用户名: 密码: 验证码:
果胶多糖超声波定向降解途径及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果胶是存在于高等植物初生细胞壁和中胞层中的一种酸性多糖,其因天然、无毒且价廉已被广泛应用于食品、医药和化妆品等工业中。果胶分子量较大,且根据来源、种类、在植物组织中存在的位置、植物生长阶段以及萃取条件和环境等的不同而结构各异,这些因素限制了果胶的广泛应用,因此,对果胶进行改性(改变其分子量和结构状态)以适应不同的需要成为了近些年研究者的一个研究热点。果胶改性的方法主要有化学法和酶法,这些方法费时、对环境不友好,且难以控制,不具有定向性。因此,探索物理的改性方法势在必行。超声波作为一种绿色的物理方法,已被广泛的应用于多糖等聚合体的改性研究中,但是关于超声波降解果胶多糖的研究在国内外鲜见报道。
     本论文以商业果胶为研究对象,首次对超声波降解果胶多糖的降解规律、降解途径与机理以及降解产物的结构与功能进行了系统研究;分析研究了超声波降解果胶多糖的动力学模型;借助原子力显微镜技术从纳米水平上揭示了果胶多糖在超声波降解下的降解途径;并通过对超声波降解果胶多糖自由基与机械效应的分析研究,揭示了超声波降解果胶多糖的机理;同时结合与酸法降解果胶多糖的比较研究,验证了超声波技术降解果胶多糖具有简单、快速、经济且环保等优点,建立了果胶多糖的超声波降解方法。通过研究,本论文主要得出如下结论:
     (1)超声波降解果胶多糖的降解规律研究:通过对超声波降解果胶多糖分子量及其分布的研究确定了超声波降解果胶多糖的降解规律。研究结果显示:随着超声波时间的增加,果胶分子量逐渐降低,降解速率逐渐减小;随着超声波强度的增加,果胶分子量逐渐减小,当强度增加到一定程度后,果胶分子量维持平衡;低温有利于超声波降解果胶分子;随着超声波脉冲占空比的增加,超声波空化效应先增大后减小,当脉冲占空比为50%时,超声波空化效应最强,果胶分子量降低最多。
     (2)超声波降解果胶多糖的降解途径研究:通过对超声波降解前后果胶结构的比较研究确定了超声波降解果胶多糖的途径。研究结果显示:超声波降解果胶的分子量分布变窄且更加均匀;当超声波降解时间为90min时,果胶分子量小于100kDa的片段可达47%;超声波降解不改变果胶的单糖类型和主链结构,果胶侧链发生降解;果胶各单糖的断链顺序为阿拉伯糖>半乳糖>鼠李糖>半乳糖醛酸;AFM(atomic force microscopy)分析果胶纳米结构表明超声波降解果胶分子主要以小的聚合体和短的线性单片段形式存在,分支结构减少;果胶中线性及含分支的聚合体结构仅由半乳糖醛酸组成的均半乳糖醛苷构成;果胶经超声波降解后链长和链宽较小的片段所占频率增加,分子高度减小;果胶分子的链长和链宽与其分子量及分布呈正相关关系。
     (3)超声波降解果胶多糖的动力学模型分析:通过研究超声波作用下果胶的分子量及分布的动态变化过程,分析研究了果胶超声波降解的动力学模型。研究结果显示:果胶在超声波作用下(5℃至45℃)的降解符合动力学方程1/Mt-1/M0=kt;超声波可以降低果胶降解的表观活化能并加速果胶的降解。
     (4)超声波降解果胶多糖的机理研究:通过对超声波机械效应和自由基效应的研究,揭示了超声波降解果胶的降解机理。研究结果显示:随着果胶链长的减小超声波降解果胶的速率和断链浓度减小;氧气和氩气可增加超声波作用下自由基量的产生,氮气对自由基量无显著影响;果胶在氧气存在下超声波降解速率及断链浓度显著增加,氩气和氮气对超声波降解果胶的速率和断链浓度无显著影响,自由基生成量与超声波降解果胶的速率和断链浓度不呈正相关关系;气体可引起果胶在超声波作用下发生侧链效应;超声波空化效应引起的自由基效应不是导致果胶降解的主要因素,而机械效应是引起超声波降解果胶的主要原因。
     (5)超声波降解果胶多糖产物功能特性的研究:超声波降解果胶产物的表观粘度显著降低;果胶溶液经超声波降解后表现为弹性特性;果胶分子链长的减小是引起其表观粘度减小的内在原因之一;果胶溶液经超声波作用后表现为牛顿流体特性(n=1);果胶经超声波降解后其产物抑制脂肪酶活性提高。
     (6)建立了超声波降解果胶多糖的方法:本研究对超声波法、超声波辅助酸法与酸法降解果胶进行了比较研究。研究结果显示:利用超声波法降解不改变果胶的结构,超声波具有条件温和、高效且环境友好等优点,超声波技术可作为果胶降解的一种绿色、低碳的改性方法。
     本研究结果可为建立多糖的绿色环保的超声波改性技术奠定理论基础,扩大超声波在食品工业中的应用,并可扩大果胶多糖在食品和医药领域的应用,对于充分利用我国的柑橘和苹果皮渣等废弃物资源以及保护环境具有重要意义。
Pectin, as an acid polysaccharide, is one of the major components of the primary cell walls and middle cellular of higher plants. Pectin has been widely used in food, medicine and cosmetic industry for its natural, non-toxic and cheaper characters. The structure of pectin varies according to the source species, original tissue type and location, developmental or metabolic stage, environmental state and conditions of extraction. These variations together with its larger molecular weight, limited the wide use of pectin. Recently, more and more researches are focused on modification of pectin (modifing molecular weight or structure) to adapt to different needs. Generally, modified pectin is prepared by chemical or enzymatic depolymerization processes. These methods are hard to control and generally not oriented. Meanwhile, the chemical method was time consuming and lead to environment pollution. The "green and innovative" technique in pectin modified is preferred. Ultrasound, as a green and physical technique, has been widely used in polymer degradation. However, there were rarely reports on the degradation of pectin polysaccharide by ultrasound.
