用户名: 密码: 验证码:
高性能滤波驱动机构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
驱动机构是机电装备中的关键部件,是伺服系统中的重要环节,其精度、可靠性、重量、体积等直接影响着机电装备的性能。本项目任务来源于国防科工委民用航天预研“十一五”项目:“空间环境下的高性能摩擦副与高效传动机构技术”(项目编号:C4220061319)。针对特殊与极端环境下的机器人、自动化、航空、航天等工程领域机电装备用的谐波减速器、RV减速器等精密传动机构所存在的问题,以重庆大学王家序教授为负责人的研究团队提出了一种基于纳米表面工程与滤波传动并集成永磁无刷直流电机、精密传动、固体润滑于一体的整体式、高精度、高可靠、长寿命、大转矩、轻量化的新型高性能滤波驱动机构,并研制出原理样机。本文作为项目的一部分,主要研究内容可概括如下:
     ①以滤波传动机构为核心元件,并集成角度传感器与永磁无刷直流电机,设计出集成结构装配图,分析了滤波驱动机构以及直流电机、角度传感器的原理,提出了滤波驱动机构的高性能实现思想,对滤波传动机构转速及电机参数进行了最优化设计;
     ②分析了滤波传动机构的传动原理,对滤波传动机构主要零部件进行了参数计算及结构设计,特别是将双联齿轮与偏心轴一体化集成,提出了轴承齿轮的概念,对齿轮强度进行了校核;
     ③在对轴承齿轮的主要参数进行优化设计的基础上,完成了轴承齿轮的总体结构设计,接着运用Hertz理论对轴承齿轮进行了接触应力分析,推导出其计算公式,并用实例进行了计算,对轴承齿轮进行了额定载荷研究,分别推导了额定动载荷和额定静载荷公式,然后对轴承齿轮摩擦力矩进行了计算,最后对轴承齿轮的材料进行了选择;
     ③对滤波齿轮传动误差及空程误差进行了理论分析和数值计算,分析了减小空程误差的基本结构和方法;
     ⑤分析了滤波驱动机构的试验方法及技术要求,研制了高性能精密传动测试试验台,对高性能滤波传动机构的传动效率、刚度以及噪音等机械性能进行了试验研究。
Driving mechanism is a basic part whose accuracy, reliability, weight, size will directly affect the performance of electromechanical equipments. This research is one part of the Project“High performance frictional pairs and effective transmission mechanism technology in space environment”, which is supported by Subject of prepare study for civil aerospace of COSTIND during“Eleventh Five”(Authorized Number: C4220061319). Aiming at the problem existed in harmonic reducer and RV reducer that used in robot, aviation, aerospace etc. under the special and extreme environment, professor Wang Jiaxu and others from Chongqing university proposed a new high performance filtering driving mechanism with high reliability, long service life, high precision, large torque, high efficiency, small volume and lightweight, which integrated nano-surface engineering, filtering transmission, permanent magnetic brushless DC motor, precision transmission and solid lubricate, and we develops prototype. The major research is listed as follows:
     ①Taking filtering mechanism as core component, then integrating the angle sensor and permanent magnetic brushless DC motor, the integration structure assemble drawings is designed, and then some analysis on the principle of filtering driving mechanism, DC motor and angle sensor are made. At last, the high performance realization methods of filtering driving mechanism are proposed, and optimum design on filtering transmission mechanism speed and motor parameters are also made;
     ②The transmission principle of filtering transmission mechanism is analyzed. Parameter optimization and structure design of filtering transmission mechanism are done. Integrated eccentric shaft with dual gear is defined as bearing-gear. Then, the gear strength is also calculated;
     ③General structure design of bearing-gear has been done on the basis of the optimization of main parameters on bearing-gear. Then, the contact stress of bearing-gear is analyzed on the basis of Hertz theories, including calculation formula’s deducing and example’s calculating. After that, some study on the capacity load is made. At last, the friction moment of the bearing-gear is calculated and the material selection of bearing-gear is carried out;
     ④The theories analysis and numerical calculation towards filtering gear transmission error and backlash error are done. Basic structure and methods that reduces backlash error are analyzed;
     ⑤Testing methods and technical requirements of filtering driving mechanism are analyzed, high performance precision transmission testing bed is also developed. The experimental research such as transmission efficiency, rigidity and noise of filtering transmission mechanism are done.
