X-rays. Nat Med. 1(1): 84-8.
    Ferraro, D., Corso, S., Fasano, E., Panieri, E., Santangelo, R., Borrello, S., Giordano, S.,Pani, G.Galeotti, T, 2006. Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS). Oncogene. 25(26): 3689-98.
    Fini, M.A., Orchard-Webb, D., Kosmider, B., Amon, J.D., Kelland, R., Shibao,GWright, R.M., 2008. Migratory activity of human breast cancer cells is modulated by differential expression of xanthine oxidoreductase. J Cell Biochem. 105(4): 1008-26.
    Fojo, T.Bates, S., 2003. Strategies for reversing drug resistance. Oncogene. 22(47):7512-23.
    Fraser, C.M., Gocayne, J.D., White, O., Adams, M.D., Clayton, R.A., Fleischmann,R.D., Bult, C.J., Kerlavage, A.R., Sutton, G., Kelley, J.M., Fritchman, R.D.,Weidman, J.F., Small, K.V., Sandusky, M., Fuhrmann, J., Nguyen, D., Utterback,T.R., Saudek, D.M., Phillips, C.A., Merrick, J.M., Tomb, J.F., Dougherty, B.A.,Bott, K.F., Hu, PC, Lucier, T.S., Peterson, S.N., Smith, H.O., Hutchison, C.A.,3rdVenter, J.C., 1995. The minimal gene complement of Mycoplasma genitalium. Science. 270(5235): 397-403.
    Gatti, L.Zunino, F., 2005. Overview of tumor cell chemoresistance mechanisms.Methods Mol Med. 111: 127-48.
    Gradia, D.F., Rau, K., Umaki, A.C., de Souza, F.S., Probst, C.M., Correa, A., Holetz,F.B., Avila, A.R., Krieger, M.A., Goldenberg, S.Fragoso, S.P., 2009.Characterization of a novel Obg-like ATPase in the protozoan Trypanosoma cruzi. Int J Parasitol. 39(1): 49-58.
    Green, A.R.Ashwood, T., 2005. Free radical trapping as a therapeutic approach to neuroprotection in stroke: experimental and clinical studies with NXY-059 and free radical scavengers. Curr Drug Targets CNS Neurol Disord. 4(2): 109-18.
    Griffith, O.W., 1999. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med. 27(9-10): 922-35.
    Griffith, O.W.Mulcahy, R.T., 1999. The enzymes of glutathione synthesis:gamma-glutamylcysteine synthetase. Adv Enzymol Relat Areas Mol Biol. 73:209-67, xii.
    Guerrero, C., Milenkovic, T., Przulj, N., Kaiser, P.Huang, L., 2008. Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc Natl Acad Sci U S A. 105(36): 13333-8.
    Guerrero, C, Tagwerker, C, Kaiser, P.Huang, L., 2006. An integrated mass spectrometry-based proteomic approach: quantitative analysis of tandem affmity-purified in vivo cross-linked protein complexes (QTAX) to decipher the 26 S proteasome-interacting network. Mol Cell Proteomics. 5(2): 366-78.
    Gusarov, I.Nudler, E., 2005. NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Natl Acad Sci U S A. 102(39): 13855-60.
    Hedley, D.W.Chow, S., 1994. Evaluation of methods for measuring cellular glutathione content using flow cytometry. Cytometry. 15(4): 349-58.
    Hensley, K.Floyd, R.A., 2002. Reactive oxygen species and protein oxidation in aging:a look back, a look ahead. Arch Biochem Biophys. 397(2): 377-83.
    Hirono, I., 1961. Mechanism of natural and acquired resistance to methyl-bis-(beta-chlorethyl)-amine N-oxide in ascites tumors. Gann. 52: 39-48.
    Hong, F., Freeman, M.L.Liebler, D.C., 2005. Identification of sensor cysteines in human Keapl modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol. 18(12): 1917-26.
    Hopkins, F.G.Morgan, E.J., 1938. The influence of thiol-groups in the activity of dehydrogenases. Biochem J. 32(3): 611-20.