     This research was the first time to investigate the degradation behavior pathway and mechnism of pectin degradation by ultrasound in detail. The ultrasound degradation kinetics of pectin was established. This study revealed the degradation pathway of pectin by atomic force microscopy at nanolevel. The degradation mechnism was also revealed through investigation of radical and mechanical effects of ultrasound. Compared with the acid degradation methods of pectin, ultrasound is a simple, rapid, cheaper and green method.
     The main results and conclusions were listed as follows:
     (1)The degradation behaviour of pectin polysaccharide with ultrasound:The study established the degradation behaviour of pectin polysaccharide with ultrasound by determined the molecular mass and its distribution of pectin polysaccharide. The results indicated that the molecular mass and degradation rate of pectin polysaccharide decreased with ultrasound time. The molecular mass of pectin polysaccharide decreased with increasing ultrasound intensity. However, the ultrasound efficiency could not increase indefinitely. Lower temperature could enhance the degradation process. The ultrasound effect was most significant when the duty cycle was50%.
     (2) The degradation path of pectin polysaccharide with ultrasound:The degradation path of pectin polysaccharide with ultrasound was determined by the structure investigation. The distribution of molecular mass of pectin polysaccharide was more uniform after ultrasound treatment. The pectin fractions which below100kDa were accounted47%when ultrasound90min. The monosaccharide types and main chain of pectin polysaccharide were not changed after ultrasound treatment. However, the pectin sidechains were degraded. The break chain sequence of pectin polysaccharide with ultrasound was Ara>Gal>Rha>GalUA. AFM analysis indicated that the ultrasound degraded pectin was mainly composed of smaller polymers and shorter linear chains. The branched structure was reduced. There was a hypothesis that the branches and linear chains are homogalacturonans composed solely of galacturonic acid. The ration of short length and wider chains was increased and the hight of the chains was reduced. There was a positive correlation among length, width and molecular mass and its distribution of pectin polysaccharide.
     (3)The degradation kinetic of pectin polysaccharide with ultrasound:The study established the degradation kinetic of pectin polysaccharide with ultrasound by determining the dynamic change of molecular mass and distribution of pectin polysaccharide. Degradation kinetics model of pectin fitted to1/Mt-1/Mo=kt from5to45℃. Ultrasound could decrease the activation energy and accelerate the pectin degradation.
     (4) The degradation mechanism of pectin polysaccharide with ultrasound:The radical and mechanical effects were studied to investigate the degradation mechanism of pectin polysaccharide with ultrasound. The degradation rate and chain-breaks were decreased with reducing chain length of pectin. O2and Ar could enhance the production of radical, while N2has no significant effect on the radical yields. The degradation rate and chain-breaks of pectin with ultrasound were significant increased when O2existed. Ar and N2had no significant influence on the degradation rate and chain-breaks of pectin. There was a negative correlation between radical yields and degradation rate and chain-breaks. Gases could induce sidechain reaction of pectin with ultrasound. Therefore, mechanical effect was the main factor to affect the degradation of pectin with ultrasound.
     (5)The functional properties of degraded pectin polysaccharide with ultrasound: The appearance viscosity of pectin significantly reduced with ultrasound. The pectin solution showed viscous properties after ultrasound treatment. Chain length of pectin was one of the reasons resulted the decrease of appearance viscosity of pectin. The pectin solutions showed Newtonian fluid properties (n=l). The lipase inhibition activity of pectin increased after ultrasound treatment.
     (6)Establishment of the degradation method of pectin polysaccharide with ultrasound:The study compared the degradation methods (ultrasound and acid) of pectin. The results indicated that ultrasound degradation did not alter the structure of pectin. Meanwhile, the ultrasound method has the advantages of mild, efficiency, environmentally friendly and so on. Ultrasound method is a green technique for pectin modification.
     This study could provide theoretical basis on the green modification technique of polysaccharide. It could expand the application of ultrasound in food industry, and enlarge the uses of pectin in food and medicine industry. It is meaningful to utilize the waste resources of citrus and apple pomace to protect environment.
引文
Asgar, M. A., Yamauchi, R., & Kato, K. Modification of pectin in Japanese persimmon fruit during the sun-drying process. Food Chemistry,2003,81:555-560.
    Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., & Versteeg, C. K. Modification of food ingredients by ultrasound to improve functionality:A preliminary study on a model system. Innovative Food Science and Emerging Technologies,2008,9:155-160.
    Adams, E. L., Kroon, P. A., Williamson, G., & Morris, V. J. AFM studies of water-soluble wheat arabinoxylans-effects of esterase treatment. Carbohydrate Research,2005,340:1841-1845.
    Austarheim, I., Christensen, B. E., Hegna, I. K., Petersen, B. O., Duus, J. O., Bye, R., Michaelsen, T. E., Diallo, D., Inngjerdingen, M., & Paulsen, B. S. Chemical and biological characterization of pectin-like polysaccharides from the bark of the Malian medicinal tree Cola cordifolia. Carbohydrate Polymers,2012,89:259-268.
    Burana-osot, J., Soonthornchareonnon, N., Hosoyama, S., Linhardt, R., & Toid, T. Partial depolymerization of pectin by a photochemical reaction. Carbohydrate Research,2010,345:1205-1210.
    Bushneva, O. A., Ovodova, R. G., Shashkov, A. S., & Ovodov, Y. S. Structural studies on hairy region of pectic polysaccharide from campion Silene vulgaris (Oberna behen). Carbohydrate Polymers,2002,49:471-478.
    Bae, I. Y., Joe, Y. N., Rha, H. J., Lee, S., Yoo, S. H., & Lee, H. G. Effect of sulfation on the physicochemical and biological properties of citrus pectins. Food Hydrocolloids,2009,23:1980-1983.
