用户名: 密码: 验证码:
基于横向剪切干涉系统的甲烷气体浓度检测的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国,由于井下瓦斯监测系统相对不完善,每年因井下瓦斯爆炸导致的安全事故非常多,造成的死亡人数几乎占所有矿难的一半以上;在许多天然气输送管道线路中,由于天然气泄漏造成的经济损失也是天然气供气过程中一个重要的问题;日常生活中,由于燃气泄漏爆炸导致的人员伤亡也时有发生。瓦斯、天然气等是多种气体的通称,其主要成分为甲烷(CH4)。传统的检测甲烷气体浓度设备常常难以同时满足精度高、响应快、稳定性好等要求,所以研究对甲烷气体浓度快速、准确的检测技术十分重要。针对这种迫切需要,本文提出了一种新型横向剪切光路结构,并基于此设计了新型横向剪切干涉系统,将之应用于甲烷气体浓度的检测。
     论文介绍了甲烷气体浓度检测的主要方法、国内外在该领域的研究现状、红外光谱吸收测量法的基本理论和基本概念。利用光谱分析法具有高精度分析、无中毒检测、实时响应的特点,设计了一种基于新型横向剪切光路结构的干涉系统,研究了基于新型横向剪切干涉系统的光程差分布函数及剪切型干涉条纹的产生机理,基于离散傅里叶变换得到的频谱数据特征,进行了光谱分析算法设计,并开发了与之对应的甲烷气体浓度分析软件。
     系统由特征气体对应的红外激光光源、准直扩束镜、气体探测气室、双角镜结构、CCD探测器、信号处理器和可视化编程平台等构成。为了使光学干涉系统工作稳定,可以良好地应用于户外复杂环境,系统采用双角镜光路同向保护的方式,同时采用连杆互补消震动设计,很好地克服了户外工作条件下震动对光学系统干涉条纹成像的影响。双角镜设计使光路稳定,当干扰使光路发生偏移时,光路仅产生同方向上的位移偏移,并且进行相干的两束光都产生偏移,不会造成不均匀的误差。连杆结构设计使分束镜在受震动影响时产生联动效果,这样由1镜引入的误差会以大小相等、方向相反的形式由2镜抵消掉,从理论上完全的消除了震动产生的干扰。此种设计大大提高了光学系统的稳定性,并且不影响干涉系统的光通量和光程差扫描范围。
     为了保证该种结构的高光谱分辨率、高光通量的特性,研究了新型横向剪切干涉系统产生干涉条纹的基本原理特性,分析了采用分光镜正向、逆向旋转获得光程差的极限范围。计算了通过连杆结构产生的光程差互补效果,以相干技术、傅里叶光学、光电探测为基础,使用新型横向剪切干涉系统,在保持原有光学特点的基础上,通过圆形轨迹扫描代替传统的线性轨迹扫描,实现了连杆消除震动干扰的设计思想。系统虽有机械扫描结构,但由于该设计结构的补偿效果,避免了最容易对光学系统产生干扰的震动干扰的问题。最终的数据由CCD探测器采集,经处理器实现气体浓度的计算输出。
     在设计了横向剪切干涉系统结构的基础上,采用可视化平台开发了相应的光谱分布函数分析算法及软件。对主成分分析法、遗传算法、最小二乘法、BP人工神经网络分析法、粗糙集法、支持向量机分析法等多种光谱分析处理算法综合比较和分析,结合检测气体浓度的特点要求,系统采用支持向量机分析法完成了对特征波长、光谱分布函数的求解及对甲烷气体浓度的计算分析,并采用Microsoft Visual Studio平台实现了数据输入、傅里叶变换、光谱标定、甲烷气体浓度分析等功能的实现及显示。
     实验采用室内无震动环境和户外环境分别对激光光谱分布函数进行测试,分析干涉系统的稳定性和精确度,实验结果表明,在实验室条件下,由于干扰几乎不存在,两种干涉系统的光谱分析能力接近,但当传统干涉系统应用于户外时,干涉条纹反演得到的光谱分布函数发生了比较明显的变形和偏移,而基于新型横向剪切干涉系统获取的光谱分布函数基本没有变化,说明该系统具有良好的稳定性。还分别在实验室内和户外完成了针对甲烷气体浓度的检测实验。实验显示,采用室内应用的光谱分析设备与本系统对比可知,在户外有干扰的情况下,本系统的检测稳定性要高很多。
In China, the mine gas monitoring system is relatively imperfect, so security incidentshappened by the underground gas explosion, the number of deaths accounted for almost halfof all mine; In many of the major natural gas transmission pipeline, natural gas leak causedeconomic losses is an important problem in the process of natural gas supply; In daily life,casualties had occurred by gas leak explosion. Gas, natural gas is a generic term for a varietyof gases, methane (CH4) is the mainly Composition. The traditional equipment for detectingconcentration of methane gas is often difficult to meet the high precision, fast response andgood stability, so research of the method for concentrationm of methane, which is rapid andaccurated is very important. In response to this urgent need, this paper proposes a new type oftransverse shear optical structure, a new lateral shearing interferometer system is designedbased on the optical structure, applied to the detection of methane gas concentration.
