用户名: 密码: 验证码:
城市生活垃圾直接气化熔融焚烧过程应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市生活垃圾直接气化熔融焚烧处理技术能有效控制焚烧灰渣中的重金属和二恶英类有机物潜在的污染,避免与控制焚烧过程中二恶英类有机物的合成,具有理想的减容化、无害化和资源化效果。该技术是一种垃圾处理终端技术,在科学界,自从提出其概念并进行工业化应用以来,受到环保专家们的广泛关注,被认为是21世纪垃圾处理的新型可行技术和垃圾环保最具发展前景的新技术。因此,城市生活垃圾直接气化熔融焚烧处理已经成为废物处理领域新的研究热点。
     本文结合我国城市生活垃圾的组份特性,系统地开展了城市生活垃圾直接气化熔融焚烧过程的应用基础研究,为探索和创新城市生活垃圾新型焚烧处理技术提供一定的理论参考。
     研究分析了升温速率和气氛含氧量对生活垃圾气化焚烧过程动态产气特性的影响。在不同温度段,反应特征的变化较为明显,各个温度段的反应产物(CO、CO_2、H_2和CH_4)也都有很强的倾向性。温度和停留时间是决定气化燃烧过程气化率的主要因素。升温速率快慢影响瞬时产气量的多少,但是变化趋势基本相似;瞬时产气量因气化氧气浓度的增加而增加。干燥的混合垃圾在TG-DTG热分析过程主要可分为低温热分解气化阶段和高温热分解残留物燃烧阶段。升温速率不同,反应停留时间也不同,导致生活垃圾气化燃烧各阶段的温度范围有所变化,但是热失重最终趋势却不随升温速率的加快而改变。含氧量越高,燃烧反应就越剧烈,反应速率就越快。
     采用Doyle积分法依据TG-DTG数据建立了原生活垃圾气化燃烧动力学模型,拟合获得了生活垃圾气化燃烧第一阶段的反应机理方程均为f(a)=3/2(1-a)~(4/3)((1-a)~(1/3)-1)~(-1),第二阶段对应于10%、21%和56%含氧量气氛下的反应机理方程分别为f(a):3(1-a)~(2/3)、f(a)=2(1-a)~(3/2)和f(a)=(1-a)~2,并求得了不同升温速率和不同气氛下的动力学参数。
     在灰渣熔融过程中,分析了灰渣中主要成份CaO-SiO_2-Al_2O_3三元组份在熔融过程中可能发生玻璃体转化的各种复合反应,理论分析了各种反应的标准吉布斯自由能△G~θ和反应平衡常数K等热力学参数。研究分析了气氛、灰渣成分对灰渣熔融特性的影响。研究得出,为了降低灰渣的熔融温度,应控制灰渣中的CaO含量在33%和酸碱度在1左右,并实现在弱还原性的气氛下进行熔融处理。依据DSC曲线建立了焚烧灰渣熔融过程动力学模型,求出灰渣熔融过程的动力学参数。动力学模型为生活垃圾的直接气化熔融焚烧工艺设计提供了理论依据。
     实验研究了六种重金属(Hg、Pb、Cd、Zn、Cu、Cr)在直接气化熔融焚烧过程中的转化迁移特性。分析焚烧温度、熔融时间、气氛和含水率对重金属分布的影响。Hg、Pb和Cd是挥发性重金属,容易挥发转移到飞灰和烟气中;Cu和Cr是难熔性重金属,表现出很好的稳定性。Zn因氧化而不易挥发。灰渣的熔融对重金属的挥发有一定抑制作用,而HCl的存在却对重金属的挥发有促进作用。
     实验分析研究得出:焚烧炉内固硫剂固硫效果的好坏主要与反应温度、Ca/S、气体停留时间和固硫剂等有关。CaO的最佳固硫温度在800-900℃,最佳Ca/S是2.5~3左右。添加Fe_2O_3和草木灰有助于加强CaO的固硫效果。直接气化熔融焚烧处理可实现二恶英近零排放,熔渣中二恶英含量仅为0.001ng-TEQ/g,烟气中二恶英含量为0.072ng-TEQ/g。
     自行研发了半工业城市生活垃圾直接气化熔融炉焚烧系统(处理能力分别为1t/d和10t/d)并进行了批量试验。分析研究了处理能力对焚烧炉炉内温度和燃烧效率的影响,酸性气体(SO_2、NO_x和HCl)、二恶英类有机物和熔融渣的重金属浸出量等二次污染物的排放特性。试验表明,该焚烧炉系统在处理原生城市生活垃圾时,具有稳定高效的处理能力,可以实现二次污染物尤其是二恶英的低排放化和灰渣的回收利用资源化。
     研究表明,城市生活垃圾经过该直接气化熔融焚烧处理后,不仅可以实现垃圾燃烧热的利用,还可以降低二次污染物的排放和实现熔融渣的直接回收利用,具有理想的“三化”效果,应用前景广阔。
The direct gasification & melting incineration of municipal solid waste(MSW) can decrease the pollutions of heavy metals and dioxins in incineration residue and avoid the synthesize reaction of dioxins in MSW incineration.The technology has ecologically and satisfying purpose of reducing the volume and the weight,harmless and resource.The technology is considered as terminal way of MSW management by environmentalists after it had been studied and experimented.This technology was deemed to be an ideal realized technology in 21century.Therefore,the direct gasification & melting incineration of MSW becomes one of the most significant research communities.
