用户名: 密码: 验证码:
茶多糖对直链淀粉和支链淀粉相容性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用高分子物理学理论与现代仪器分析技术相结合,对茶多糖的提取、纯化及其物化性质进行了系统的分析,基于从链段及分子水平上深入研究茶多糖的分子特性对直链淀粉与支链淀粉之间相容性的影响以及茶多糖对其热力学特性、流变学特性、结晶特性及凝胶质构特性的影响,为有效利用和开发多糖类食品添加剂在淀粉类食品的广泛应用提供理论基础。其主要结论如下:
     1、采用水提醇沉法提取粗茶多糖,通过DEAE-52纤维素柱层析对粗茶多糖进行分级,经H20、0.1mol L-1、0.5mol L-1的NaCl溶液梯度洗脱,得到TPSl、TPS2和TPS3三个洗脱峰,分别进行收集,其得率分别为0.96%、2.41%和7.89%。再经Sephadex G-150凝胶柱层析进一步分级纯化,得到TPS3-1和TPS3-2两个级分,其得率分别为11.30%和5.73%,以TPS3-1作为主要的研究对象,其样品中的茶多糖含量为86.64%。
     2、通过凝胶渗透色谱(HPSEC)、多角度激光光散射(MALLS)与示差折光检测仪(RI)联用色谱分析,得一对称单峰,测得的茶多糖分子结构特性为TPS的分子摩尔数分别是:Mw=2.351×105g mol-1, Mn=2.287×105g mol-1, Mz=2.762×105g mol-1; Rn=132.1nm, Rw=135.7nm, Rz=145.9nm; Mw/Mn和Mz/Mn比值分别是1.028和1.208,表明茶多糖TPS的摩尔质量分布相对均一;茶多糖构象图的直线斜率为0.24,表明茶多糖是在溶液中一个均匀的球状大分子聚合物;由茶多糖稀溶液的Mark-Houwink公式确定出TPS的a值是0.5379,说明茶多糖分子在溶液中是球状并具有分枝的结构形态。
     3、茶多糖溶液为假塑性非牛顿流体,故茶多糖溶液的粘度随剪切速度的增加而减小。茶多糖在酸性条件下粘度下降幅度较小,而在碱性条件下粘度下降幅度较大;茶多糖粘度随着加热温度的升高而升高,当加热温度>80℃时,其粘度又有所下降;茶多糖粘度随加热时间的增加而增加,当加热时间>110min时,茶多糖的粘度又有大幅度下降;冻融处理后茶多糖粘度下降,且冷冻较之于冷藏,下降幅度较大。
     4、采用稀溶液粘度法(DSV)研究茶多糖对直链淀粉和支链淀粉混合溶液相容性的影响,研究结果表明:当直链淀粉与支链淀粉混合比例为1:1,1:2,1:3和1:4时,△bm<0,△[η]m>0,表明各直链淀粉与支链淀粉混合物之间不相容;当茶多糖浓度为20%,直链淀粉与支链淀粉混合比例为1:1,1:2,1:3和1:4时,△bm<0,△Bm<0,μ<0,△[η]m>0,表明各混合物之间不相容;当茶多糖浓度为40%,直链淀粉与支链淀粉之间的混合比例为1:1,1:2和1:3时,△bm>0,△Bm>0,μ>0,△[η]m<0,表明各混合物之间具有良好的相容性,而当直链淀粉与支链淀粉混合比例为1:4时,△bm<0,△Bm<0,μ<0,△[η]m>0,表明各混合物之间不相容;当茶多糖浓度为60%,直链淀粉与支链淀粉的混合比例为1:1,1:2和1:3时,06m>O,△Bm>0,μ>O,△[η]m>0,表明各混合物之间具有相容性,而当直链淀粉与支链淀粉混合比例为1:4时,△bm<0,△Bm<0,μ<0,△[η]m>0,表明各混合物之间不相容;当茶多糖浓度为80%,直链淀粉与支链淀粉混合比例为1:1,1:2和1:3时,△bm>0,△Bm>0, μ>0,△[η]m<0,表明各混合物之间具有相容性,而当直链淀粉与支链淀粉混合比例为1:4时,△bm<0,△Bm<0,μ<0,△[η]m>0,表明各混合物之间不相容。
     5、不同混合组成比例(1:1,1:2,1:3和1:4)的茶多糖/直链淀粉和茶多糖/支链淀粉共混体系或不同混合组成比例(1:1:1~1:1:5,1:2:1~1:2:5,1:3:1~1:3:5和1:4:1~1:4:5)的直链淀粉/支链淀粉/茶多糖共混物都只有一个玻璃化转变温度Tg,这一Tg随组成比例的变化而改变,并且介于各组分各自的玻璃化转变温度范围之内,正是由于该共混体系中仅有一个Tg的出现,可以推断这些混合体系具有相容性。