     The main method of the methane gas concentration detector, the domestic an internationalresearch situation, the basic concepts and theory of the infrared absorption measurement wereintroduced. the characteristics of the spectrum analysis method is high-precision, nopoisoning detection,real-time response. Take advantage of the characteristics of the spectrumanalysis method, the interferometer system is designed based on a new type of transverseshear optical structure. Studied the mechanism of the optical path difference distributionfunction and shearing interference fringes by Lateral Shearing terferometer. Based on thespectral data obtained by the discrete Fourier transform, Spectral analysis algorithm wasdesigned, and the corresponding software algorithms was researched and developed.
     The system is composed of the characteristics of gas corresponding to the infrared laserlight source, Collimated beam expander, gas detection chamber, the double-angle mirrorstructure, CCD detector, signal processors, and visual programming platform structure. Foroptical interferometer system is stable, well-used outdoor, the system uses double-anglemirror optical path to the protection. Meanwhile, using complementary eliminate vibrationdesign, full consideration to the outdoor conditions, vibration interference fringes imagingoptical system. Among them, the double-angle mirror design, the stability of the optical pathwhen the interference of the light path offset, the optical path is only generated in the samedirection displacement offset, and two coherent beams of light to produce the offset will not cause uneven error. The connecting rods are designed to make the beam splitter to generatelinkage effects in the vibration impacts, so that the error introduced by the1mirror of equalsize, in the opposite direction from2mirror in the form of offset, theoretically completelyeliminate the interference of the vibration, in fact, a slight error. This design greatly increasedthe stability of the optical system, it does not affect the flux and the optical path differencescanning range of the interference system.
     In order to ensure the characteristics of the structure of the high spectral resolution, highflux, the lateral shearing interferometer system characteristics of the basic principles of theinterference fringes, and analyzed using spectroscopic forward and reverse rotation of theoptical path difference limits. Calculated the optical path difference through the connectingrod structure complementary effect to the coherence technique, Fourier optics, photoelectricdetection based on lateral shearing interferometer system to maintain the original opticalcharacteristics on the basis of scanning through a circular pathinstead of the traditional lineartrack scan, to achieve the design ideas of the connecting rod to eliminate vibrationinterference.
     Visualization platform to develop on the basis of a lateral shearing interferometer systemarchitecture design, the spectral distribution function analyze algorithms and software. Systemuses a support vector machine analysis to complete the solving of the characteristicwavelength, the spectral distribution function and the calculation of the methane gasconcentration, and Microsoft Visual Studio platform data input, Fourier transform, spectralcalibration and analyze of the concentration of methane gas and other functionsto achieve anddisplay.