    Bhatia, M. S., Deshmukh, R., Choudhari, P., & Bhatia, N. M. Chemical Modification of Pectins, Characterization and evaluation for drug delivery. Scientia Pharmaceutica, 2008,76:775-784.
    Buchholt, H. C, Christensen, T. M. I. E., Fallesen, B., Ralet, M. C., & Thibault, J. F. Preparation and properties of enzymatically and chemically modified sugar beet pectins. Carbohydrate Polymers,2004,58:149-161.
    Bergman, M., Djaldetti, M., Salman, H., & Bessler, H. Effect of citrus pectin on malignant cell proliferation. Biomedicine & Pharmacotherapy,2010,64:44-47.
    Bonnin, E., Dolo, E., Goff, A. L., & Thibault, J. F. Characterisation of pectin subunits released by an optimised combination of enzymes. Carbohydrate Research,2002, 337:1687-1696.
    Benen, J. A. E., Kester, H. C. M., & Visser, J. Kinetic characterization of Aspergillus niger N400 endopolygalacturonases I, II and C. European Journal of Biochemistry, 1999,259:577-585.
    Baxter, S., Zivanovic, S., & Weiss, J. Molecular weight and degree of acetylation of high-intensity ultrasonicated chitosan. Food Hydrocolloids,2005,19:821-830.
    Boeriu, C, Stolle-Smits, T., & Van Dijk, C. Characterisation of cellwall pectins by near infrared spectroscopy. Journal of Near Infrared Spectroscopy,1998,6: A299-A303.
    Barker, A. A., Helbert, W., Sugiyama, J., & Miles, M. J. New insight into cellulose structure by atomic force microscopy shows the Ia crystal phase at near-atomic resolution. Biophysical Journal,2000,79:1139-1145.
    Cheng, H., Li, S. S., Fan, Y. Y., Gao, X. G., Hao, M., Wang, J., Zhang, X. Y., Tai, G. H., & Zhou, Y. F. Comparative studies of the antiproliferative effects of ginseng polysaccharides on HT-29 human colon cancer cells. Medical Oncology,2011, 28:175-181.
    Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M., & Cintas, P. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistiy,2008,15:898-902.
    Chung, K. M., Moon, T. W., Kim, H., & Chun, J. K. Physicochemical propertiea of sonicatied mung bean, potato and rice starches. Cereal Chemistiy,2002, 79:631-633.
    Coenen, GJ. Structural characterization of native pectins.2007.
    Craig, W. J. R. D. Phytochemicals:Guardians of our health. Journal of American Diet Association,1997,97(2):199-204.
    Chen, R. H., Chang, J. R., & Shyur, J. S. Effects of ultrasound conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohydrate Research,1997,299:287-294.
    Chen, R. H., & Chen, J. S. Changes of polydispersity and limiting molecular weight of ultrasonic treated chitosan. In M. G. Pter, A.Domard, & RAA. Muzzarelli, Advances in chitin science (vol.4)(pp.361-366). Potsdam:University of Potsdam.
    Coenen, G. J., Bakx, E. J., Verhoef, R. P., Schols, H. A., & Voragen, A. G. J. Identification of the connecting linkage between homo-or xylogalacturonan and rhamnogalacturonan type I. Carbohydrate Polymers,2007,70:224-235.
    Corredig, M., & Wicker, L. Changes in the molecular weight distribution of three commercial pectins after valve homogenization. Food Hydrocolloids,2001,15: 17-23.
    Caffall, K. H., & Mohnen, D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydrate Research,2009,344:1879-1900.
    Czechowska-Biskup, R., Rokita, B., Lotfy, S., Ulanski, P., & Rosiak, J. M. Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydrate Polymers,2005,60: 175-184.
    Chatjigakis, A. K., Pappas, C, Proxenia, N., Kalcontzi, O., Rodis, P., & Polissiou, M. FT-IR spectroscopic determination of the degree of esterification of cell wall pectins from stored peaches and correlation to textural changes. Carbohydrate Polymers,1998,37:395-408.
    Catoire, L., Goldberg, R., Pierron, M., Morvan, C., & Herve du Penhoat, C. An efficient procedure for studying pectin structure which combines limited depolymerization and 13C NMR. European Biophysics Journal,1998,27:127-136.
    Duan, J., Zheng, Y., Dong, Q., & Fang, J. Structural analysis of a pectic polysaccharide from the leaves of Diospyros kaki. Phytochemistry,2004,65:609-615
    Donato, L., Gamier, C., Novales, B., & Doublier, J. L. Gelation of globular protein in presence of low methoxyl pectin:effect of Na+and/or Ca2+ions on rheology and microstructure of the systems. Food Hydrocolloids,2005,19:549-556.
    Ebringerova, A., & Hromadkova, Z. The effect of ultrasound on the structure and properties of the water-soluble corn hull heteroxylan. Ultrasonics Sonochemistry, 1997,4:305-309.
    Ebringerova, A.,& Hromadkova, Z. Effect of ultrasound on the extractibility of corn bran hemicelluloses. Ultrasonics Sonochemistry,2002,9:225-229.
    Entezari, M. H., Hagh Nazary, S., & Hadded Khodaparast, M. H. The direct effect of ultrasound on the extraction of date syrup and its micro-organisms. Ultrasonics Sonochemistry,2004,11:379-384.
    Edashige, Y., Murakami, N., & Tsujita, T. Inhibitory effect of pectin from the segment membrane of citrus fruits on lipase activity. Journal of Nutritional Science and Vitaminoogyl,2008,54:409-415.
    Fan, Y. Y, Cheng, H. R., Li, S. S., Wang, J., Liu, D., Hao, M., Gao. X. G., Fan, E. X., Tai, G. H., & Zhou, Y. F. Relationship of the inhibition of cell migration with the structure of ginseng pectic polysaccharides. Carbohydrate Polymers,2010,81: 340-347
    Funami, T., Nakauma, M., Ishihara, S., Tanaka, R., Inoue, T., & Phillips, G. O. Structural modifications of sugar beet pectin and the relationship of structure to functionality. Food Hydrocolloids,2011,25:221-229.