     6、从分子结构来看,茶多糖能够增加马铃薯直链淀粉和支链淀粉的塑化性和分子移动,产生较大的静电斥力和减少大分子之间的关联性。随着茶多糖浓度的增加,茶多糖和直链淀粉或支链淀粉混合体系的Tg明显降低。茶多糖/直链淀粉和茶多糖/支链淀粉混合体系的Tg比直链淀粉的Tg低,但比支链淀粉的Tg高。茶多糖的添加也降低了直链淀粉/支链淀粉混合体系的结晶度,并且随着茶多糖浓度的增加,Tg和结晶度降低的程度越大。此外,茶多糖浓度越高,整个贮藏期(5-30d)直链淀粉和支链淀粉混合物的Tg变化越小,表明茶多糖能够明显降低直链淀粉和支链淀粉的重结晶,减缓直链淀粉和支链淀粉老化现象。
     7、添加茶多糖能够增加直链淀粉的坚实度、粘聚性和粘度系数,而降低了直链淀粉的稠度;当茶多糖添加浓度≤0.24%时,支链淀粉的坚实度减小,而当茶多糖添加浓度≥0.36%时,支链淀粉的坚实度增加;添加茶多糖能够增加支链淀粉的稠度、粘聚性和粘度系数。当直链淀粉与支链淀粉比例为1:1时,茶多糖浓度>0.12%时,随着茶多糖浓度的增加,直链淀粉/支链淀粉/茶多糖混合凝胶的坚实度也随之逐渐增加,并且添加茶多糖能够增加直链淀粉/支链淀粉/茶多糖混合凝胶的稠度、粘聚性和粘度系数;当直链淀粉与支链淀粉比例为1:2时,添加茶多糖能够增加直链淀粉/支链淀粉/茶多糖混合凝胶的坚实度、粘聚性和粘度系数,且茶多糖浓度为0.48%时,其增加显著;当直链淀粉与支链淀粉比例为1:3时,茶多糖的添加对直链淀粉/支链淀粉/茶多糖混合凝胶的坚实度几乎没有显著影响,而能够降低直链淀粉/支链淀粉/茶多糖混合凝胶的稠度和增加直链淀粉/支链淀粉/茶多糖混合凝胶的粘聚性和粘度系数。
Food polymer science theory combining with modern instrument analysis technique was applied to analyze systemically extraction, purification, as well as physico-chemical properties of tea polysaccharide (TPS). Based on chain fragment and molecule level, we investigated deeply effects of molecular characteristics of TPS on the compatibility, thermodynamics, rheology, crystalline property and gel texture of amylose and amylopection. This will provide the important and solid theory foundation for utilizing and exploring effectively the application of polysaccharide food additive to starch-based food. The main conclusions are as follows:
     1. Water-extraction and alcohol-precipitation method was applied to extract coarse TPS. Then coarse TPS was graded by exchanging chromatography on DEAE-cellulose column (DEAE-52). Three fractions of polysaccharides TPS1、TPS2and TPS3were obtained by means of water,0.1mol L-1NaCl and0.5mol L-1NaCl gradient elution. The yields of the eluant were0.96%,2.41%and7.89%, respectively. Finally, the Sephadex G-150gel chromatography column was used to further grade and purify TPS3. Two kinds of polysaccharides TPS3-1and TPS3-2were obtained, whose yields were11.30%and5.73%, respectively. TPS3-1was served as the main research subject and the TPS purity was86.64%.