     Experiment with indoor vibration environment and outdoor environment to test thedistribution function of the laser spectroscopy, analyzed of the stability and accuracy of theinterferometer system. The experimental results show that, under laboratory conditions,almost non-existent due to interference, Spectral analysis of the two interferometer systemcapacity is close. Traditional interference in the spectral distribution function of theinterference fringes of the system inversion obvious deformation and offset, and Based on thenew lateral shearing interferometer for the spectral distribution function is unchanged,indicating that the system has good stability. On this basis, we completed detectionexperiments for the methane gas concentration. The experiments show that the spectroscopy device of the system compared with indoor applications shows that the interference in theoutdoor case, the detection of stability of this system is much higher.
引文
[1]国家安全监管总局国家煤矿安监局,国家安全监管总局国家煤矿安监局关于印发煤矿安全生产“十二五”规划的通知[Z].安监总煤装〔2011〕187号.
    [2]国家安全生产监督管理总局,首页>事故快报>煤矿事故[OL],http://www.chinasafety.gov.cn/newpage/sgkb/sgkb_mksg.htm.
    [3]国家安全监管总局办公厅国家煤矿安监局办公室,国家安全监管总局办公厅国家煤矿安监局办公室关于召开全国煤矿事故分析暨警示教育会的通知[Z].安监总厅煤调〔2012〕136号
    [4]国家安全监管总局,国家安全监管总局关于加强安全生产科技创新工作的决定[Z].安监总科技〔2012〕119号
    [5]国家安全监管总局办公厅,国家安全监管总局办公厅关于印发2012年安全生产重大事故防治关键技术科技项目的通知[Z].安监总厅科技〔2012〕148号
    [6]谢宝卫,李国斌.催化燃烧型瓦斯检测仪器性能特征及影响因素浅析[J].煤矿安全,2002,33(3):54-55.
    [7] Arris Wa,Reilly Pta,Whitten Wb.Detection of chemical warfare-related species oncomplex aerosol particles deposited on surfaces using an ion trap-based aerosol mass spectrometer[J].Naltyical Hemistry,2007,10(2):2254-2258.
    [8] W Jin,G Stewart,M Wilkinson.Com Pensation for Surfaee Contamination in a FiberEvanescent Wave Methane Sensor[J].Journal of Lighwave,Echnology,1995,13:1177-1183.
    [9] Lu R,Peng Y.Assessing peach firmness by multi-spectral scattering [J].NearInfrared Spectroscopy.2005,13:27-36.
    [10]王浩宇,曹建,安晨光.基于MEMS技术的气体热导传感器的应用研究[J].传感技术学报.2009,22(7):1050-1054.
    [11] Zhou,H-C,Ai,Y-H.Effeet of radiative transfer of heat released from combustionreaetion on tem Perasture distribution:Anumerieal study for a Z-Dsystem.Journal ofQuantitative Radiative Transfer[J].2006,101(1):109-118.
    [12] Li Minzan. Studies on field, Proceedings of International Conference onEnvironmental engineering in agricultural systems[J],Kanazawa,Japan.2005,1:1-3.
    [13]江福椿,朱昌平,赵帅.超声技术在气体浓度检测中的应用[J].河海大学常州分校学报.2005,19(2):1-4.
    [14]邱健,杨冠玲,何振江,等.基于紫外荧光法的大气SO2气体浓度分析仪[J].仪器仪表学报.2008,29(1):174-178.
    [15] V A Manasson, Jack H Parker.Laser warning receiver based on coherencediscrimination[J].IEEE.1996,35:1524-1526.
    [16]考洛米佐夫.干涉仪的理论基础及应用[M].北京:中国标准出版社.1982.
    [17] Acosta,Chamadoira Sara,Blendowske Ralf.Modified point diffractioninterferometer for inspection and evaluation of ophthalmic components[J].OSA,2006,(23)3:632-637.
    [18] Cantin A, Dubois J.Development of a miniaturized digital high angular resolutionlaser irradiation detector(harlid) and its integration in a laser warning receiver[J].PlenumPress.1997,6:411-16.