    Hopkins, F.G.Morgan, E.J., 1936. Some relations between ascorbic acid and glutathione.Biochem J. 30(8): 1446-62.
    Hortobagyi, G.N., de la Garza Salazar, J., Pritchard, K., Amadori, D., Haidinger, R.,Hudis, C.A., Khaled, H., Liu, M.C., Martin, M., Namer, M., O'Shaughnessy,J.A., Shen, Z.Z.Albain, K.S., 2005. The global breast cancer burden: variations in epidemiology and survival. Clin Breast Cancer. 6(5): 391-401.
    Huo, Y., Qiu, W.Y., Pan, Q., Yao, Y.F., Xing, K.Lou, M.F., 2009. Reactive oxygen species (ROS) are essential mediators in epidermal growth factor (EGF)-stimulated corneal epithelial cell proliferation, adhesion, migration, and wound healing. Exp Eye Res.
    Ikeda, S., Yamaoka-Tojo, M., Hilenski, L., Patrushev, N.A., Anwar, GM., Quinn,M.T.Ushio-Fukai, M., 2005. IQGAP1 regulates reactive oxygen species-dependent endothelial cell migration through interacting with Nox2.Arterioscler Thromb Vasc Biol. 25(11): 2295-300.
    Innamorato, N.G, Rojo, A.I., Garcia-Yague, A.J., Yamamoto, M., de Ceballos,M.L.Cuadrado, A., 2008. The transcription factor Nrf2 is a therapeutic target against brain inflammatioa J Immunol. 181(1): 680-9.
    Juge, N., Mithen, R.F.Traka, M., 2007. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci. 64(9): 1105-27.
    Kensler, T.W., Wakabayashi, N.Biswal, S., 2007. Cell survival responses to environmental stresses via the Keapl-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 47: 89-116.
    Ketterer, B., 1988. Protective role of glutathione and glutathione transferases in mutagenesis and carcinogenesis. Mutat Res. 202(2): 343-61.
    Koller-Eichhorn, R., Marquardt, T., Gail, R., Wittinghofer, A., Kostrewa, D., Kutay,U.Kambach, C, 2007. Human OLA1 defines an ATPase subfamily in the Obg family of GTP-binding proteins. J Biol Chem. 282(27): 19928-37.
    Kroemer, GReed, J.C., 2000. Mitochondrial control of cell death. Nat Med. 6(5): 513-9.
    Kwon, Y.W., Masutani, H., Nakamura, H., Ishii, Y.Yodoi, J., 2003. Redox regulation of cell growth and cell death. Biol Chem. 384(7): 991-6.
    Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J.Toledano, M.B., 1999.Yapl and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem. 274(23): 16040-6.
    Lee, J.M., Li, J., Johnson, D.A., Stein, T.D., Kraft, A.D., Calkins, M.J., Jakel,R.J.Johnson, J.A., 2005. Nrf2, a multi-organ protector? Faseb J. 19(9): 1061-6.
    Lees, K.R., Davalos, A., Davis, S.M., Diener, H.C., Grotta, J., Lyden, P., Shuaib, A., Ashwood, T., Hardemark, H.G, Wasiewski, W., Emeribe, U.Zivin, J.A., 2006.Additional outcomes and subgroup analyses of NXY-059 for acute ischemic stroke in the SAINT I trial. Stroke. 37(12): 2970-8.
    Legros, F., Lombes, A., Fraction, P.Rojo, M., 2002. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell. 13(12): 4343-54.
    Leipe, D.D., Wolf, Y.I., Koonin, E.V.Aravind, L., 2002. Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol. 317(1): 41-72.
    Liby, K., Hock, T., Yore, M.M., Suh, N., Place, A.E., Risingsong, R., Williams, C.R.,Royce, D.B., Honda, T., Honda, Y, Gribble, GW, Hill-Kapturczak, N., Agarwal,A.Sporn, M.B., 2005. The synthetic triterpenoids, CDDO and CDDO-imidazolide, are potent inducers of heme oxygenase-1 and Nrf2/ARE signaling. Cancer Res. 65(11): 4789-98.