     The emphasis of this study is on the fundamentals of the direct gasification & melting incineration of MSW in according to the characteristic of MSW in China. It is useful in innovate the thermal treatment technology of MSW.
     Firstly,it was studied that the heat rate and atmosphere effect on the characteristic of MSW gasification and combustion.The results show:the transformation of MSW gasification and combustion is distinct in different temperature region.The reaction products of MSW gasification and combustion have strong orientation,such as CO、CO_2、H_2 and CH_4.The gasification rate of MSW is mainly determined by temperature and detention time.The volume of MSW instantaneous gasification is influenced by the varieties of heat rate. When the concentration of oxygen increase,the volume of MSW instantaneous gasification increase,too.Whereas the variety trend is similar.The TG-DTG thermal analysis showed that the dry MSW include the stage of pyrolysis and gasification in low temperature and the stage of char combustion in high temperature course.The temperature range of thermal process is diverse due to the difference of heat rate and detention time.The finally trend of thermogravimetric analysis are invariability with the speeding up of heat rate. Increase in oxygen concentration,enhance the combustion reaction.
     The kinetic model of raw MSW gasification and combustion is built according to TG-DTG data with the method of Doyle integral.The mechanism equation of first stage is f(a)=3/2(1-a)~(4/3)((1-a)~(1/3)-1)~(-1),the mechanism equation of second stage is f(a)=3(1-a)~(2/3)in 10%oxygen,f(a)=2(1-a)~(3/2)in 21%oxygen and f(a) =(1-a)~2 in 56%oxygen.The Kinetics parameters of raw MSW gasification and incineration were obtained in different heat rate and atmosphere.
     Secondly,the melting mechanisms of MSW incineration were investigated. Incinerator residue normally has CaO,SiO_2 and Al_2O_3 as major constituents. The thermodynamics of incineration residue,such as composite reaction,Gibbs and balance constant of CaO-SiO_2-Al_2O_3 system were characterized during melting process.The characteristics of incineration residue melting were experimented,we also analyze how the content of CaO,SiO_2,Al_2O_3 and the condition of the experimentation impact the characteristics of fusion on solid residues.The experimental results show:it should be controlied that the content of CaO is 33%by weight,ache-alkalinity is 1 and the melting atmosphere is tiny deoxidize atmosphere in order to reduce the melting temperature of incineration residue.In addition,the kinetics model of incineration residue melting transition was regressed from the experimental data of DSC.The kinetics parameters of incineration residue melting transition were obtained.The aforementioned results and model of incineration residue melting form the basic fundamentals for the practical engineering and optimal design of the direct gasification & melting incineration process.
     Subsequently,migration characteristics of heavy metals(cadmium,chromium, nickel,lead,copper and zinc)in the gasification and melting incineration system of MSW were investigated by experiments.Effect of several factors such as temperature,melting time and atmosphere on the volatilization of heavy metals were discussed in details.The results show that cadmium and lead are volatile metals,while chromium,nickel and cooper are refractory volatility heavy metals.Vitrification of the residues inhibited slightly heavy metals vaporization from MSW gasification and melting incineration,however,the volatility of heavy metals was variational for different compound species.The volatilization rate of heavy metals was fluctuating with the increasing of temperature.The limited zinc was vaporized since a substantial amount of the zinc was converted into ZnO in high temperature oxidation atmosphere.The vaporization percentage of heavy metals vaporization was stable over 30 minutes of melting time.The influence degree of the added HCl and SO_2 on each heavy metal was different.HCl will enhance the vaporization of heavy metals, but the effect of SO_2 on vaporization percentage of heavy metals was not obvious.
     The mechanisms of desulphurization was studied during the direct gasification & melting incineration of MSW.The influences of operational conditions on the desulphurization efficiency such as reaction temperature,ratio of Ca/S,resident time and absorbents were investigated.The results shown that the CaO has been good at desulphurization,when the reaction temperature is 800~900℃and the ratio of Ca/S is 2.5~3.The desulphurization sorbent of CaO added Fe_2O_3 or plant ash can enhance the desulphurization efficiency of sorbents.