    Fraeye, I., Roeck, A. D., Duvetter, T., Verlent, I., Hendrickx, M., & Loey, A. V. Influence of pectin properties and processing conditions on thermal pectin degradation. Food Chemistry,2007,105:555-563.
    Fissore, E. N., Matkovic, L., Wider, E., Rojas, A. M., Gerschenson, L. N. Rheological properties of pectin-enriched products isolated from butternut{Cucurbita moschata Duch ex Poiret). LWT-Food Science and Technology,2009,42:1413-1421.
    Glinskii, O. V., Huxley, V. H., Glinsky, G. V., Pienta, K. J., Raz, A., & Glinsky, V. V. Mechanical Entrapment Is Insufficient and Intercellular Adhesion Is Essential for Metastatic Cell Arrest in Distant Organs. Neoplasia,2005,7(5):522-527.
    Glinsky, V. V., & Raz, A. Modified citrus pectin anti-metastatic properties:one bullet, multiple targets. Carbohydrate Research,2009,344:1788-1791.
    Giilseren, I., Guzey, D., & Bruce, B. D., & Weiss, J. Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrasonics Sonochemistry,2007, 14:173-183.
    Giizey, D., Giilseren, I., Bruce, B. D., & Weiss, J. Interfacial properties and structural conformation of thermosonicated bovine serum albumin. Food Hydrocolloids,2006, 20:669-677.
    Gronroos, A., Pentti, P., & Hanna, K. Ultrasonic degradation of aqueous carboxymethylcellulose:Effect of viscosity, molecular mass, and concentration. Ultrasonics Sonochemistry,2008,15:644-648.
    Goodwin, D. J., Picout, D. R., Ross-Murphy, S. B., Holland, S. J., Martini, L. G., & Lawrence, M. J. Ultrasonic degradation for molecular weight reduction of pharmaceutical cellulose ethers. Carbohydrate Polymers,2011,83:843-851.
    Gnanasambandam, R., & Proctor, A. Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chemistry,2000, 68,327-332;
    Hexeberg, B. S., Hexeberg, E., Willumsen, N., & Berge, R. K. A study on lipid metabolism in heart and liver of cholesterol and pectin-fed rats. British Journal of Nutrition,1994,71:181-192.
    Hunter, J. L., & Wicker, L. De-esterification of pectin by alkali, plant and fungal pectinmethylesterases and effect on molecular weight. Journal of the Science of Food and Agriculture,2005,85:2243-2248.
    Hotchkiss, A. T., Savary, B. J., Cameron, R. G., Chau, H. K., Brouillette J., Luzio, G. A., & Fishman, M. L. Enzymatic Modification of Pectin to Increase Its Calcium Sensitivity while Preserving Its Molecular Weight. Journal of Agriculture and Food Chemistry,2002,50:2931-2937.
    Huang, Q., Li, L., & Fu, X. Ultrasound Effects on the Structure and Chemical Reactivity of Cornstarch Granules. Starch/Starke,2007,59:371-378.
    Henglein, A. Chemical effects of continuous and pulsed ultrasound in aqueous solutions, Ultrasonics Sonochemistry,1996,3:253-260.
    Ishii, T., & Matsunaga, T. Pectic polysaccharide rhamnogalacturonan II is covalently linked to homogalacturonan. Phytochemistry,2001,57:969-974.
    lida, Y, Tuziuti, T., Yasui, K., Towata, A., & Kozuka, T. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innovative Food Science and Emerging Technologies,2008,9:140-146.
    Jackson, C. L., Dreaden, T. M., Theobald, L. K., Tran, N. M., Beal, T. L., Eid, M., Gao, M. Y, Shirley, R. B., Stoffel, M. T., Kumar, M. V., & Mohnen, D. Pectin induces apoptosis in human prostate cancer cells:correlation of apoptotic function with pectin structure. Glycobiology,2007,17(8):805-819.
    Jarvis, M. C., & Apperley, D. C. Chain conformation in concentrated pectic gels: evidence from 13C NMR. Carbohydrate Research,1995,275:131-145.
    Jambrak, A. R., Mason, T. J., Lelas, V., Herceg, Z., & Herceg, I. L. Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. Journal of Food Engineering,2008,86:281-287.
    Kar, F., & Arslan, N. Effect of temperature and concentration on viscosity of orange peel pectin solutions and intrinsic viscosity-molecular weight relationship. Carbohydrate Polymers,1999,40(4):277-284.
    Kowalonek, J., Kaczmarek, H., & Dabrowska, A. Air plasma or UV-irradiation applied to surface modification of pectin/poly(vinyl alcohol) blends. Applied Surface Science,2010,257:325-331.
    Koubala, B. B., Kansci, G, Gamier, C., Mbome, I. L., Durand, S., Thibault, J. R., & Ralet, M. C. Rheological and high gelling properties of mango (Mangifera indica) and ambarella (Spondias cytherea) peel pectins. International Journal of Food Science and Technology,2009,44:1809-1817.
    Kim, Y., & Wicker, L. Charge domain of modified pectins influence interaction with acidified caseins. Food Hydrocolloids,2011,25:419-425.
    Kim, Y., Yoo, Y. H., Kim, K. O., Park, J. B., & Yoo, S. H. Textural Properties of Gelling System of Low-Methoxy Pectins Produced by Demethoxylating Reaction of Pectin Methyl Esterase. Journal of Food Science,2008,73(5):C367-C372.
    Kurita, O., Miyake, Y., & Yamazaki, E. Chemical modification of citrus pectin to improve its dissolution into water. Carbohydrate Polymers,2012,87:1720-1727.