    [19]徐广通,袁洪福,陆婉珍.现代近红外光谱技术及应用进展[J].光谱学与光谱分析.2000,20(2):134-142.
    [20] Dilip K C.Examination of the Long-Path Open-air FTIR Technique for AirMonitoring in the State of Kentucky[J].SPIE.1995,Vol.2365:347-357.
    [21] Gabriele R.Near-infrared spectroscopy and imaging:Basic pringciples andpharmaceutical applications[J].Advanced Drug Delivery Reviews.2005,57:1109-1143.
    [22] Wen Z,Tai Y.Dual-camera NIR/MIR imaging for stemend calyx identifica-tion in apple defect sorting[J]. Transactions of the ASAE,2000,43(2):449-452.
    [23]刘中奇,王汝琳.基于红外吸收原理的气体检测[J].煤炭科学技术.2005,33(1):65-68.
    [24] Marc-André Soucy, Henry Buijs, Serge Fortin. ACE-FTS instrument: after fouryears on-orbit[J].SPIE,2007,Vol.6678:1-9.
    [25]赵凯华.光学[M].北京:高等教育出版社.2004:339-376.
    [26]王汝琳,王咏涛.红外检测技术[M].北京:化学工业出版社.2006:29-31.
    [27] K Chan,H Ito,H Inaba.10km-Long Fiber Optic Remote Sensing of CH4Gas byNearInfrared Absorption[J].Applied Physics B.1985,38:11-15.
    [28] J Enakin,C A Wade,D pinehbeek.A Novel Optical Fiber Methane Sensorproe[J].SPIE.1987,734:187-190.
    [29] H Tai,K Yamamoto,S Osawa.Remote Detection of Methane Using a1.66umDiode Laser in Combination with Optical Fibers[C].Proceedings7th OFS.1990:51-54.
    [30] B Culshaw,G Stewart,E Dong.Fiber Optic Techniques for Remote SpectroscopicMethane Detection from Concept to System Realization[J].Sensors and Actuators B51.1998:25-37.
    [31]曹茂永,张逸芳,张士昌等.吸收光谱式光纤瓦斯传感器的参数设计[J].煤炭学报.1997,3:280-283.
    [32]刘文琦,牛德芳.光纤甲烷气体传感器的研究[J].仪表技术与传感器.1999,1:35-36.
    [33]叶险峰,汤伟中.CH4气体光纤传感器的研究[J].半导体光电.2000,(3):218-220.
    [34]王玉田,郭增军,王莉田.差分吸收式光纤甲烷气体传感器的研究[J].光电子激光.2001,12(7):675-678.
    [35]王一丁,钟宏杰,金钦汉,等.红外CH4检测仪[J].吉林大学学报.2001,4:69-71.
    [36]权贵秦,韩军,李晓松.便携式红外甲烷浓度测试仪的研制[J].应用光学.2001,22(5):16-18.
    [37]刘泉,林海燕.光纤乙炔气体检测系统的研究[J].传感器技术.2003,4:15-17.
    [38]王玉田,李晓听,刘占伟等.甲烷气体多点光纤传感系统的研究[J].光电工程.2004,31(6):21-23.
    [39] P J Fox,R E Scholten,M R Walkiewicz,etal.A reliable compact and low-costMichelson wavemeter for laser wavelength measurement[J].American Association of PhysicsTeachers.1999,67(7):624-630.
    [40] Dan Komisarek,Karl Reichard.High-performance non-scanning Fourier-transformspectrometer that uses a Wollaston prism array[J].Applied Optics.2004,43(20):3983-3987.
    [41]高闽光,刘文清,张天舒,等.傅里叶变换红外光谱法被动遥测大气中VOC[J].光谱学与光谱分析.2005,25(7):1042-1044.
    [42]黄中华,王俊德.傅里叶变换红外光谱在大气遥测监测中的应用[J].光谱学与光谱分析.2002,22(2):235-238.