     Finally,the Semi-pilot scale test was studied in two self-developed direct gasification & melting incineration system,one capacity is 1 t/d,and another capacity is 10t/d.The process of direct gasification & melting MSW incineration was analyzed,and combustion efficiency,chamber temperature distributing and the factors that influence the emissions of NO_x,HCI and SO_2 were studied.The results of experiment demonstrate:when the ability of incinerator is ideal and the run is steady-going,combustion efficiency is more than 95%.The content of heavy metals were less than the rule of environment law in the flue gas,the leaching content of heavy metals were also meet with environmental criterion in melted slag,flue gas is 0.072 ng-TEQ/Nm~3,melted slag is 0.001ng-TEQ/g.The emission content of NO_x is added up rapidity with temperature increasing in chamber.Increasing second air or excess air coefficient significantly increased the sulfur-retention efficiency of CaO,and decreased the emission content of SO_2 in flue gas.However,the effect of excess air coefficient on HCl concentration is inconspicuous in flue gas in MSWI. Therefore,this technology can simultaneously realize low emissions dioxin, high efficiency of electric power generation,obtaining stable and useful vitrified slag and reducing in the amount of exhaust gas.
     Therefore,the process of direct gasification & melting incineration is a feasible method to realize harmless disposal of municipal solid waste(MSW). The technology has advantages of simple structure and harmless treatment thoroughly.Direct Gasification & Melting technology is tacking with the development of environment-friendly technology and its products are harmonious with the external environment.
引文
[1]贺邵兵,周箴.有效参与城市生活垃圾治理的途径探讨[J].环境保护科学,2006,32(6):49-52
    [2]国家统计局.1980-2005年全国年度统计公报.http://www.stats.gov.cn/
    [3]http://www.epa.gov/Wastes/Municipal Solid Waste/
    [4]http://www.vitalgraphics.net/waste/
    [5]郭广寨,朱建斌,陆正明.国内外城市生活垃圾处理处置技术及发展趋势[J].环境卫生工程,2005,13(4):19-23
    [6]常抄,李建军,傅涛.中国城市生活垃圾处理的投资方式调研[J].环境保护,2006,(22):67-69
    [7]王华,胡建杭,王海瑞.城市生活垃圾直接气化熔融焚烧技术[M].北京:冶金工业出版社,2004
    [8]邹莲龙、龙燕、曹学新.21世纪城市生活垃圾生态化处理展望[J].城市环境与城市生态,2001,14(3):57-60
    [9]高京媛.我国城市垃圾处理政策、趋向市场化分析[J].中国环保产业,1999,(6):14-15
    [10]杜吴鹏,高庆先,张恩琛,等.中国城市生活垃圾排放现状及成分分析[J].环境科学研究,2006,19(5):85-90
    [11]周翠红,路迈西,吴文伟.北京市城市生活垃圾组分预测[J].安全与环境学报,2004,4(5):37-40
    [12]李晓东,陆胜勇,徐旭,等.中国部分城市生活垃圾热值的分析(J].中国环境科学,2001,21(2):156-160
    [13]徐云海.2004年城市生活垃圾处理发展综述[J].中国城市环境卫生,2005,(3):13-17
    [14]唐翔宇.垃圾卫生填埋场微量气体的产生及环境影响[J].上海环境科学,1997,16(9):34-36
    [15]国家环境保护总局污染控制司.城市固体废物管理与处理处置技术[M].北京:中国石化出版社,2001,1
    [16]赵由才.生活垃圾资源化原理与技术[M].北京:化学工业出版社,2001
    [17]王华.二恶英零排放化城市生活垃圾焚烧技术[M].北京:冶金工业出版社,2001
    [18]吴玉萍,董锁成.当代城市生活垃圾处理技术现状与展望[J].城市环境与城市生态,2001,14(1):15-17
    [19]李湘洲.国内外城市垃圾处理的现状与趋势(上)[J].再生资源研究,1998,(3):31-34
    [20]张颖,张小丹.固体废物的资源化和综合利用技术[J].环境科学研究,1998,11(3):49-52
    [21]赵丽华,赵中一.固体废弃物处理技术现状[J].环境科学动态.2002,(3):26-27
    [22]Wilson G B.Combining Raw Materials for Composting.The Biocycle Guide to Yard Waste Composting[J].J.G.press Inc.,Emmaus,PA,1989
    [23]Fernandes L,Sarta J M,Comparative study of static pile composting:using nature natural,forced and passive aeration methods[J].Compost Science and Utilization,1997,5(4):65-67
    [24]Manser A G R,Kelling A A.Practical handbook of processing and recycling municipal waste[J].Lewis Publishers,1996
    [25]Sesay A.A.,Lasardi K.E.and Stentiford E.I.Aerated static pile composting of municipal solid waste(MSW):a comparison of positive pressure aeration with hybrid positive and negative aeration[J].Waste Management Research,1998,16(3):264-272