    Koda, S., Mori, H., Matsumoto, K., & Nomura, H. Ultrasonic degradation of water-soluble polymers. Ploymer,1994,35:30-33.
    Kardos, N., & Luche, J. L. Sonochemistry of carbohydrate compounds. Carbohydrate Research,2001.332:115-131.
    Koda, S., Taguchi, K., & Futamura, K. Effects of frequency and a radical scavenger on ultrasonic degradation of water-soluble polymers. Ultrasonics Sonochemistry,2011, 18:276-281.
    Kirby, A. R., Gunning, A. P., Morris, V. J. Imaging xanthan gum by atomic force microscopy. Carbohydrate research,1995,267:161-166.
    Kirby, A. R., Gunning, A. P., Morris, V. J., Ridout, M. J. Observation of the helical structure of the bacterial polysaccharide acetan by atomic force microscopy. Biophysical Journal,1995,68:360-363.
    Kirby, A. R., MacDougall, A. J., Morris, V. J. Atomic force microscopy of tomato and sugar beet pectin molecules. Carbohydrate polymer,2008,71:640-647.
    Kaaber, L., Kaack, K., Kriznik, T., Brathen, E., & Knutsen, H. Structure of pectin in relation to abnormal hardness after cooking in pre-peeled, cool-stored potatoes. LWT-Food Science and Technology,2007,40(5):921-929.
    Khramova, D. S., Golovchenko, V. V., Shashkov, A. S., Otaonbayar, D., Chimidsogzol, A., & Ovodov, Y. S. Chemical composition and immunomodulatory activity of a pectic polysaccharide from the ground thistle Cirsium esculentum Siev. Food Chemistry,2011,126:870-877.
    Kumar, A., & Chauhan, G. S. Extraction and characterization of pectin from apple pomace and its evaluation as lipase (steapsin) inhibitor. Carbohydrate Polymers, 2010,82:454-459.
    Lee, H., Rivner, J., Urbauer, J. L., Garti, N., & Wicker, L. De-esterification pattern of Valencia orange pectinmethylesterases and characterization of modified pectins. Journal of the Science of Food and Agriculture,2008,88:2102-2110.
    Lee, S. Y., Warner, K., & Inglett, G. E. Rheological properties and baking performance of new oat (3-glucan-rich hydrocolloids. Journal of Agriculture and Food Chemistry,2005,53:9805-9809.
    Lima, F. F., & Andrade, C. T. Effect of melt-processing and ultrasonic treatment on physical properties of high-amylose maize starch. Ultrasonics Sonochemistry, 2010,17:637-641.
    Lorimer, J. P., Mason, T. J., Cuthbert, T. C., & Brookfield, E. A. Effect of ultrasound on the degradation of aqueous native dextran. Ultrasonics Sonochemistry,1995,2: s55-s57.
    Li, J.J., Ji, L., Sun, L., Wei, N. N., Zhu, J. J., Chen, X. G., Tai, G. H., & Zhou, Y. F. Analysis of Herba Asari polysaccharides and their immunological activity, Carbohydrate Polymer,2012,87:551-556.
    Li, H. Z., Pordesimo, L., & Weiss, J. High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International,2004,37:731-738.
    Lii, C. Y., Chen, C. H., Yeh, A. I., & Lai, V. M. F. Preliminary study on the degradation kinetics of agarose and carrageenans by ultrasound. Food Hydrocolloids,1999,13: 477-481.
    Morris, G A., Ralet, M. C., Bonnin, E., Thibault, J. F., & Harding, S. E. Physical characterisation of the rhamnogalacturonan and homogalacturonan fractions of sugar beet (Beta vulgaris) pectin. Carbohydrate Polymers,2010,82:1161-1167.
    Mohnen, D. Pectin structure and biosynthesis. Current Opinion in Plant Biology,2008, 11:266-277.
    Miyazaki, T., Yamamoto, C., & Okada, S. Ultrasonic depolymerization of hyaluronic acid. Polymer Degradation and Stability,2001,74:77-85.
    Matsunaga, T., Ishii, T., Matsumoto, S., Higuchi, M., Darvill, A., Albersheim, P., & O'Neill, M. A. Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes and bryophytes, Implication for the evolution of vascular plants. Plant Physiology,2004,134:339-351.
    Maxwell, E. G., Belshaw, N. J., Waldron, K. W., & Morris, V. J. Pectin-An emerging new bioactive food polysaccharide. Trends in Food Science & Technology,2012,24: 64-73.
    Morris, G. A., Hromadkova, Z., Ebringerova, A., Malovikova, A., Alfoldi, J., & Harding, S. E. Modification of pectin with UV-absorbing substitutents and its effect on the structural and hydrodynamic properties of the water-soluble derivatives. Carbohydrate Polymers,2002,48:351-359.
    Malhotra, S.L. Ultrasonic solution degradations of poly (alkyl methacrylates). Journal of Macromolecular Science:Part A-Chemistry,1986,23 (6):729-748.
    Mason, T. J., & Lorimer, J. P. Applied Sonochemistry:Uses of Power Ultrasound in Chemistry and Processing. Wiley, New York,2002.
    Mclntire, T. M., & Brant, D. A. Imaging of carrageenan macrocycles and amylase using noncontact atomic force microscopy. International Journal of Biological Macromolecules,1999,26:303-310.
    Min, B., Lim, J., Ko, S., Lee, K. G., Lee, S. H., & Lee, S. Environmentally friendly preparation of pectins from agricultural byproducts and their structural/rheological characterization. Bioresource Technology,2011,102:3855-386.
    Nakamura, A., Furuta, H., Maeda, H., Takao, T., & Nagamatsu, Y. Structural studies by stepwise enzymatic degradation of the main backbone of soybean soluble polysaccharides consisting of galacturonan and rhamnogalacturonan. Bioscience Biotechnology Bio chemistry,2002,66:1301-1313.