     2. The molecular characteristics of TPS were carried out by high-performance size exclusion chromatography (HPSEC), multi-angle laser light scattering (MALLS). The results showed that Mw, Mn and Mz(z-average molar mass) are2.351×105g mol-1,2.287×105g mol-1and2.762×105g mol-1, respectively. Weight-average mean square radius (Rw), number-average mean square radius (Rn) and z-average mean square radius (Rz) are135.7nm,132.1nm and145.9nm, respectively. The polydispersity indexes of Mw/Mn and Mz/Mn are1.028and1.208, respectively. The distribution of TPS molecular weight was a single peak as shown by size-exclusion chromatography, which indicated that TPS was homogeneous. The slope of the conformation plot for TPS is0.24±0.00, indicating TPS is a homogeneous spherical polymer in solution. The a value of TPS was0.5379obtained by using Mark-Houwink equation, which indicates that the TPS molecule exists as spherical conformation with branches in solution.
     3. TPS solution was non Newtonian fluid as pseudoplastics. So, the viscidity of TPS solution decreased as shear velocity increased. The viscidity of TPS was decreased slightly under acid condition, while it did sharply under basic condition. The viscidity of TPS solution increased as heating temperature increased. However, when heating temperature was higher than80℃, the viscidity of TPS solution declined. The viscidity of TPS solution was increased as heating time increased. However, when heating time was longer than110mins, the viscidity of TPS solution declined drastically. The viscidity of TPS solution decreased after freezing-thaw treatment. Compared with refrigeration treatment, the viscidity of TPS solution decreased greatly after freeze treatment. However, when heating time was more than110mins, the viscidity of TPS solution declined drastically.
     4. When different amylose/amylopectin ratios were1:1,1:2,1:3and1:4,△bm<0△[η]m>0, which indicates that amylose and amylopectin mixture exists phase separation and immiscibility. When the concentration of TPS was20%under different amylose/amylopectin ratios (1:1,1:2,1:3and1:4) conditions,△bm<0,△Bm<0, μ<0,△[η]m>0, which indicates that all mixtures exist phase separation and immiscibility. When the concentration of TPS was40%under different amylose/amylopectin ratios (1:1,1:2and1:3) conditions,△bm>0,△Bm>0, μ>0,△[η]m<0, indicating good compatibility. While the amylose/amylopectin ratio was1:4,△bm<0,△Bm<0, μ<0,△[η]m>0, indicating immiscibility. When the concentration of TPS was60%under different amylose/amylopectin ratios (1:1,1:2and1:3) conditions,△bm>0,△Bm>0, μ>0,△[η]m<0, indicating good compatibility. While the amylose/amylopectin ratio was1:4,△bm<0,△Bm<0, μ<0,△[η]m>0, indicating immiscibility. When the concentration of TPS was80%under different amylose/amylopectin ratios (1:1,1:2and1:3) conditions, Abm>0,△Bm>0,μ>0,△[η]m<0, indicating good compatibility. While the amylose/amylopectin ratio was1:4,△im<0,△Bm<0,μ<0,△[η]m>0, indicating immiscibility.
     5. The mixing ratios (1:1,1:2,1:3and1:4) of TPS/amylose and TPS/amylopectin have only one Tg, so do the different ratios (1:1:1~1:1:5,1:2:1~1:2:5,1:3:1~1:3:5and1:4:1~1:4:5) of the amylose/amylopectin/TPS mixtures. Meanwhile, the Tg changes as the mixing ratios change, and its value is within the Tgs of TPS, amylose and amylopectin. The result shows that the certain mixing ratios of TPS, amylose and amylopectin mixtures can be compatible.
     6. In view of its molecular structure, TPS can increase plasticization and molecular movement of the potato amylose and amylopectin chains, induce the greater electrostatic repulsion and decrease the relation between the macromolecules, thereby decreasing the glass transition temperatures (Tgs) of the mixed amylose/amylopectin system. And also, the above effects can become more effective with increasing concentration of TPS. The Tgs of amylose and amylopectin at different ratios are lower than that of amylose, and higher than that of amylopectin. The addition of TPS also decreased the crystallinities of amylose and amylopectin if they are mixed, and the Tgs and crystallinities of amylose and amylopectin mixtures declined drastically with increasing concentration of TPS. Besides, the higher the TPS concentration, the smaller the change in Tgs of the mixtures over the storage period (5-30d). The result indicated that TPS can reduce obviously recrystallisation of amylose and amylopectin and inhibit the retrogradation of amylose and amylopectin.