引文
[1] 梁锡昌,王家序.中国专利,滤波减速器[P].专利号 CN200510057123.X.重庆.2005.
    [2] Thomas R. Stockton,Ann Arbor, Integrated generator and starter motor[P].U.S. Patent 5418400,May 23,1995.
    [3] John W. Henry, IV et al, Integrated motor/gear pump [P].U.S. Patent H1966H,Jun.5,2001.
    [4] C.P.Cho, B.K. Fussell, A novel integrated electric motor/pump for underwater applications[J].Journal of Applied Physics,vol.79,no8,pp.5548-5550,Apr.1996.
    [5] Lung-Wen Tsai,Gregory A.Schultz, Motor integrated parallel hybrid transmission[P]. U.S. Patent 6837 816 B2,Jan.4,2005.
    [6] Hong-Sen Yan,Yi-Cheng Wu, A novel design of a brushless DC motor integrated with an embedded planetary gear train[J].Transactions on Mechatronics,Vol. 11,No.5,October 2006.
    [7] 王长明,阳培,张立勇.谐波齿轮传动概述[J].机械传动,2006.
    [8] 费仁元,张慧慧.机器人机械设计和分析[M].北京:北京工业大学出版社,1998.
    [9] 许大中.晶闸管无换向器电机[M].北京:科学出版社,1984 年 11~13.
    [10] 董亚晖.基于DSP的无刷直流电机控制系统研究[D].华中科技大学学位论文,2002:3~5.
    [11] C.C. Chan, K.T. Chau. An Overiew of Power Electronics in Electric Vehicles[J]. IEEE Trans. Ind. Elect., 1997, 44(1):3~13.
    [12] 辛洪兵,谢金瑞.谐波传动技术及研究动向[J].北京轻工业学院学报,1999,17 (1):30~36.
    [13] 黄国治,傅丰礼.中小旋转电机设计手册[M].北京:中国电力出版社,2007.
    [14] 黄立培.电动机控制[M].北京:清华大学出版社,2003,182~187.
    [15] 丛爽,李泽湘.实用运动控制技术[M].北京:电子工业出版社,2006.
    [16] 赵松年,张奇鹏.机电一体化机械系统设计[M].北京:机械工业出版社,1996.
    [17] 汤蕴璆,史乃.电机学[M].北京:机械工业出版社,2001.
    [18] 叶军.卫星用固体润滑轴承的研究[D].合肥工业大学硕士学位论文,2004.6.
    [19] S.Lang, T.Beck, A.Dinia, Characterization of nanostructured coatings based on oxides for tribological applications[J],Surf.Coat.Technol.180-81(2004)85~89.
    [20] K.J.Wahl, D.N.Dunn, I.L.Singer, Effects of ion implantation on microstructure, endurance and wear behavior of IBAD MoS2[J],Wear 237(2000)1~11.
    [21] 孙麟治,张鄂.小模数精密齿轮传动设计[M].北京:机械工业出版社,1995.
    [22] 周开勤.机械零件手册[M].北京:高等教育出版社,1994.
    [23] 李西建.大扭矩高精度大传动比传动系统精度分析和设计仿真[D].燕山大学硕士学位论文,2004.4.
    [24] 李军.伺服系统中精密齿轮传动设计分析研究[D].重庆大学硕士学位论文,2003.5.
    [25] 赵跃进,何献忠,王平等.精密机械设计基础[M].北京:北京理工大学出版社,2003.7.
    [26] 庞振基,黄其圣.精密机械设计[M].北京:机械工业出版社,2000.
    [27] 曾祥楷,彭东林,张光辉.齿轮传动误差的精密测量[J].工具技术,1999,33(4).