    [43] E V Ivanov.Static Fourier transform spectroscopy with enhanced resolvingpower[J].Applied Optics.2000,Vol.2:519-528.
    [44]邢廷,龚惠兴.大气探测傅里叶变换光谱仪[J].遥感技术与应用.1999,14(1):5-10.
    [45] Lü Qun-bo, Yuan Yan, Xiang-Li Bi.Fourier Transform Imaging SpectralInformation Compression[J]. Acta Phoyonica Sinica.2008,37(3):573-576.
    [46]赵凯华,钟锡华.光学(上、下)[M].北京:北京大学出版社.1984.
    [47]郭豪,马娜,王敏,等.法布里-珀罗型告警器激光入射角度的测量方法分析[J].激光与红外.2008,38.3:280-282.
    [48] Daniel C Schinca, Jorge O Tocho.Development of a DOAS system based on across dispersion spectrograph[J].SPIE,2001,Vol.4199:77-85.
    [49]周星炜,王占斌,袁一方,等.基于光纤Sagnac干涉仪的旋转角度测量系统[J].传感器技术.2005,24(9):53-55.
    [50] Craig R Schwarze,Robert Vaillancourt,David Carlson,etc.Laser EventRecorder[C].Proc.of SPIE,2004,Vol.5409:120-127.
    [51]刘吉延,斯永敏.马赫一曾德尔干涉型磁传感器[J].传感器技术.2004,23(1):14-17.
    [52]陈朋超,蔡永军,李俊,等.基于改进型马赫一曾德干涉仪原理的管道安全预警系统研究[J].传感技术学报.2009,22(11):1661-1664.
    [53]钟金刚,张永林,李丰丽,等.空间载频条纹相位分析法中的相位不确定性[J].光子学报.2001,21(5):609-614.
    [54]董瑛,相里斌,赵葆常.大孔径静态干涉成像光谱仪中的横向剪切干涉仪[J].光子学报.1999,28(11):901-905.
    [55] Michael Buchwitz,John P Burrows.Retreval of CH4,CO,CO2total column amountsfrom SCAMACHY near-infrared nadir spectra:Retrieval algorithm and firstresults[J].SPIE,2004,Vol.5235:375-388.
    [56] D C,M C.胡玉才,戴寰(译).对称性与光谱学-振动和电子光谱学导论[M].北京:高等教育出版社.1988.
    [57]陆婉珍,袁洪福.近代近红外光谱分析技术[M].北京:中国石化出版社.2000.
    [58] C R Schwarze,R M Vaillancourt, D Carlson,etc.Ground and AirTest Per-formance of the Laser Event Recorder[C].Proc.of SPIE,2005,Vol.5787:176-183.
    [59] Max Born and Emil Wolf.Principles of Optics[M].Cambridge University Press,2001.286.
    [60]赵成美,丁兰英.干涉与衍射[M].北京:科技出版社.1991.
    [61] Ian R Lewis, Nathan C Chaffin, Mickey E Gunter.Vibrational spectro-scopic studies of asbestos and comparison of suitability for remote analysis[J].Science Direct,2004,Vol.9:1-5.
    [62] Cooper D E.Near-infrared diode lasers monitor mole cular species, Laser FocusWorld,1992.28(11):133~140.
    [63]俞宽新,江铁良,赵启大.激光原理与激光技术[M].北京:北京工业大学出版社.1998.
    [64]杨光海,陈旭.光场的相干性与干涉条纹的衬比度[J].吉林师范大学学报.2010,1:49-51.
    [65]申京浩,杨奎元,吕凤.数学分析(下)[M].长春:辽宁人民出版社.1985.
    [66] Daniel Phillip Komisarek.A non-scanning Fourier Transform SpectrometerUtilizing a Wollaston Prism Array[D].USA:Elsevier,2003.