     7. The addition of TPS could increase the firmness, cohesiveness and index of viscosity of amylose, while decrease its consistency. The addition of TPS could increase the consistency, cohesiveness and index of viscosity of amylopectin. When the concentration of TPS was less than0.24%, the firmness of amylopectin was decreased. While the concentration of TPS was more than0.36%, the firmness of amylopectin was increased. When the amylose/amylopectin ratio was1:1and the concentration of TPS was more than0.12%, the firmness of the mixed amylose/amylopectin/TPS gel was increased with increasing concentration of TPS. In addition, the addition of TPS could increase the consistency, cohesiveness and index of viscosity of the mixed amylose/amylopectin/TPS gel. When the amylose/amylopectin ratio was1:2, the addition of TPS could increase the firmness, cohesiveness and index of viscosity of the mixed amylose/amylopectin/TPS gel. Especially, when the concentration of TPS was0.48%, the firmness, cohesiveness and index of viscosity were increased obviously. When the amylose/amylopectin ratio was1:3, the addition of TPS had hardly any remarkable influence on the firmness of the mixed amylose/amylopectin/TPS gel, while the addition of TPS decreased the consistency of the mixed amylose/amylopectin/TPS gel and the cohesiveness and index of viscosity of the mixed amylose/amylopectin/TPS gel.
引文
[1]何曼君,张红东,陈维孝等.高分子物理.复旦大学出版社,第三版,2008,8-22
    [2]赵孝彬,杜磊,张小平等.聚合物共混物的相容性及相分离.高分子通报,2010,4:75-80
    [3]Coleman, M. M., Graf, J. F., and Painter, P. C. Specific Interaction and the Miscibility and Polymer Blends, Technomic Publishing, Lancaster, PA 1991.
    [4]Tolstoguzov, V. B. Interactions of gelatin with polysaccharides.In G. O. Phillips, P. A. Williams,& D. J. Wedlock (Eds.),1990,157-175
    [5]吕菡.对热固性共混物的相容性、相行为及分子间特殊相互作用的研究.[硕士学位论文].上海:上海交通大学,2003
    [6]Muraa, P., Bettinetti, G, P., Faucci, M. T., et al. Differential scanning calorimetry in compatibility testing of picotamide with pharmaceutical excipients.Thermochimica A cta,1998,321:59-65
    [7]Zhong, Z., Sun, X. S.Thermal characterization and phase behavior of cornstarch studied by differential scanning calorimetry. Food Engineer,2005,69:453-459
    [8]Tolstoguzov, V. B. Phase behaviour of macromolecular components in biological and food systems. Nahrung,2000,44(5):299-308
    [9]Keetels, C. J. A. M., van, Vliet. T., Walstra, P. Gelation and retrogradation of concentrated starch systems:3. Effect of concentration and heating tempearture. Food Hydrocolloids,1996c,10: 363-368
    [10]Basavaraju, K. C., Demappa, T., Rai, S. K. Miscibility studies of polysaccharide Xanthan gum and PEO (polyethylene oxide) in dilute solution. Carbohydrate Polymers,2007,69:462-466
    [11]Lii, C. Y., Tomasik, P., Hung, W. L., et al. Polysaccharide-polysaccharide interactions in pastes. Polish Journal of Food and Nutrition Sciences,2002,11(4):29-33
    [12]Krigbaum, W. R., Wall, F. T. Viscosities of Binary Polymeric Mixtures. Polymer Science,1950, 5:505-514
    [13]Garcia, R., Melad, O., Gomez, C. M., et al. Viscometric Study on the Compatibility of Polymer-Polymer Mixtures in Solution. Europe Polymer,1999,35:47-55