    Lu, S.C., 1999. Regulation of hepatic glutathione synthesis: current concepts and controversies. Faseb J. 13(10): 1169-83.
    Meister, A., 1991. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther. 51(2): 155-94.
    Meister, A., 1983. Selective modification of glutathione metabolism Science. 220(4596):472-7.
    Michel, B., 2005. Obg/CtgA, a signaling protein that controls replication, translation, and morphological development? Dev Cell. 8(3): 300-1.
    Mitchell, J.B.Russo, A., 1987. The role of glutathione in radiation and drug induced cytotoxicity. Br J Cancer Suppl. 8: 96-104.
    Mittenhuber, G., 2001. Comparative genomics of prokaryotic GTP-binding proteins (the Era, Obg, EngA, ThdF (TrmE), YchF and YihA families) and their relationship to eukaryotic GTP-binding proteins (the DRG, ARF, RAB, RAN, RAS and RHO families). J Mol Microbiol Biotechnol. 3(1): 21-35.
    Moldovan, L., Moldovan, N.I., Sohn, R.H., Parikh, S.A.Goldschmidt-Clermont, P.J.,2000. Redox changes of cultured endothelial cells and actin dynamics. Circ Res.86(5): 549-57.
    Moldovan, L., Mythreye, K., Goldschmidt-Clermont, P.J.Satterwhite, L.L., 2006.Reactive oxygen species in vascular endothelial cell motility. Roles of NAD(P)H oxidase and Racl. Cardiovasc Res. 71(2): 236-46.
    Morimoto, T., Loh, P.C., Hirai, T., Asai, K., Kobayashi, K., Moriya, S.Ogasawara, N.,2002. Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis. Microbiology. 148(Pt 11): 3539-52.
    Natarajan, V., Pendyala, S., Gorshkova, I.A., Usatyuk, P., He, D., Pennathur, A.,Lambeth, J.D.Thannickal, V.J., 2008. Role of Nox4 and Nox2 in Hyperoxia-Induced Reactive Oxygen Species Generation and Migration of Human Lung Endothelial Cells. Antioxid Redox Signal.
    Nishikawa, M., 2008. Reactive oxygen species in tumor metastasis. Cancer Lett. 266(1):53-9.
    Obrador, E., Carretero, J., Pellicer, J.A.Estrela, J.M., 2001. Possible mechanisms for tumour cell sensitivity to TNF-alpha and potential therapeutic applications. Curr Pharm Biotechnol. 2(2): 119-30.
    Olson, M.F.Sahai, E., 2009. The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis. 26(4): 273-87.
    Orlowski, M.Meister, A., 1970. The gamma-glutamyl cycle: a possible transport system for amino acids. Proc Natl Acad Sci U S A. 67(3): 1248-55.
    Osburn, W.O.Kensler, T.W., 2008. Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res. 659(1-2): 31-9.
    Paduch, M., Jelen, F.Otlewski, J., 2001. Structure of small G proteins and their regulators. Acta Biochim Pol. 48(4): 829-50.
    Paolicchi, A., Dominici, S., Pieri, L., Maellaro, E.Pompella, A., 2002. Glutathione catabolism as a signaling mechanism. Biochem Pharmacol. 64(5-6): 1027-35.
    Park, K., Kim, K., Rho, S.B., Choi, K., Kim, D., Oh, S.H., Park, J., Lee, S.H.Lee, J.H.,2005. Homeobox Msxl interacts with p53 tumor suppressor and inhibits tumor growth by inducing apoptosis. Cancer Res. 65(3): 749-57.
    Radisky, D.C., Levy, D.D., Littlepage, L.E., Liu, H., Nelson, C.M., Fata, J.E., Leake, D.,Godden, E.L., Albertson, D.G, Nieto, M.A., Werb, Z.Bissell, M.J., 2005. Raclb and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 436(7047): 123-7.