    [26]芈振明,高忠爱,祁梦兰等合编.固体废弃物的处理与处置[M].北京;高等教育出版社.1993
    [27]段世江.我国城市生活垃圾问题及管理对策探析[J].河北大学学报(哲学社会科学版),2001,26(1)83-87
    [28]毛玉如,武全平,夏同裳.城市生活垃圾焚烧发电的现状、分析与展望[J].新能源,1999,21(60):33-37
    [29]Michele Giugliano,Stefano Cernuschi,Mario Grosso,et al.The flux and mass balance of PCDD/F in a MSW incineration full scale plant[J].Chemosphere,2001,43:743-750
    [30]Gordon Mckay.Dioxin characterization formation and minimization during municipal solid waste(MSW)incineration:review[J].Chemical Engineering Journal,2002,86:343-368
    [31]Everaert K,Baeyens J.The formation and emission of dioxins in large scale thermal processes[J].Chemosphere,2002,46:439-448
    [32]管建春.城市生活垃圾焚烧处理技术现状[J].能源工程,1999,(3):15-17
    [33]黄爱军,田洪海.城市生活垃圾焚烧处理初探[J].环境科学研究,2000,13(3):27-29
    [34]李湘洲.国内外城市垃圾处理的现状与趋势[J].粉煤灰.2000,(1):31-34
    [35]朱红兵,李秀,柳凌云等.城市生活垃圾无害化处理工艺[J].环境科学与技术,2002,25(5):28-30
    [36]郭廷杰.城市垃圾资源化探讨[J].能源技术,2002,23(1):43-45
    [37]彭波,边疆,吴磊.垃圾焚烧及其发电技术[J].河北电力,2001,20(1):7-10
    [38]刘惠永,廖洪强,孙俊民.垃圾再生资源化研究现状及应用前景[J].新能源,2000,22(6):31-35
    [39]林同.日本城市生活垃圾焚烧[J].中国城市环境卫生,2006(2).39-40
    [40]毛玉如、刘晓锋.城市生活垃圾焚烧发电技术初探[J].再生资源研究,1999,(5):31-33
    [41]Gottschalk J,Mark W,Modern flue gas cleaning system for waste incineration plants[J].Filtration Sep,1996,33(5):383-388
    [42]袁小年,杨永朋,苏朋义.应用新技术垃圾也变宝[J].再生资源研究,1999,(2):35
    [43]胡建杭,王华,何方等.城市生活垃圾能源化技术的发展动态[J].能源工程,2001,(4):13-15
    [44]国家环境保护总局污染控制司.城市固体废物管理与处理处置技术[M].北京:中国石化出版社,2000.
    [45]李建新,王永川,张美琴,等.国内城市生活垃圾特性及处理技术研究[J].热力发电,2006,(1):11-14
    [46]李晶,华珞,王学江.国内外城市生活垃圾处理的分析与比较[J].首都师范大学学报(自然科学版),2004,25(3):73-80
    [47]彭献永,顾念祖.我国城市生活垃圾处理的现状与对策[J].工业锅炉,2006,97(3):6-13
    [48]徐振渠.中国城市生活垃圾焚烧技术与设施建设的发展历程和展望[J].中国城市环境卫生,2004,(3):25-30
    [49]http://nett21.gec.jp/JSIM_DATA/Database
    [50]Thomas Malkow.Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal[J].Waste management,2004(24):53-79
    [51]Koji Arita,Sunao Nakamura.New technologies harmonized with Global environment.NKK technical review,2003(88):116-124
    [52]Sakai S,Hiraoka M.Municipal Solid Waste Incinerator Residue Recycling by Thermal Process[J].Waste Management,2000,20:249-258
    [53]Masahide Nishigak.Producing permeable blocks and pavement bricks from molten slag[J].Waste Management,2000,20(2-3):185-192
    [54]Amirhomayoun Saffarzadeh,Takayuki Shimaoka,Yoshinobu Motomura,et al.Chemical and mineralogical evaluation of slag products derived from the pyrolysis/melting treatment of MSW[J].Waste Management,2006,26(12):1443-1452
    [55]Yun Y,Ju J S.Operation performance of a pilot-scale gasification/melting process for liquid and slurry-type wastes[J].Korean J Chem Eng,2003,20:1037-1044
    [56]Kikuchi R,Sato H,MatsuKura Y,et al.Semi-pilot scale test for production of hydrogen-rich fuel gas from different wastes by means of a gasification and smelting process with oxygen multi-blowing[J].Fuel Processing Technology,2005,86(12-13):1279-1296
    [57]Calaminus B,Stahlberg R.Continuous in-line gasifcation/vitrification process for thermal waste treatment:process technology and current status of projects[J].Waste Management,1998,8(6-8):547-556
    [58]Chen Chunlin,Tokuda Masanori.Evaluation of pyrolysis conditions in gasification melting system for municipal solid waste[J].Computer Coupling of Phase Diagrams and Thermo chemistry,2003,27(3),193-199
    [59]Wiles C C.Municipal solid waste combustion ash:state of the knowledge[J].Journal of Hazardous Materials,1996,47(1-3):325-344
    [60]阎常锋,林伯川,陈恩鉴等.城市生活垃圾焚烧灰渣熔融的物理化学特性[J].工程热物理学报,2002,23(6):773-775