    [14]Sun, Z. H., Wang, W., Feng, Z. L. Criterion of polymer-polymer miscibility determined by viscometry. Europe Polymer,1992,28:1259-1261
    [15]Jiang, W. H., Han, S. J. An improved criterion of polymer miscibility determined by viscometry. Europe Polymer,1998,34:1579-1584
    [16]Wanchoo, R. K., Sharma, P. K. Viscometric study on the compatibility of some water-soluble polymer-polymer mixtures. European Polymer Journal,2003,39:1481-1490
    [17]Blonk, J. C. G., Eendenburg, J. V., Koning, M. M. G., et al. A new CSLM-based method for determination of the phase behaviour of aqueous mixtures of biopolymers.Carbohydrate Polymers,1995,28:287-295
    [18]Lucia, F., Silvia, K., Flores, L., et al. Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures.Carbohydrate Polymers, 2006,66(1):8-15
    [19]Tolstoguzov, V. Thermodynamic considerations on polysaccharide functions. Carbohydrate Polymers,2003,54(3):371-380
    [20]Wajira, R. M., Srinanda, R. A new insight into thee phase transition processes of food starches. The Degree of Doctor of Philosophy in Food Science and Technology at the University of Nebraska,2006,71-79
    [21]Smith, A. M. The biosynthesis of the starch granule. Biomacromolecules.2001,2:335-341
    [22]Jose', M. H-M., Peter, J. S., Wim, T. K. Determination of the amylase-amylopectin ratio of starches by iodine-affinity capillary electrophoresis. Journal of Chromatography A,2004,1053: 227-234
    [23]Yoshimoto, Y., Tashiro, J., Takenouchi, T., et al. Molecular structure and some physicochemical properties of high amylose barley starch. Cereal Chemistry,2000,77:279-285
    [24]刘志强,益小苏.直链淀粉的分级制备研究.浙江大学学报,2000,34(5):494-498
    [25]刘洁,刘亚伟.直链淀粉与支链淀粉的分离方法.粮食与饲料工业,2005,2:15-17
    [26]Kalichevsky, M. T., Ring, S. G. Incompatibility of amylose and amylopectin in aqueous solution. Carbohydrate Research,1987,162:323-328
    [27]Keetels, C. J. A. M., Van, V. T., Walstm, P. Gelation and Retrogradation of Concentrated Starch System:1. Gelation. Food Hydrocolloids,1996,10 (3):343-353
    [28]孙秀萍,于九皋,刘延奇.DS分析方法在淀粉凝胶化研究中的应用.化学通报,2003,66:1-8
    [29]丁文平,丁霄霖.温度对大米淀粉凝胶和回生影响的研究.粮食与饲料工业,2002(12):32-34
    [30]Maria, G. S. Thermodynamic analysis of the impact of molecular interactions on the functionality of food biopolymers in solution and in colloidal systems. Food Hydrocolloids,2007, 21(1):23-45
    [31]Keetels, C. J. A. M., van, Vliet. T., Walstra, P. Gelation and retrogradation of concentrated starch systems:2. Retrogradation. Food Hydrocolloids,1996b,10:355-362
    [32]Vladimir, T. Thermodynamic considerations of starch functionality in food. Carbohydrate Polymers,2003,51:99-111
    [33]Keetels, C. J. A. M., van, Vliet. T., Walstra, P. Gelation and retrogradation of concentrated starch systems:1. Gelation. Food Hydrocolloids,1996a,10:343-353
    [34]Fredrikssona, H,, Silveriob, J., Andemon, R., et al. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches.Carbohydrate Polymers,1998,35:119-134
    [35]Kalichevsky, M. T., Ring, S. G. Incompatibility of concentrated aqueous solutions of dextran and amylose and its effect on amylose gelation.Carbohydrate Polymers,1986,6:75-84
    [36]Yuryev, V. P., Nemirovskaya, I. E., Maslova, T. D. Phase state of starch gels at different water contents.Carbohydrate Polymers,1995,26:43-46