    Rojas, E., Shi, Z.Z., Valverde, M., Paules, R.S., Habib, GM.Lieberman, M.W., 2003.Cell survival and changes in gene expression in cells unable to synthesize glutathione. Biofactors. 17(1-4): 13-9.
    Saraste, M., Sibbald, P.R.Wittinghofer, A., 1990. The P-loop-a common motif in ATP-and GTP-binding proteins. Trends Biochem Sci. 15(11): 430-4.
    Schreibelt, G, van Horssen, J., van Rossum, S., Dijkstra, C.D., Drukarch, B.de Vries,H.E., 2007. Therapeutic potential and biological role of endogenous antioxidant enzymes in multiple sclerosis pathology. Brain Res Rev. 56(2): 322-30.
    Sesso, H.D., Buring, J.E., Christen, W.G, Kurth, T., Belanger, C, MacFadyen, J., Bubes,V., Manson, J.E., Glynn, R.J.Gaziano, J.M., 2008. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians' Health Study II randomized controlled trial. Jama. 300(18): 2123-33.
    Shi, Z.Z., Osei-Frimpong, J., Kala, G, Kala, S.V., Barrios, R.J., Habib, G.M., Lukin,D.J., Danney, C.M., Matzuk, M.M.Lieberman, M.W., 2000. Glutathione synthesis is essential for mouse development but not for cell growth in culture.Proc Natl Acad Sci U S A. 97(10): 5101-6.
    Shim, H., Shim, E., Lee, H., Hahn, J., Kang, D., Lee, Y.S.Jeoung, D., 2006. CAGE, a novel cancer/testis antigen gene, promotes cell motility by activation ERK and p38 MAPK and downregulating ROS. Mol Cells. 21(3): 367-75.
    Sies, H., 1999. Glutathione and its role in cellular functions. Free Radic Biol Med.27(9-10): 916-21.
    
    Sies, H., 1997. Oxidative stress: oxidants and antioxidants. Exp Physiol. 82(2): 291-5.
    Slemmer, J.E., Shacka, J.J., Sweeney, M.I.Weber, J.T., 2008. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging.Curr Med Chem. 15(4): 404-14.
    Sprang, S.R., 1997. G protein mechanisms: insights from structural analysis. Annu Rev Biochem. 66: 639-78.
    Stavrovskaya, A.A., 2000. Cellular mechanisms of multidrug resistance of tumor cells.Biochemistry (Mosc). 65(1): 95-106.
    Steeg, P.S., 2006. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 12(8): 895-904.
    Stocker, R.Perrella, M.A., 2006. Heme oxygenase-1: a novel drug target for atherosclerotic diseases? Circulation. 114(20): 2178-89.
    Storz, P., 2005. Reactive oxygen species in tumor progressioa Front Biosci. 10:1881-96.
    Suthanthiran, M., Anderson, M.E., Sharma, V.K.Meister, A., 1990. Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci U S A. 87(9): 3343-7.
    Teplyakov, A., Obmolova, G., Chu, S.Y., Toedt, J., Eisenstein, E., Howard, A.J.Gilliland,G.L., 2003. Crystal structure of the YchF protein reveals binding sites for GTP and nucleic acid. J Bacteriol. 185(14): 4031-7.
    Terradez, P., Asensi, M., Lasso de la Vega, M.C., Puertes, I.R., Vina, J.Estrela, J.M.,1993. Depletion of tumour glutathione in vivo by buthionine sulphoximine:modulation by the rate of cellular proliferation and inhibition of cancer growth.Biochem J. 292 (Pt 2): 477-83.
    Townsend, D.M.Tew, K.D., 2003. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene. 22(47): 7369-75.
    Townsend, D.M., Tew, K.D.Tapiero, H., 2003. The importance of glutathione in human disease. Biomed Pharmacother. 57(3-4): 145-55.