    [28] 吴昭同,张鄂.齿轮精度标准与检验手册[M].北京:中国计量出版社,1994.
    [29] 朱孝录.齿轮传动手册[M].北京:化学工业出版社,2005.1.
    [30] 何小柏.机械设计[M].重庆:重庆大学出版社,1996.
    [31] 梁波.宇航固体润滑轴承技术[J].轴承,2001.5, 8~12.
    [32] 商向东.齿轮加工精度[M].北京:机械工业出版社,2000 年 1 月.
    [33] 李力行,何卫东等.机器人用高精度 RV 传动的研究[J].大连铁道学院学报,1999 20(2).
    [34] 何卫东.机器人用高精度 RV 传动的研究[D].哈尔滨工业大学报,1999.
    [35] 唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,1997,234~272.
    [36] Boness R.J. Minimum load requirements for the prevention for skidding in high speed thrust loaded ball bearings [J]. Journal of Lubrication Technology. Transactions of the ASME, 1981, 103(1): 35~39.
    [37] 庄凯.永磁无刷直流电机控制系统设计[D].重庆大学硕士学位论文,2006.
    [38] 唐云冰.航空发动机高速滚动轴承力学特性研究[D].南京航空航天大学博士学位论文,2005.
    [39] 曲家骐,王季秩编著.伺服控制系统中的传感器[M].北京:机械工业出版社,2004.
    [40] 王秀芝.高性能 BLCDM 伺服系统发展趋势及研究现状[J].电气自动化,1996,(2):15~19.
    [41] 王晓明,王玲.电动机的 DSP 控制—TI 公司 DSP 应用[M].北京:北京航空航天大学出版社,2004.
    [42] 吴东苏,马佳,尹泉,万淑芸.永磁无刷直流电机伺服系统全数字化设计[J].自动控制技术,2002,1(4):6~8.
    [43] 史士财,谢宗武,倪风雷,刘宏.高集成度空间机械臂模块化关节的研制[J].西安交通大学学报,2007.2.
    [44] 刘志俭,潘献飞,连军想编著.MATLAB 外部程序接口[M].北京:科学出版社,2002.4.
    [45] 张瑞丰等编著.精通 MATLAB6.5[M].北京:中国水利水电出版社,2004.2.
    [46] 谭建成.电机控制专用集成电路[M].北京:机械工业出版社,2004.
    [47] Mc.Dowell,Moyar G.L.,Effect of Non-linear Kinematics Hardening on Plastic Deformation and Residual Stresses in Rolling Line Contact[J].Wear, Vol.114,1991,pp. 19~37.
    [48] A. Kapoor, A Shakedown Analysis of Simple Spur Gears[J]. Tribology Transactions, Vo1.45, 2002, pp.103~109.
    [49] A.Kahraman,G.W. Blankenship. Effect of Involute Contact Ratio on Spur Gear Dynamics[J].ASME Journal of Mechanical Design. 1999,121(1):112~118.
    [50] A.A Voevodin,J.S.Zabinski, Nanocomposite and nano-structured tribological materials for space applications[J]. Compos.Sci.Technol,65(2005):741~748.
    [51] 沈允文,叶庆泰.谐波齿轮传动的理论和设计[M].北京:机械工业出版社,1985.
    [52] 范又功,曹炳和编著.谐波齿轮传动技术手册[M].北京:国防工业出版社,1995.
    [53] Tamura Hideyuki, Gad Emil Halim, Kondou Takahiro, et al. On the static running accuracy of ball bearings[J]. Bulletin of JSME, 1985, 28(240): 1240~1246.
    [54] Harsha S P, Kankar P K. Stability analysis of a rotor bearing system due to surface waviness and number of balls[J]. International Journal of Mechanical Sciences. 2004,46(7): 1057~1081.
    [55] Ebubekir Atan.On the prediction of the design criteria for modification of contact stresses due to thermal stresses in the gear mesh[J]. Tribology International, Vol. 38, Issue 3, March 2005, pp227~233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700