    [61]Jung C H,Matsuto T,Tanaka N.Behavior of metals in ash melting and gasification-melting of municipal solid waste(MSW)[J].Waste Management,2005,25(3):301-310
    [62]李晓敏.城市生活垃圾资源化途径之一-垃圾焚烧发电[J].环境科学与管理,2005,30(6):73-76
    [63]袁振宏,吴创之,马隆龙,等编著.生物质利用原理与技术[M].北京:化学工业出版社,2004.11
    [64]刘荣厚、牛卫生、张大雷编著.生物质热化学转换技术[M].北京:化学工业出版社,2005.5
    [65]李季、张铮、杨学民.等.城市生活垃圾热解特性的TG-DSC分析[J].化工学报,2002,53(7):759-764
    [66]日本能源学会编,史仲平,华兆哲译.生物质和生物能源手册[M].北京:化学工业出版社,2006.10
    [67]傅维镳、张永康、王清安.燃烧学[M].北京:高等教育出版社,1989.5
    [68]岑可法、姚强、骆仲泱等著.高等燃烧学[M].杭州:浙江大学出版社,2002.12
    [69]Harry M.Freeman Industrial pollution prevention handbook[M].Mcgraw-Hill,Inc.American,1995
    [70]李芳芹 煤的燃烧与气化手册[M].化学工业出版社,北京,1997
    [71]Whiting K.Large Scale MSW Incineration Technologies.Conference on Incineration of Municipal Waste with Energy Recovery,1997
    [72]Baldacci G.Gasification of wastes and refuse-derived fuel:leading edge technology for energy and the environment[J].Proceedings of Energy form Biomass Contractors' Meeting,Florence,Italy,1990:347-71
    [73]Utrecht,Holland.Evaluation of the waste processing facilities of the Thermo select and TPS/Grave.Gasification of waste.November Report,9420.
    [74]van der Sloot H A,Kosson b D S,Hjelmar O.Characteristics,treatment and utilization of residues from municipal waste incineration[J].Waste Management,2001,21:753-765
    [75]Li Min,Xiang Jun,Hu Song,et al.Characterization of solid residues from municipal solid waste incinerator[J].Fuel,2004,83:1397-1405
    [76]Sabbas T,Polettini A,Pmi R,et al.Management of municipal solid waste incineration residues[J].Waste Management,2003,23:61-88
    [77]Chandler A J,Eighmy T L Hartldn J,et al.Municipal solid waste incinerator residues[J].The Netherlands:Elsevier Science B.V,1997
    [78]Abe S.Ash melting treatment by rotating type surface melting furnace[J].Waste Management,1996,16:431-43
    [79]Abe S,Kanbayashi F,Yoshida Y,et al.Minimization of environmental load by waste melting furnace.Kubota Technical Report,1998,35:3-11
    [80]陈肇友编著.化学热力学与耐火材料[M].北京:冶金工业出版社,2005.4
    [81]赵由才.生活垃圾资源化原理与技术[M].北京:化学工业出版社,2001
    [82]Morris M,Waldheim L.Energy recovery from solid waste fuels using advanced gasification technology.Waste Management,1998,18:557-564
    [83]Chen Weihsin,Chen Jennchung.Combustion characteristics and energy recovery of a small mass burn incinerator[J].Int.Comm.Heat Mass Transfer,2001,28(3):299-310
    [84]George Tchobanoglous Hilary Theisen Sanuel Vigil.Integrated Solid Waste Management(M).北京:清华大学出版社.McGraw-Hill,2000(影印版)
    [85]金余其,严建华,池涌等.中国城市生活垃圾燃烧的特性[J].环境科学,2002,23(3):107-110
    [86]朱祖泽,贺家齐.现代铜冶金学[M].北京:科学出版社,2003
    [87]胡建杭 王华 吴桢芬等.城市生活垃圾焚烧灰渣熔融特性的分析[J].安全与环境学报,2007,7(1):83-87
    [88]傅崇说主编.有色冶金学[M].北京:冶金工业出版社,1993.4
    [89]肖睿、金保升、仲兆平等.基于低温气化和高温熔融焚烧方法处理城市生活垃圾[J].能源研究与利用,2001,(3):28-30
    [90]李润东,池涌,李水清,等.城市垃圾焚烧飞灰熔融DSC-DTA实验研究[J].环境科学,2002,23(4):113-11
    [91]Roland Schubert,Rudi Stahlberg.Advanced continuous in-line gasification and vitrification of solid waste[J].Sustainable Development International,1999,(1):37-40
    [92]Ebert V,Teichert H,Strauch P,et al.Sensitive in situ detection of CO and O_2in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3μm diode lasers[J].Proceedings of the Combustion Institute,2005,30(1):1611-1618
    [93]Buekens AG.Resource recovery and waste treatment in Japan[J].Resource Recovery and Conservation,1978,3(3):275-306
    [94]Miyakoshi E,Miyakoshi K,Miura T,Komatsu T,et al.Evaluation of pyrolysis conditions in gasification melting system for municipal solid waste [J].Haikibutsu Gakkai Ronbunshu,2002,13,161-168