    [37]Sanghoon, K., Julious, L. W. Isolation of Amylose from Starch Solutions by Phase Separation. Starch,2004,56:29-36
    [38]Fredrikssona, H., Silveriob, J., Andemon, R., et al. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches.Carbohydrate Polymers,1998,35:119-134
    [39]Zhong, Z. K., Sun, X. S. Thermal characterization and phase behavior of cornstarch studied by differential scanning calorimetry. Journal of Food Engineering,2005,69:453-459
    [40]张璐.淀粉的糊化以及测定方式的发展与探讨.粮食与饲料工业,2001,8:43-45
    [41]熊善柏.淀粉在过量水分下糊化机理研究.粮食与油脂,2001,9:2-4
    [42]熊善柏.稻米淀粉糊化进程研究.粮食与饲料工业,2001,5:14-16
    [43]徐忠.马铃薯梭甲基淀粉糊化特性研究.食品科学,2001,2:25-27
    [44]Mandala, I. G., Palogou, E. D., & Kastaropoulos, A. E. Influence of preparation and storage conditions on texture of xanthan-starch mixtures. Journal of Food Engineering,2002,53,27-38
    [45]Mandala, I. G., & Palogou, E. D. Effect of preparation conditions and starch/xanthan concentration on gelation process of potato starch systems. International Journal of Food Properties,2003,6:311-328
    [46]Hanna, M. B., Sikora, M., Kowalski, S., et al. Interactions of potato starch with selected polysaccharide hydrocolloids as measured by low-field NMR. Food Hydrocolloids.2008,22: 336-345
    [47]Cairns, P., Miles, M. J., Morris, V. J., et al. X-ray fibre-diffraction studies of synergistic, binary polysaccharide gels. Carbohydrate Research,1987,160:411-423
    [48]Lii, C. Y., Tomasik, P., Hung, W-L., et al. Polysaccharide-polysaccharide interactions in pastes. Polish Journal of Food and Nutrition Sciences,2002,11(4):29-33
    [49]Acquarone, V. M. and Rao, M. A. Influence of sucrose on the rheology and granule size of cross-linked waxy maize starch dispersions heated at two temperatures. Carbohydrate Polymers. 2003,51(4):451-458
    [50]Shi, X., & BeMiller, J. N.Effects of food gums on viscosities of starch suspensions during pasting. Carbohydrate Polymers,2002,50:7-18
    [51]Yoo, B., Yoo, D., Kim, Y. R., et al. T.Effect of sugar type on rheological properties of high-methoxyl pectin gels. Food Science and Biotechnology,2003,12:316-319
    [52]Annable, P., Fitton, M. G., Harris, B., et al. Phase bohavior and rheology of mixed polymer starch. Food Hydrocolloids,1994,8:351-359
    [53]Alloncle, M., Lefebvre, J., Llamas, G., et al. A theological characterization of cereal starch-galactomannan mixtures. Cereal Chemistry,1989,66:90-93
    [54]Yoshimura, M., Takayab, T., Nishinarib, K. Effects of xyloglucan on the gelatinization and retrogradation of com starch as studied by rheology and differential scanning calorimetry. Food Hydroeolloids,1999(13):101-111
    [55]Ahmad, F. B., Williams, P. A. Effect of galactomannans on the thermal and rheological properties of sago starch. Journal of Agricultural Food Chemistry,2001 (49):1578-1586
    [56]Lee, M. H., Back, M. H., Cha, D. S., et al. Freeze-thaw stabilization of sweet potato starch gel by polysaccharide gums. Food Hydrocolloids,2002 (16):345-352
    [57]Marek, S., Stanislaw, K., Piotr, T. Binary hydrocolloids from starches and xanthan gum. Food Hydrocolloids,2008,5(22):943-952
    [58]Zimeri, J. E., Kokini, J. L. Phase transitions of inulin-waxy maize starch systems in limited moisture environments. Carbohydrate Polymers,2003,51:183-190