    Tsuji, Y., Ayaki, H., Whitman, S.P., Morrow, C.S., Torti, S.V.Torti, F.M., 2000.Coordinate transcriptional and translational regulation of ferritin in response to oxidative stress. Mol Cell Biol. 20(16): 5818-27.
    Ufer, C., Wang, C.C., Fahling, M., Schiebel, H., Thiele, B.J., Billett, E.E., Kuhn,H.Borchert, A., 2008. Translational regulation of glutathione peroxidase 4 expression through guanine-rich sequence-binding factor 1 is essential for embryonic brain development Genes Dev. 22(13): 1838-50.
    Ursini, M.V., Parrella, A., Rosa, G., Salzano, S.Martini, G., 1997. Enhanced expression of glucose-6-phosphate dehydrogenase in human cells sustaining oxidative stress. Biochem J. 323 (Pt 3): 801-6.
    Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M.Telser, J., 2007. Free radicals and antioxidants in normal physiological functions and human disease.Int J Biochem Cell Biol. 39(1): 44-84.
    Vetter, I.R.Wittinghofer, A., 2001. The guanine nucleotide-binding switch in three dimensions. Science. 294(5545): 1299-304.
    Vincent, A.M., Edwards, J.L., Sadidi, M.Feldman, E.L., 2008. The antioxidant response as a drug target in diabetic neuropathy. Curr Drug Targets. 9(1): 94-100.
    Voehringer, D.W., Hirschberg, D.L., Xiao, J., Lu, Q., Roederer, M., Lock, C.B.,Herzenberg, L.A., Steinman, L.Herzenberg, L.A., 2000. Gene microarray identification of redox and mitochondrial elements that control resistance or sensitivity to apoptosis. Proc Natl Acad Sci U S A. 97(6): 2680-5.
    Wakabayashi, N., Dinkova-Kostova, A.T., Holtzclaw, W.D., Kang, M.I., Kobayashi, A.,Yamamoto, M., Kensler, T.W.Talalay, P., 2004. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keapl sensor modified by inducers. Proc Natl Acad Sci U S A. 101(7): 2040-5.
    Wang, X.Huang, L., 2008. Identifying dynamic interactors of protein complexes by quantitative mass spectrometry. Mol Cell Proteomics. 7(1): 46-57.
    Wang, X.J., Sun, Z., Villeneuve, N.F., Zhang, S., Zhao, F., Li, Y., Chen, W., Yi, X.,Zheng, W., Wondrak, GT., Wong, P.K.Zhang, D.D., 2008. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2.Carcinogenesis. 29(6): 1235-43.
    Warner, D.S., Sheng, H.Batinic-Haberle, I., 2004. Oxidants, antioxidants and the ischemic braia J Exp Biol. 207(Pt 18): 3221-31.
    Weigelt, B., Peterse, J.L.van 't Veer, L.J., 2005. Breast cancer metastasis: markers and models. Nat Rev Cancer. 5(8): 591-602.
    Wu, G., Fang, Y.Z., Yang, S., Lupton, J.R.Turner, N.D., 2004. Glutathione metabolism and its implications for health. J Nutr. 134(3): 489-92.
    Wu, W.S., 2006. The signaling mechanism of ROS in tumor progressioa Cancer Metastasis Rev. 25(4): 695-705.
    Zhang, J., Rubio, V., Lieberman, M.W.Shi, Z.Z., 2009. OLA1, an Obg-like ATPase,suppresses antioxidant response via nontranscriptional mechanisms. Proc Natl Acad Sci U S A.
    Bae, Y.S., Kang, S.W., Seo, M.S., Baines, I.C., Tekle, E., Chock, P.B.Rhee, S.G, 1997.Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem. 272(1):217-21.
    Bogdan, C., Rollinghoff, M.Diefenbach, A., 2000. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr Opin Immunol.12(1): 64-76.
    Bours, V., Bonizzi, G., Bentires-Alj, M., Bureau, F., Piette, J., Lekeux, P.Merville, M.,2000. NF-kappaB activation in response to toxical and therapeutical agents: role in inflammation and cancer treatment. Toxicology. 153(1-3): 27-38.