    [95]Jae IK Na,Sojin Park,Yong Koo Kim,et al.Characteristics of oxygen-blown gasification for combustible waste in a fixed-bed gasifier[J].Applied Energy,2003,75:275-285
    [96]Amirhomayoun Saffarzadeh,Takayuki Shimaoka,Yoshinobu Motomura,et al.Chemical and mineralogical evaluation of slag products derived from the pyrolysis/melting treatment of MSW[J].Waste Management,2006,16(12):1443-1452
    [97]Inaba T,Wanatabe Y,Nagano M,et al.Torch plasma characteristics and its application to waste treatment[J].Thin Solid Films,1998,316:111-116
    [98]Koutaro Katou,Tomonori Asou,Yoshihito Kurauchi,et al.Melting municipal solid waste incineration residue by plasma melting furnace with a graphite electrode[J].Thin Solid Films,2001,386:183-188
    [99]Karoly Z,Mohai I,Toth M,et al.Production of glass-ceramics from fly ash using arc plasma[J].Journal of the European Ceramic Society,2007,27(2-3):1721-1725
    [100]吴家正,闻望,王宝生等.城市垃圾气化过程中气化剂和温度的影响[J].燃料化学学报,1989,17(4):352-358
    [101]李润东.城市垃圾焚烧飞灰熔融过程的机理研究[D].[博士学位论文].杭州:浙江大学,2002.5
    [102]徐嘉,严建华,肖刚等.城市生活垃圾气化处理技术[J].科技通报.2004,20(6):560-564
    [103]徐继昌、张志冰、张光全等.熔渣法城市生活垃圾高温焚烧技术实验研究[J].冶金能源.2001,20(6):3-5
    [104]王学涛,金保升,仲兆平.城市生活垃圾焚烧底灰熔融处理实验研究[J].东 南大学学报.2005,35(1):111-115
    [105]胡建杭,王华,张效宁等.城市生活垃圾在直接气化熔融焚烧炉中的实验分析[J].中国稀土学报.2006,24(Spec.Issue):542-549
    [106]姜凡.城市生活垃圾燃烧特性的实验研究.[博士学位论文].北京:中国科学院,2000
    [107]Vladimir M.Zubtsov,Carlson C.P.Pian,Kunio Yoshikawa.Potential applications of high-temperature air/steam-blown gasification and pyrolysis systems[J].Energy,2005,30(11-12):2229-2242
    [108]Peter McKendry.Energy production from biomass(part 3):gasification technologies[J].Bioresource Technology,2002,83(1):55-63
    [109]Franco C,Pinto F,Gulyurtlu l,et al.The study of reactions influencing the biomass steam gasification process[J].Fuel,2003,82(7):835-842
    [110]Ladislav Bebar,Petr Stehlik,Leos Havlen et al.Oral Analysis of using gasification and incineration for thermal processing of wastes[J].Applied Thermal Engineering,2005,25(7):1045-1055
    [111]徐嘉,严建华,肖刚等.城市生活垃圾气化处理技术[J].科技通报,2004,20(6):560-564
    [112]王艳,张书廷,张于峰等.城市生活垃圾低温热解产气特性的实验研究[J].燃料化学学报,2005,33(1):62-67
    [113]宿凤明,孙绍增,赵义军等.生物质空气气化机理和燃气品质影响因素研究[J].哈尔滨工业大学学报,2006,38(11):1898-1902
    [114]陈冠益,高文学,颜蓓蓓等.生物质气化技术研究现状与发展[J].煤气与热力,2006,26(7):20-26
    [115]闫涛,左禹,张衍国等.生活垃圾燃烧特性实验研究[J].燃料科学与技术,2002,8(6):543-547
    [116]Guo Xiaofcn,Wang Zhiqi,Li Haibin et al.A study on combustion charactcristics and kinetic model of municipal solid wastes[J].Energy and Fuels,2001,15(6):1441-1446
    [117]邓勃,王庚辰,汪正范.分析仪器与仪器分析概论[M].北京:化学工业出版社,2005.5
    [118]Cozzani V,Petarca L,Tognotti L.Devolatilization and pyrolysis of refuse derived fuels:characterization and kinetic modeling by a thermogravimetric and calorimetric approach[J].fuel,1995,74:903-912
    [119]Fritsky k J,Miller D L,Cernansky N P.Methodology for modeling the Devolatilizaton of refse-derived fuel from thermogravimetric analysis of municipal solid waste components[J].Air and Waste Management,1994,44:1116-1123
    [120]汪淑琴,矫维红.城市生活垃圾燃烧性能研究[J].工程热物理学报,1998,19(5):647-651
    [121]李敏.城市生活垃圾的焚烧特性及污染物的排放与治理[D].博士学位论文,华中科技大学,2003
    [122]郭小汾,杨雪莲,陈勇等。垃圾中可燃物的燃烧动力学研究[J].燃料化学学报.1999,27(1):62-67
    [123]李斌,谷月玲,严建华等.城市生活垃圾典型组分的热解动力学模型的研究[J].环境科学学报.1999,19(5):563-566
    [124]刘振海.热分析导论[M].北京:化学工业出版社,1991
    [125]Lopes H,Trindade T,Gulyurtlu I,et al.Characterization of FBC ashes from co-combustion of coal with oily residues[J].Fuel.2001,80:785-793
    [126]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985
    [127]金余其.城市生活垃圾燃烧特性及新型流化床焚烧技术的研究[D].[博士学位论文].杭州:浙江大学,2002