    [59]Funami, T., kataoka, Y., Omoto, Z., et al. Effects of non-ionic gelatinization and retrogradation of corn starch as determined by rheology and gelatinization and retrogradation of wheat starches with different amylopectin chain length. Carbohydrate Polymers,2004 (58):71-77
    [60]Verbeken, D., Thas, O., Dewettinck, K. Textural properties of gelled dairy desserts containing k-carrageenan and starch. Food Hydrocolloids,2004 (18):817-823
    [61]Huang, M., Kennedy, J. F., Li, B., et al. Characters of rice starch gel modified by gellan, carrageenan, and glucomannan:A texture profile analysis study. Carbohydrate Polymers,2007 (69):411-418
    [62]Funami, T., Kataoka, Y., Omoto, T., et al. Effects of non-ionic polysaccharides on the gelatinization and retrogradation behavior of wheat starch. Food Hydrocolloids,2005 (19):1-13
    [63]Funami, T., Nakauma, M., Noda, S., et al. Effects of some anionic polysaccharides on the gelatinization and retrogradation behaviors of wheat starch:Soybean-soluble polysaccharide and gum arabic. Food Hydrocolloids,2008 (22):1528-1540
    [64]Banchathanakij, R., Suphantharika, M. Effect of different β-glucans on the gelatinisation and retrogradation of rice starch. Food Chemistry,2009 (114):5-14
    [65]陈海霞,谢笔钧.茶多糖不同提取T艺的比较研究.食品工业科技,2001(2):18-19
    [66]傅博强,谢明勇,周鹏等.纤维素酶法提取茶多糖.无锡轻工大学学报,2002,21(4):362-367
    [67]王元凤,金征宇.酶法提取茶多糖工艺的研究.江苏农业科学,2005,3:122-125
    [68]周小玲,汪东风,李素臻等.不同酶法提取工艺对茶多糖组成的影响.茶叶科学,2007,27-32
    [69]巩发永,齐桂年,李静等.超声波辅助提取边茶中茶多糖工艺条件研究.江苏农业科学.2006,5:139-140
    [70]聂少平,谢明勇,罗珍.微波技术提取茶多糖的研究.食品科学.2005,26(11):103-105
    [71]周志,汪兴平.茶多糖分离提取技术研究.食品与发酵工业,2001,28:82-83
    [72]王元凤,金征宇.D315树脂分离茶多糖工艺的研究.农业工程学报,2005,21(10):147-150
    [73]王元风,金征宇.茶多糖脱色的研究.食品与发酵工业,2004,30(12):60-65
    [74]王元风,金征宇.不同溶剂分级提取的茶多糖的组成及降血糖活性.天然产物研究与开发,2006,18:813-817
    [75]杨其林,刘钟栋,任健等.采用CTAB沉淀法提取茶多糖.食品与发酵工业.2004,30(10):139-142
    [76]尹军峰,袁海波,谷记平等.膜法富集茶多糖的初步研究.茶叶科学.2006,26(2):108-111
    [77]陈海霞,谢笔钧.树脂法从茶叶中综合提取有效成分的研究.精细化工.2002,17(8):493-495
    [78]汪东风,李俊,王常红等.茶叶多糖的组成及免疫活性研究.茶叶科学,2000,20(1):45-50
    [79]许新德,高荫榆,陈才水等.茶叶多糖的纯化及组分研究.食品科学.2000,21(8):13-15
    [80]倪德江,陈玉琼,余志等.乌龙茶加工过程多糖的变化、组分分离及特性研究.茶叶科学.2005,25(4):282-288
    [81]王元凤,金征宇.茶叶中多糖的分离及降血糖活性的研究.中草药.2005,36(10):1453-1457
    [82]周鹏,谢明勇.茶叶粗多糖的提取及纯化研究.食品科学,2001,22(11):46-47
    [83]Zhou, P., Xie M. Y., Nie, S. P., et al. Primary structure and configuration of tea polysaccharide. Science in China, Series C:Life Science.2004,47:416-424
    [84]Wang, D. F., Zhou, X. L., Li, L., et al. A rapid quantitative method for polysaccharides in green tea and oolong tea. Eur. Food Res. Technol.2008,226:691-696
    [85]周鹏,谢明勇,聂少平.茶多糖TGC的结构表征.中国科学C辑:生命科学,2004,34:178-185
    [86]陈海霞.高活性茶多糖的一级结构表征、空间构象及生物活性的研究:[博士学位论文].武汉:华中农业大学,2002
    [87]倪德江,陈玉琼,余志等.乌龙茶多糖OTPS2-1的光谱特性,形貌特征及热特性研究.高等学校化学学报,2004,25(12):2263-226
    [88]周鹏,谢明勇,王远兴.高效液相色谱—电喷雾质谱法用于茶多糖蛋白的纯度和相对分子质量的测定.色谱,2004,22(1):27-29
    [89]Chen, H. X., Zhang, M., Qu, Z. S., et al. Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis). Food Chem.2008,106:559-563
    [90]Nie, S. P., Xie, M. Y., Fu, Z. H.,et al. Study on the purification and chemical compositions of tea glycoprotein. Carbohydr. Polym.2008,71:626-633