    Burhans, W.C.Heintz, N.H., 2009. The cell cycle is a redox cycle: Linking phase-specific targets to cell fate. Free Radic Biol Med.
    Cadet, J., Douki, T., Gasparutto, D.Ravanat, J.L., 2003. Oxidative damage to DNA:formation, measurement and biochemical features. Mutat Res. 531(1-2): 5-23.
    Calabrese, V., Lodi, R., Tonon, C., D'Agata, V., Sapienza, M., Scapagnini, G.,Mangiameli, A., Pennisi, G., Stella, A.M.Butterfield, D.A., 2005. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich's ataxia. J Neurol Sci. 233(1-2): 145-62.
    Chance, B., Sies, H.Boveris, A., 1979. Hydroperoxide metabolism in mammalian organs. Physiol Rev. 59(3): 527-605.
    Cheng, A.C., Jian, C.B., Huang, Y.T., Lai, C.S., Hsu, P.C.Pan, M.H., 2007. Induction of apoptosis by Uncaria tomentosa through reactive oxygen species production,cytochrome c release, and caspases activation in human leukemia cells. Food Chem Toxicol. 45(11): 2206-18.
    Collins, A.R., Cadet, J., Moller, L., Poulsen, H.E.Vina, J., 2004. Are we sure we know how to measure 8-oxo-7,8-dihydroguanine in DNA from human cells? Arch Biochem Biophys. 423(1): 57-65.
    
    Djordjevic, V.B., 2004. Free radicals in cell biology. Int Rev Cytol. 237: 57-89.
    Droge, W., 2002. Free radicals in the physiological control of cell functioa Physiol Rev.82(1): 47-95.
    Duval, C, Cantero, A.V., Auge, N., Mabile, L., Thiers, J.C., Negre-Salvayre, A.Salvayre,R., 2003. Proliferation and wound healing of vascular cells trigger the generation of extracellular reactive oxygen species and LDL oxidatioa Free Radic Biol Med. 35(12): 1589-98.
    Finkel, T.Holbrook, N.J., 2000. Oxidants, oxidative stress and the biology of ageing.Nature. 408(6809): 239-47.
    Ghezzi, P., Bonetto, V.Fratelli, M., 2005. Thiol-disulfide balance: from the concept of oxidative stress to that of redox regulatioa Antioxid Redox Signal. 7(7-8):964-72.
    Grant, J.J.Loake, G.J., 2000. Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol. 124(1): 21-9.
    Heeneman, S., Haendeler, J., Saito, Y., Ishida, M.Berk, B.C., 2000. Angiotensin II induces transactivation of two different populations of the platelet-derived growth factor beta receptor. Key role for the p66 adaptor protein She. J Biol Chem. 275(21): 15926-32.
    Hehner, S.P., Breitkreutz, R., Shubinsky, G, Unsoeld, H., Schulze-Osthoff, K., Schmitz,M.L.Droge, W., 2000. Enhancement of T cell receptor signaling by a mild oxidative shift in the intracellular thiol pool. J Immunol. 165(8): 4319-28.
    Hirota, K., Murata, M., Sachi, Y., Nakamura, H., Takeuchi, J., Mori, K.Yodoi, J., 1999.Distinct roles of thioredoxin in the cytoplasm and in the nucleus. A two-step mechanism of redox regulation of transcription factor NF-kappaB. J Biol Chem.274(39): 27891-7.
    Holbrook, N.J.Dceyama, S., 2002. Age-related decline in cellular response to oxidative stress: links to growth factor signaling pathways with common defects. Biochem Pharmacol. 64(5-6): 999-1005.
    Itabe, H., 2003. Oxidized low-density lipoproteins: what is understood and what remains to be clarified. Biol Pharm Bull. 26(1): 1-9.
    Janisch, K.M., Milde, J., Schempp, H.Elstner, E.F., 2005. Vitamin C, vitamin E and flavonoids. Dev Ophthalmol. 38: 59-69.