    [128]Coats A W,Redfern J P.Kinetic parameters from thermogravimetric data[J].Nature,1964,201(4914):68-69
    [129]Doyle CD J Apl.Polymer Sci.,1961,5(15):285-292
    [130]Ecke H,Sakanakura H,Matsuto T,et al.State-of-the-art treatment processes for municipal solid waste incineration residues in Japan[J].Waste Management&Research,2000,(18):41-51
    [131]Wenger A K,Farouk B.Analysis of material recovery in plasma arc melting of solid wastes:a computational study[J].J Air & Waste Manage Assoc,1999,49:279-288
    [132]阎常峰,林伯川,陈恩鉴等.垃圾焚烧灰渣的成分分析及其熔融特性[J].热能动力工程,2002,17(4):356-358
    [133]傅崇说.有色冶金原理[M].北京:冶金工业出版社,1993
    [134]陶东平.液态合金和熔融炉渣的性质[M].昆明:云南科技出版社,1997
    [135]宋世谟,王正烈,李文斌.物理化学(第三版)[M].北京:高等教育出版社,1993
    [136]黄希祰.钢铁冶金原理[M].北京:冶金工业出版社,1990
    [137]邓芙蓉,杨建国,赵虹.利用TG-DSC方法研究煤灰熔融特性[J].煤炭科学技术,2005,33(2):46-49
    [138]Panne U,Clara M,Haisch C et al.Analysis of glass and glass melts during the vitrification of fly and bottom ashes by laser-induced plasma spectroscopy.Spectrochimica Acta Part B,1998,53:1969-1981
    [139]李润东,池涌,王雷等.城市垃圾焚烧飞灰熔融动力学研究[J].浙江大学学报(工学版),2002,36(5):498-503
    [140]Mromero,RDRawling.Development of a new glass-ceramic by means of controlled vitrification and crystallization of inorganic waste from urban incineration[J].J.Eur.Gran.Soc.1999,19(19):2049-2058
    [141]王学涛,金保升,仲兆平.焚烧炉飞灰熔融处理组成特性分析[J].环境化学,2005,24(5):609-612
    [142]Chris C.Y.Chan.The behavior of Al in MSW incinerator fly ash during thermal treatment[J].Journal of Hazardous Materials,2000,B76:103-111
    [143]Young jun,Jong heo.Vitrification of fly ash from municipal solid waste incinerator[J].Journal of Hazardous Materials,2002,91(1-3):83-93
    [144]Koichiro kinto.Melting system and reuse of products by arc processing[J].waste management,1996,16,423-430
    [145]Satva v.Thermochim.Acta,1971,2:423
    [146]Doyle CD J Apl.Polymer Sci.,1961,5(15):285-292
    [147]贾学斌,刘冬梅,赵志伟.我国城市生活垃圾焚烧处理方法及设备的现状与展望[J].哈尔滨商业大学学报,2002,18(2):197-201
    [148]张衍国,武俊,李清海,等.垃圾焚烧重金属迁移特性及其影响因素[J].环境污染治理与设备,2005,6(12):6-12
    [149]李建新,严建华,池涌,等.垃圾焚烧氯对重金属迁移特性的影响[J].燃料化学学报,2003,31(3):579-583
    [150]Brunner P H,Monch H.The flux of metals through municipal solid waste incineration[J].Waste Management and Research,1986,4(2):105-119
    [151]Susan Durlak,Biswas Pratim,Shi Jichun.Equilibrium analysis of the affect of temperature,moisture and sodium content on heavy metal emissions from municipal waste incinerators[J].Journal of Hazardous Material,1997,56:1-20
    [152]魏小林,盛宏至,刘典福等.流化床中RDF焚烧时CO、SO_2和HCl的生成[J].环境科学学报,2005,25(1):34-38
    [153]别如山,樊庆锌.喷消石灰脱除垃圾焚烧炉尾气中HCl和SO_2的试验研究[J].环境污染治理技术与设备,2005,6(12):69-72
    [154]Marminen H,Perkio A,Vartminen T,et al.Formation of PCDD/PCDF-Effect of fuel and fly ash composition on the formation of PCDD/PCDF in the co-combustion of refuse-derived and packaging-derived fuels[J].Environ Sci Pollut R,1996,3(3):129-134
    [155]Gullett BK,Dunn JE,Bae SK,et al.Effects of combustion parameters on polychlorinated dibenzodioxin and dibenzofuran homologue profiles from municipal waste and coal co-combustion[J].Waste Management,1998.18(6-8):473-483
    [156]EveraertK,Baeyens.The formation and emission of dioxins in large scale thermal processes[J].Chemosphere,2002,46:439-448
    [157]Mckay Gordon.Dioxin characterization,formation and minimization during municipal solid waste(MSW)incineration:review[J].Chemical Engineering Journal,2002,86:343-368
    [158]李建新,严建华,池涌,等.垃圾焚烧过程中重金属迁移特性及控制[J].电站系统工程,2004,20(1):9-12
    [159]Floyd Hasselriis,Anthony Licata.Analysis of heavy metal emission data from municipal solid waste combustion[J].Journal of Hazardous Materials,1996,47:77-102