    Nangia-Makker, P., Hogan, V., Honjo, Y, Baccarini, S., Tait, L., Bresalier, R., & Raz. A. Inhibition of Human Cancer Cell Growth and Metastasis in Nude Mice by Oral Intake of Modified Citrus Pectin. Journal of the National Cancer Institute,2002, 94:1854-1862.
    Ngouemazong, D. E., Kabuye, G., Fraeye, I., Cardinaels, Ruth., Loey, A. V., Moldenaers, P., & Hendrickx, M. Effect of debranching on the rheological properties of Ca2tpectin gels. Food Hydrocolloids,2012,26:44-53.
    O'Neill, M. A., & York, W. S. The composition and structure of plant primary cell walls. In The Plant Cell Wall. Edited by Rose JKC. Ithaca, New York:Blackwell Publishing/CRC Press; 2003:1-54.
    O'Neill, M. A., Ishii, T., Albersheim, P., & Darvill, A. G. Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annual Reviews Plant Biology,2004,55:109-139.
    O'Donoghu, E. M., & Somerfield, S. D. Biochemical and rheological properties of gelling pectic isolates from buttercup squash fruit. Food Hydrocolloids,2008,22: 1326-1336.
    Odonmazig, P., Badga, D., Ebringerova, A., & Alfoldi, J. Structures of pectic polysaccharides isolated from the Siberian apricot (Armeniaca siberica Lam.). Carbohydrate Research,1992,226(2):353-358.
    Perez, S., Rodriguez-Carvajal, M. A., & Doco, T. A complex plant cell wall polysaccharide:rhamnogalacturonan II. A structure in quest of a function. Biochimie, 2003,85:109-121.
    Popper, Z. A., & Fry, S. C. Xyloglucan-pectin linkages are formed intra-protoplasmically, contribute to wall-assembly, and remain stable in the cell wall. Planta,2007,227:781-794.
    Popper, Z. A., & Fry, S. C. Widespread Occurrence of a Covalent Linkage Between Xyloglucan and Acidic Polysaccharides in Suspension-cultured Angiosperm Cells. Annals of Botany,2005,96:91-99.
    Platt, D., & Raz, A., Modulation of the Lung Colonization of B16-F1 Melanoma Cells by Citrus Pectin. Journal of the National Cancer Institute,1992,84:438-442.
    Pratima, N. M., Hogan, V., Honjo, Y, Baccarini, S., Tait, L., Bresalier, R., & Raz, A., Inhibition of Human Cancer Cell Growth and Metastasis in Nude Mice by Oral Intake of Modified Citrus Pectin. Jounal of the National Cancer Institute,2002, 94(24):1854-1862.
    Portenlanger, G., & Heusinger, H. The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes. Ultrasonics Sonochemistry,1997,4:127-130.
    Perera, G., Hombach, J., & Bernkop-Schnurch, A. Hydrophobic Thiolation of Pectin with 4-Aminothiophenol:Synthesis and In Vitro Characterization. AAPS PharmSciTech,2010,11(1).
    Patra, P., Das, D., Behera, B., Maiti, T. K., & Islam, S. S. Structure elucidation of an immunoenhancing pectic polysaccharide isolated from aqueous extract of pods of green bean (Phaseolus vulagris L.). Carbohydrate Polymer,2012,87:2169-2175.
    Renata, C. B., Rokita, B., Lotfy, S., Ulanski, P., & Rosiak, J. M. Degradation of chitosan and starch by 360-kHz ultrasound. Carbohydrate Polymers,2005,60:175-184.
    Renard, C. M. G. C., & Thibault, J. F. Degradation of pectins in alkaline conditions: kinetics of demethylation. Carbohydrate Research,1996,286:139-150.
    Raso, J., Manas, P., Pagan, R., & Sala, F. J. Influence of different factors on the output power transferred into medium by ultrasound. Ultrasonics Sonochemistiy,1999,5: 157-162.
    Round, A. N., Rigby, N. M., MacDougall, A. J., & Morris, V. J. A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy. Carbohydrate Research,2010,345:487-497.
    Round, A. N., MacDougall, A. J., Ring, S. G., & Morris, V. J. Unexpected branching in pectin observed by atomic force microscopy. Carbohydrate research,1997,3(303): 251-253.
    Round, A. N., Rigby, N. M., MacDougall, A. J., Ring, S. G., & Morris, V. J. Investigating the nature of branching in pectin by atomic force microscopy and carbohydrate analysis. Carbohydrate Research,2001,331:337-342.
    Ridout, M. J., Parker, M. L., Hedley, C. L., Bogracheva, T. Y., & Morris, V. J. Atomic force microscopy of pea starch: origins of image contrast. Biomacromolecules, 2004,5:1519-1527.
    Round, A. N., McMaster, T. J., Miles, M. J., Corfield, A. P., & Berry, M. The isolated MUC5AC gene product from human ocular mucin displays intramolecular conformational heterogeneity. Glycobiology,2007,17:578-585.
    Ridout, M. J., Brownsey, G. J., Gunning, A. P., & Morris, V. J. Characterisation of the polysaccharide produced by Acetobacter xylinum strain CR 1/4 by light scattering and atomic force microscopy. International Journal of Biological Macromolecules, 1998,23:287-293.
    Rolin, C., Nielsen, B. U., & Glahn, P. E. Pectin. In:Polysaccharides, Structural Diversity and Functional Versability (edited by S. Dimitrin & M. Dekker). pp. 377-431. New York, NY:Marcel Dekker.
    Salman, H., Bergman, M., Djaldetti, Meir., Orlin, J., & Bessler, H. Citrus pectin affects cytokine production by human peripheral blood mononuclear cells. Biomedicine & Pharmacotherapy,2008,62:579-582.
    Sterling, J. D., Atmodjo, M. A., Inwood, S. E., Kolli, V. S. K., Quigley, H. F., Hahn, M. G., & Mohnen, D. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase. Proceedings of the National Academy of Sciences of the United States of America,2006,103: 5236-5241.