    [67] Richard R Treffers.Signal-to-noise ratio in Fourier spectroscopy[J].Applied Optics.1997,16(12):3103-3106.
    [68] L W Schumann,T S Lomheim, J F Johnson.Design Constraints on AdvancedTwo-Dimensional LWIR Focal Planes for Imaging Fourier Transform SpectrometerSensors[C].Proc.of SPIE,1997,Vol.3063:150-163.
    [69]何煦,马军.共光路径向剪切干涉仪有设计[J].光学精密工程.2011,19(9):2029-2035.
    [70]许晓军,陆启生,刘泽金,等.横向剪切干涉的波前重构的新方法[J].强激光与粒子束.2001,13(3):261-266.
    [71]白加光,王忠厚,白清兰,等.sagnac横向剪切干涉仪设计方法的研究[J].航天器工程.2010,19(2):87-91.
    [72]王仲平,马力,戚小平,等.共光路径向剪切干涉法测量三维温度场[J].南昌大学学报.2009,33(1):73-77.
    [73] William T W.Sensitive Detection of Chemical Agents and ToxicIndustrial Chemicals Using Active Open-Path FTIR.SPIE,2004,Vol.5270:144-150.
    [74]赵俊奇,刘智超.一种提高静态傅里叶干涉仪光谱分辨率的方法[J].光子学报.2010,39(12):2129-2133.
    [75] S handra Sekhar,T V Sreebiyas.Signal-to-noise ratio estimation using higher-ordermoments[J].Signal Processing.2006,86(4):716-732.
    [76]高荣强,范世福.现代近红外光谱分析技术的原理及应用[J].分析仪器.2002,3:9-12.
    [77]杨芳.近红外光谱分析技术应用[J].研究进展.2011,18(1):15-16.
    [78]冯放.现代近红外光谱分析技术及其应用[J].生命科学仪器.2007,5(10):9-13.
    [79]苏均和.概率论与数理统计[M].上海:上海财经大学出版社,2005.
    [80] John G Proakis, Dimitris G Manolakis.Digital Signal Processing:Principles,Algorithms,and Applications[M], Beijing:Publishing House of Electronics Industry,2004:326-402.
    [81]傅湘纪,昌明.区域水资源承载能力综合评价—主成分分析法的应用[J].长江流域资源与环境.1999,2(8):168-172.
    [82]李艳双,曾珍香,张闽,等.主成分分析法在多指标综合评价方法中的应用[J].河北高阳大学学报.1999,28(1):94-97.
    [83] Luco J E,Wong H L.Response of a rigid foundation to a spatially random groundmotion[J].Earthquake Engineering and Structural Dynamics,1986(14):891-908.
    [84]贺湘宇,何清华,谢习华,等.基于偏最小二乘回归的挖掘机液压系统故障诊断[J].中南大学学报.2007,38(6):1152-1156.
    [85] D Agostino, Hancock J R.Packed capillary liquid chromatography-electrospraymass spectrometry analysis of organophosphorus chemical warfare agents[J].Journal ofChromatography,1999,2(4):289-294.
    [86]宋高阳.偏最小二乘回归的研究[D].杭州:浙江大学.2009.
    [87] William,Augustus.Classification of Chemical and Biological Warfare AgentStmulants by Surface-Enhanced Raman Spectroscopy and Multivariate StatisticalTechniques[J].Applied Spectroscopy,2006,60(4):3456-3465.
    [88]王小平,曹立明.遗传算法——理论、应用与软件实现[M].西安:西安交通大学出版社,2002.
    [89]马玉玲.遗传算法在物流业装箱环节中的应用研究[D].济南:山东大学,2008.
    [90] Chang C S,Chen JM, Srinivasan D, eta.l Fuzzy Logic Approach in Power SystemFault Section Identification[J].IEE ProcGener, Transm and Distrib,1997,144(5):406-414.
    [91]柴艳茹,马岩.浅谈BP人工神经网络[J].学理论.2008,22:39-40.