    [160]Cahill C.A,Newland L.W.Comparative efficiencies of trace metal extraction from municipal incinerator ashes[J].Environ.Anal.Chem.1982,11:227-239
    [161]Davison,Richard L Natusch,David F S Wallace,et al.Trace elements in fly ash- dependence of concentration on particle size[J].Environmental Science and Technology,1974,8(13):1107-1113
    [162]陈国发主编.重金属冶金学[M].北京:冶金工业出版社,1981
    [163]Durlak Susan K,Biswas Pratim,Shi Jichun.Equilibrium analysis of the affect of temperature,moisture and sodium content on heavy metal emissions from municipal waste incinerators[J].Journal of Hazardous Material,1997,56:1-20
    [164]Jund CH,Matsuto T,Tanaka N,et al.Metal distribution incineration residues of municipal solid waste(MSW)in Japan[J].Waste Management.2004,24:381-391
    [165]Vehulst D,Buekens A,Spencer P J,et al.Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces[J].Environmental Science and Technology.1996,30:50-56
    [166]Chandler A J,Eighmy T T,Hartlen J,et al.Municipal Solid Waste Incineration Residues.The International Ash Working Group(IAWG).1997
    [167]Jakob A,Stucki S,Struis R.Complete heavy metal removal form fly ash by heat treatment:Influence of Chlorides on evaporation rates[J].Environment Science and Technology,1996,30(11):3275-3283
    [168]Wang Kuensheng,Sun Changjung,Liu Chungyu.Effects of the type of sintering atmosphere on the chromium leachability of thermal-treated municipal solid waste Incinerator fly ash[J].Waste Management,2001,21:85-91
    [169]Greenberg R R,Zoller W H,Gordon G E.Composition and size distributions of particles released in refuse incineration[J].Environmental Science Technology,1978,12:566-573.
    [170]Wang Kuensheng,Chiang Kungyuh,Lin shinming,et al.Effects of chlorides on emissions of toxic compounds in waste incineration:Study on partitioning characteristics of heavy metal[J].Chemosphere,1999,38(8):1833-1849
    [171]Verhulst Dirk,Buekens Alfons.Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces[J].Environ.Sci.Technol.1996,30:50-56
    [172]卡尔佛特·S.大气污染控制技术手册(上册)[M].北京:海洋出版社,1987
    [173]宋自新.生活垃圾燃烧污染物的产生及防治[J].能源与环境,2004,(4): 38-41
    [174]曾汗才.燃烧与污染[M].武汉:华中理工大学出版社,1992
    [175]李春花.城市生活垃圾焚烧烟气固定床干法脱硫实验研究[D].[工学硕士学位论文].昆明:昆明理工大学,2006
    [176]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001.3-22
    [177]王世昌,徐旭常,姚强等.CaO颗粒烟气脱硫反应最佳反应温度的实验研究[J].热能动力工程,2004,19(5):455-457
    [178]侯波,祁海鹰,由长福,等.燃煤烟气中的CO_2和NO对中温烟气脱硫的作用[J].工程热物理学报,2004,25(6):1061-1064
    [179]杨立寨,祁海鹰,由长福,等.氧化铁促进石灰中温烟气脱硫的机理性研究[J].工程热物理学报,2002,23(2):241-244.
    [180]Qiong Changqing,Jin Baosheng,Zhong Zhaoping,et al.Tests on co-firing of municipal solid waste and coal in a circulating fluidized bed[J].Energy Conversion and Management.2002,43:2189-2199
    [181]谢新媛.生活垃圾转式焚烧过程中酸性气体的生成与控制研究.博士学位论文.华南理工大学,2002
    [182]Matsuda H,Ozawa S,Naruse K,et al.Kinetics of HCl emission from inorganic chlorides in simulated municipal wastes incineration conditions[J].Chemical Engineering Science,2005,(60):545-552
    [183]Keith ·K.H.Choy,John F.Porter,Chi-Wai Hui,et al.process design and feasibility study for small scale MSW gasification[J].Chemical Engineering Journal 2004,105:31-41
    [184]Suksankraisorn K,Patumasawad S,Fungtammasan B.Combustion studies of high moisture content waste in a fluidized bed[J].Waste Management,2003,23:433-439
    [185]Clive Brereton.Municipal solid waste-incineration,air pollution control and ashy management[J].Resources,Conservation and Recycling.1996,16:227-264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700