    Sila, D. N., Buggenhout, S. V., Duvetter, T., Fraeye, I., Roeck, A. D., Loey, A. V., & Hendrickx, M. Pectins in Processed Fruits and Vegetables:Part II-Structure-Function Relationships. Comprehensive Reviews in Food Science and Food Safety,2009,8:86-104.
    Strom, A., Ribelles, P., Lundin, L., Norton, I., Morris, E. R., & Williams, M. A. K. Influence of Pectin Fine Structure on the Mechanical Properties of Calcium Pectin and Acid Pectin Gels. Biomacromolecules,2007,8:2668-2674.
    Salman, H., Bergman, M., Djaldetti, M., Orlin, J., & Bessler, H. Citrus pectin affects cytokine production by human peripheral blood mononuclear cells. Biomedicine and Pharmacotherapy,2008,62:579-582.
    Sathisha, U. V., Jayaram, S., Nayaka, M. A. H., & Dharmesh, S. M. Inhibition of galectin-3 mediated cellular interactions by pectin polysaccharides from dietary sources. Glycoconjugate Journal,2007,24(8):497-507.
    Schmelter, T., Wientjes, R., Vreeker, R., & Klaffke, W. Enzymatic modifications of pectins and the impact on their rheological properties. Carbohydrate Polymers, 2002,47:99-108.
    Seshadri, R., Weiss, J., Hulbert, G. J., & Mount, J. Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions. Food Hydrocolloids,2003,17:191-197.
    Stavarache, C, Vinatoru, M., & Maeda, Y., & Bandow, H. Ultrasonically driven continuous process for vegetable oil transesterification. Ultrasonics Sonochemistry, 2007,14:413-417.
    Scanlan, E. M., Mackeen, M. M., Wormald, M. R., & Davis, B. G. Synthesis and Solution-Phase Conformation of the RG-I Fragment of the Plant Polysaccharide Pectin Reveals a Modification-Modulated Assembly Mechanism. Journal of the American Chemical Society,2010,132:7238-7239.
    Sorensen, S. O., Pauly, M., Bush, M., Skj(?)t, M., McCann, M. C., Borkhardt, B., & Ulvskov, P. Pectin engineering:Modification of potato pectin by in vivo expression of an endo-1,4-b-D-galactanase. PNAS,2000,97 (13):7639-7644.
    Sun, Y. J., Ma, G. P., Ye, X. Q., Kaluda, Y., & Meng, R. F., Stability of all-trans-(3-carotene under ultrasound treatment in a model system:Effects of different factors, kinetics and newly formed compounds. Ultrasonics Sonochemistiy, 2010,17:654-661.
    Sengkhamparn, N., Sagis, L.M.C., Vries, R., Schols. H. A., Sajjaanantakul, T., Voragen, A.G.J. Physicochemical properties of pectins from okra (Abelmoschus esculentus (L.) Moench). Food Hydrocollodis,2010,24:35-41.
    Thakur, B. R., Singh, R. K., & Handa, A. K. Chemistry and uses of pectin-a review. Critical reviews in food science and nutrition.1997,37(1):47-73.
    Talmadge, K. W., Keegstra, K., Bauer, W. D., & Albersheim, P. The Structure of Plant Cell Walls. Plant Physiology,1973,51:158-173.
    Tamaki, Y., Konishi, T., Fukuta, M., & Tako, M. Isolation and structural characterization of pectin from endocarp of Citrus depressa. Food Chemistry,2008, 107:352-361.
    Terpstra, A. H. M., Lapre, J. A., Vries, H. T., & Beynen, A. C. Dietary Pectin with High Viscosity Lowers Plasma and Liver Cholesterol Concentration and Plasma Cholesteryl Ester Transfer Protein Activity in Hamsters. Journal of Nutrition,1998, 128:1944-1949.
    Tang, C. H. Functional properties and in vitro digestibility of buckwheat protein products:Influence of processing. Journal of Food Engineering,2007,82:568-576.
    Tiwari, B. K., Muthukumarappan, K., & O'Donnel, C. P., Cullen, P. J. Rheological properties of sonicated guar, xanthan and pectin dispersions. International Journal of Food Properties,2010,13:223-233.
    Tzortzis, G., Goulas, A., Gee, J., & Gibson, G. A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. Journal of Nutrition,2005,135(7):1726.
    Tsujita, T., Sumiyoshi, M., Han, L. K., Fujiwara, T., Tsujita, J., & Okuda, H. Inhibition of lipase activities by citrus pectin. Journal of Nutritional Science and Vitaminology,2003,49:340-345.
    Tsaih, M. L., Tseng, L. Z., & Chen, R. H. Effects of removing small fragments with ultrafiltration treatment and ultrasonic conditions on the degradation kinetics of chitosan. Polymer Degradation and Stability,2004,86:25-32.
    Vayssadel, M., Sengkhamparn, N., Verhoef, R., Delaiguel,C., & Goundiaml, O.,Vigneron, P., Voragen, A. G, Schols, H. A., & Nagel, M. D. Antiproliferative and Proapoptotic Actions of Okra Pectin on B16F10 Melanoma Cells. Phytotherapy Research,2010,24:982-989.
    Vodenicarova, M., Drimalova, G, Hromadkova, Z., Malovikova, A., & Ebringerova, A. Xyloglucan degradation using different radiation sources:A comparative study. Ultrasonics Sonochemistry,2006,13:157-164.
    Voragen, A. G. J., Coenen, G J., Verhoef, R. P., & Schols, H. A. Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry,2009,20: 263-275.
    Vignon, M. R., & Garcia-Jaldon, C. Structural features of the pectic polysaccharides isolated from retted hemp bast fibres. Carbohydrate Research,1996,296:249-260.
    von Sonntag, C., Mark, G., Tauber, A., & Schuchmann, HP.1999, OH radical formation and dosimetry in the sonolysis of aqueous solutions. Advances in Sonochemistry,5, 109-145.