    Johnson, G.L.Lapadat, R., 2002. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 298(5600): 1911-2.
    Kretz-Remy, C., Bates, E.E.Arrigo, A.P., 1998. Amino acid analogs activate NF-kappaB through redox-dependent DcappaB-alpha degradation by the proteasome without apparent DcappaB-alpha phosphorylation. Consequence on HIV-1 long terminal repeat activatioa J Biol Chem. 273(6): 3180-91.
    Li, J.Holbrook, N.J., 2003. Common mechanisms for declines in oxidative stress tolerance and proliferation with aging. Free Radic Biol Med. 35(3): 292-9.
    Malins, D.C.Haimanot, R., 1991. Major alterations in the nucleotide structure of DNA in cancer of the female breast Cancer Res. 51(19): 5430-2.
    Marnett, L.J., 2000. Oxyradicals and DNA damage. Carcinogenesis. 21(3): 361-70.
    
    Martindale, J.L.Holbrook, N.J., 2002. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 192(1): 1-15.
    Nishikawa, M., 2008. Reactive oxygen species in tumor metastasis. Cancer Lett. 266(1):53-9.
    Pahl, H.L., 1999. Activators and target genes of Rel/NF-kappaB transcription factors.Oncogene. 18(49): 6853-66.
    Riccioni, GD'Orazio, N., 2005. The role of selenium, zinc and antioxidant vitamin supplementation in the treatment of bronchial asthma: adjuvant therapy or not?Expert Opin Investig Drugs. 14(9): 1145-55.
    Sasnauskiene, A., Kadziauskas, J., Vezelyte, N., Jonusiene, V.Kirveliene, V., 2009.Apoptosis, autophagy and cell cycle arrest following photodamage to mitochondrial interior. Apoptosis. 14(3): 276-86.
    Schreck, R.Baeuerle, P.A., 1991. A role for oxygen radicals as second messengers.Trends Cell Biol. 1(2-3): 39-42.
    Seifried, H.E., Anderson, D.E., Fisher, E.I.Milner, J.A., 2007. A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem. 18(9): 567-79.
    Shimoda, R., Nagashima, M., Sakamoto, M., Yamaguchi, N., Hirohashi, S., Yokota,J.Kasai, H., 1994. Increased formation of oxidative DNA damage,8-hydroxydeoxyguanosine, in human livers with chronic hepatitis. Cancer Res.54(12): 3171-2.
    Stadtman, E.R.Levine, R.L., 2003. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids. 25(3-4): 207-18.
    Steinbrenner, H.Sies, H., 2009. Protection against reactive oxygen species by selenoproteins. Biochim Biophys Acta.
    Sullivan, G.W., Sarembock, I.J.Linden, J., 2000. The role of inflammation in vascular diseases. J Leukoc Biol. 67(5): 591-602.
    Valdez, L.B., Lores Arnaiz, S., Bustamante, J., Alvarez, S., Costa, L.E.Boveris, A., 2000.Free radical chemistry in biological systems. Biol Res. 33(2): 65-70.
    Vasquez-Vivar, J., Kalyanaraman, B.Kennedy, M.C., 2000. Mitochondrial aconitase is a source of hydroxyl radical. An electron spin resonance investigatioa J Biol Chem. 275(19): 14064-9.
    Watt,N.T.,Routledge,M.N.,Wild,C.P.Hooper,N.M.,2007.Cellular prion protein protects against reactive-oxygen-species-induced DNA damage.Free Radic Biol Med.43(6):959-67.
    Watt,N.T.,Taylor,D.R.,Gillott,A.,Thomas,D.A.,Perera,W.S.Hooper,N.M.,2005.Reactive oxygen species-mediated beta-cleavage of the prion protein in the cellular response to oxidative stress.J Biol Chem.280(43):35914-2 I.
    Zhou,H.,Wertz,I.,O'Rourke,K.,Ultsch,M.,Seshagiri,S.,Eby,M.,Xiao,W.Dixit,V.M.,2004.Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO.Nature.427(6970):167-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700