    [92]单潮龙,马伟明,黄克荣,等.BP人工神经网络的应用及其实现技术[J].海军工程大学学报.2000,93(4):16-22.
    [93]彭宏.基于粗糙集理论的入侵检测方法研究[J].子科技大学学报.2006,35(1):108-110.
    [94] Soneji B B,Jangid R S.Passive hybrid systems for earthquake protection ofcable-stayed bridge[J].Engineering Structures,2007(29):57-70.
    [95]张媛,张铃,张燕平.粗糙集算法及其应用[J].微机发展.2005,15(4):17-18.
    [96]贾银山,贾传荧.一种加权支持向量机分类算法[J].计算机工程.2005,31(6):23-25.
    [97]李岳,陶利民,温熙森.用于滚动轴承故障检测与分类的支持向量机方法[J].中国机械工程,2005,16(6):498-501.
    [98] Wang P.Support Vector machine:theory and plication[M].New York: SpringerVerlag,2005:1-66.
    [99]徐泽水.不确定多属性决策方法及应用[M].北京:清华大学出版社,2004.
    [100] Mark Michaelis.周靖译.C#本质论[M].北京:人民邮电出版社,2009.
    [101] Rafael C Gonzalez,Richard E woods.阮秋琦,阮宇智,等译.数字图像处理
    [M].北京:电子工业出版社,2010.
    [102] Rainer Volkamer, Luisa T Molina, Mario J Molina.DOAS measurement ofglyoxal as an indicator for fast VOC chemistry in urban air[J].Geophysical ResearchLeters,2005, Vol.32:1-4.
    [103] Chengcai LI, Alexis Kai-Hon Lau, Jietai Mao. Validation of MODIS AODproducts with1-km resolution and their application in the study of urban air pollution in HongKong[J].SPIE,2004,Vol.5547:122-133.
    [104] Chengcai LI, Jietai Mao, Kai-Hon Lau. Research on the air pollutions in Beijingand its surroundings with MODIS aerosol products[J]. SPIE,2003, Vol.4891:419-430.
    [105]杨俊燕,张优云,朱永生.ε不敏感损失函数支持向量机分类性能的研究[J].西安交通大学学报.2007,41(11):1315-1320.
    [106]王华忠,俞金寿.核函数方法及其模型选择[J].江南大学学报(自然科学版).2006,5(4):499-504.
    [107]杨海燕,周永权.一种支持向量机的混合核函数[J].计算机应用.2009,29(12):173-178.
    [108] Hai-Bo Liu.Terahertz Spectroscopy and Imaging for Defense and SecurityApplications[J].Invited Paper,2007,IEEE,9219:1514-1525.
    [109]史智平.光源特性研究与使用[J].大学物理实验.2011,24(1):14-17.
    [110]方仲彦,殷纯永,梁晋文.高精度激光准直技术的研究(一)[J].航空计侧技术.1997,17(1):3-6.
    [111]方仲彦,殷纯永,梁晋文.高精度激光准直技术的研究(二)[J].航空计侧技术.1997,17(2):6-8.
    [112]赵继广,张智铨,邓陈.FMCW激光雷达系统设计与试验研究[J].装备指挥技术学院学报.2000,20(3):61-65.
    [113]李建新.激光准直扩束设计和仿真[J].装备制造技术.2009,3:28-31.
    [114]张彦亮.“增透膜”增透作用的理论解释[J].临沂师范学院学报.2004,26(3):1-3.
    [105]雷玉堂.光电信息技术[M].武汉:电子工业出版社,2011.
    [116]刘敬海.激光器件与技术[M].北京:北京理工大学出版社,2004.
    [117][日]Moriaki Wakaki,Keiei Kudo,Takehisa Shibuya.周海宪,程云芳译.光学材料手册[M].北京:化学工业出版社,2010.
    [118]孙伟,高春清,魏光辉.精确CCD光束参数测量与评价系统的设计[J].北京理工大学学报.2000,20(4):471-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700