    Vriesmann, L.,C., & Petkowicz, G. L. O. (2009). Polysaccharides from the pulp of cupuassu (Theobroma grandiflorum): Structural characterization of a pectic fraction. Carbohydrate Polymer,77,72-79
    Westereng, B., Michaelsen, T. E., Samuelsen, A. B., & Knutsen, S. H. Effects of extraction conditions on the chemical structure and biological activity of white cabbage pectin. Carbohydrate Polymers,2008,72:32-42.
    Wicker, L., Ackerley, J. L., & Hunter, J. L. Modification of pectin by pectinmethylesterase and the role in stability of juice beverages. Food Hydrocolloids,2003,17:809-814.
    Wu, T., Zivanovic, S., Hayes, D.G., & Weiss, J. Efficient reduction of chitosan molecular weight by high-intensity ultrasound:underlying mechanism and effect of process parameters. Journal of Agricultural of Food Chemistry,2008,56: 5112-5119
    Willats, W. G., Orfila, C., Limberg, G, Buchholt, H. C., van Alebeek, G. J., & Voragen, A. G. Modulation of the degree and pattern of methylesterification of pectic homogalacturonan in plant cell walls. Implications for pectin methy esterase action, matrix properties, and cell adhesion. Journal of Biological Chemistry, 276:19404-19413.
    York, W. S., Kolli, V. S. K., Orlando, R., Albersheim, P., & Darvill, A. G. The structures of arabinoxyloglucans produced by solanaceous plants. Carbohydrate Research,1996,285:99-128.
    Yamaguchi, F., Shimizu, N., & Hatanaka, C. Preparation and physiological effect of low-molecular-weight pectin. Bioscience, Biotechnology and Biochemistry (Japan), 1994,6:113-118.
    Yamaguchi, F., Uchida, S., Watabe, S., Kojima, H., Shimizu, N., & Hatanaka, C. Relationship between molecular weights of pectin and hypocholesterolemic effects in rats. Bioscience Biotechnology Biochemistry,1995,59:2130-2131.
    Yapo, B. M., Lerouge, P., Thibault, J. F., & Ralet, M. C. Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan Ⅰ and rhamnogalacturonan Ⅱ. Carbohydrate Polymers,2007, 69:426-435.
    Yapo, B. M. Pectin quantity, composition and physicochemical behaviour as influenced by the purification process. Food Research International,2009,42:1197-1202.
    Ye, G. X., Lu, X. P., Han, P. F., Peng, F., Wang, Y. R., & Shen, X. Application of ultrasound on crude oil pretreatment. Chemical Engineering and Processing,2008, 47:2346-2350.
    Zykwinska, A., Boiffard, M. H., Kontkanen, H., Buchert, J., Thibault, J. F., & Bonnin, E. Extraction of Green Labeled Pectins and Pectic Oligosaccharides from Plant Byproducts. Journal of Agricultural and Food Chemistiy,2008,56:8926-8935.
    Zouambia, Y., Moulai-Mostefa, N., & Krea, M. Structural characterization and surface activity of hydrophobically functionalized extracted pectins. Carbohydrate Polymers,2009,78:841-846.
    Zhang, L. F., Ye, X. Q., Xue, S. J., Zhang, X. Z., Liu, D. H., Meng, R. F., & Chen, S. G. Effect of high-intensity ultrasound on the physic-chemical properties and nanostructure of citrus pectin. Journal of the Science of Food and Agriculture, (accepted).
    Zhang, L. F., Ye, X. Q., Ding, T., Sun, X. Y., Xu, Y. T., & Liu, D. H. Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin. Ultrasonics Sono chemistry,2013,20:222-231.
    Zhang, L. F., Chen, F. S., Yang, H. S., Sun, X. Y., Liu, H., Gong, X. Z., Jiang, C. B., & Ding, C. H. Changes in firmness, pectin content and nanostructure of two crisp peach cultivars after storage. LWT-Food Science and Technology,2010,43:26-32.
    Zhang, L. F., Chen, F. S., Yang, H. S., Ye, X. Q., Sun, X. Y, Liu, D. H., Yang, B., An, H. J., & Deng, Y. Effects of temperature and cultivar on nanostructural changes of water-soluble pectin and chelate-soluble pectin in peaches. Carbohydrate Polymers, 2012,87:816-821.
    [比]S.De贝特斯,[比]E.J.旺达姆,[德]A.斯泰因比歇尔.生物高分子(第六卷)(多糖II-真核生物多糖)[M].北京:化学工业出版社,2004,(8):311-335.
    杜力.果胶.化工商品科技情报,1992,4:39-40.
    岳贤田.国内果胶提取方法研究进展.安徽农业科学,2010,38(13):6932-6933,6960.
    卢航,赵小明,白雪芳,&杜昱光.寡聚半乳糖醛酸诱导烟草抗烟草花叶病毒研究初探.植物保护,2008,34(3):38-41.
    王博,孙润广,&张静.超声波强化提取对茯苓水溶性多糖结构影响的研究.应用声学2009,28(3):195-202.
    杨浩,刘晔,余珠花,余大川,刘金波,&叶平.麻疯树籽油超声波辅助酯交换反应的研究.中国油脂,2006,31(11):69-72.
    李小平,罗海莉,&陈锦屏.超声波法辅助提取鸵鸟油.食品科学,2010,31(24):182-185.
    刘文,董赛丽,&梁金亚.果胶的性质、功能及其应用.三门峡职业技术学院学报,2008,7(2):118-124.
    孙元琳,&汤坚.果胶类多糖的研究进展.食品与机械,2004,20(6):60-63.
    孙玉敬.类胡萝卜素在超声波辅助提取中的稳定性及其定量构效关系的研究.博士学位论文,浙江大学,2010.
    张丽芬.水果冷藏过程中品质与多糖分子纳米结构的关系研究.硕士学位论文,河南工业大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700