    [91]Nie, S. P., Xie, M. Y. & Wang, Y. X. Preparation of tea glycoprotein and its application as a calibration standard for the quantification and molecular weight determination of tea glycoprotein in different tea samples by high-performance gel-permeation chromatography. Anal. Bioanal. Chem.2005,383:680-686
    [92]清水岑夫.探讨茶叶的降血糖作用以从茶叶中制取抗糖尿病的药物.国外农学-茶叶.1987,(3):38-40
    [93]Chen, H. X., & Xie, B. J. The preventive and curative effect on diabetic mice of tea polysaccharides. Acta Nutr Sin.2002,24:85-86
    [94]Zhou, P., Xie M. Y., Nie, S. P., et al. Primary structure and configuration of tea polysaccharide. Science in China, Series C:Life Science.2004,47:416-424
    [95]Marcel, W. L. K., & Chi, H. C. Pharmacological effects of green tea on the gastrointestinal system. Eur. J. Pharmacol.2004,500:177-185
    [96]Yu, F., Sheng, J. C., Xu, J., et al. Antioxidant activities of crude tea polyphenols, polysaccharides and proteins of selenium-enriched tea and regular green tea. Eur. Food Res. Technol.2007,225: 843-848
    [97]Chen, H. X., Zhang, M., Qu, Z. S., et al. Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis). Food Chem.2008,106:559-563
    [98]Wang, D. F., Zhou, X. L., Li, L., et al. A rapid quantitative method for polysaccharides in green tea and oolong tea. Eur. Food Res. Technol.2008,226:691-696
    [99]徐仲溪,王坤波.茶多糖化学及生物活性研究.茶叶科学,2004,24(2):75-81
    [100]Zhou, Y. B., Wang D. F., Zhang, L., et al. Effect of polysaccharides on gelatinization and retrogradation of wheat starch. Food Hydrocoll.2007,21:1046-1054
    [101]Wang, Y. F., Wei, X. L., Jin, Z. Y. Structure analysis of a neutral polysaccharide isolated from green tea. Food Research International,2009,42:739-745
    [102]Wang, D. F., Wang, C. H., Li, J.Components and activity of polysaccharide from coarse tea. J. Agri and Food Chem.2001,49 (1):507-510
    [103]Tecante, A., & Doublier, J. L. Rheological investigation of the interaction between amylose and K-carrageenan. Carbohydrate polymers,2002,49:177-183
    [104]Didem, Z. I., & Kokini, J. L. Theoretical analysis of predictive miscibility of carbohydrate polymers-Software calculations for inulin-amylopectin systems. Carbohydrate Polymers,2008, 72:52-59
    [105]Conde-Petit, B., Pfirter, A., & Escher, F. Influence of xanthan on the rheological properties of aqueous starch-emulsifier systems. Food Hydrocolloids,1997,11:393-399
    [106]Lv, Y., Yang, X. B., Zhao, Y., et al. Separation and quantification of component monosaccharides of the tea polysaccharides from Gynostemma pentaphyllum by HPLC with indirect UV detection. Food Chem.2009,112:742-746
    [1]Mori, M., Morita, N., & Ikeogaya, K. Polysaccharides from tea for manufacture of hypoglycemics, antidiabetics and health foods. CA.1989,111:140472
    [2]Wang, D. G., & Wang, S. R. The separation, purity, analysis and reducing blood-lipid of Polysaccharides from tea. J. CPU.1991,22:225-228
    [3]Andrea, R. P., & Michael, H. G. Antioxidant properties of catechins and green tea extracts in model food emulsions. J. Agric. Food Chem.1997,45:4267-4270
    [4]Chen, H. X., & Xie, B. J. The preventive and curative effect on diabetic mice of tea polysaccharides. Acta Nutr Sin.2002,24:85-86
    [5]Zhou, P., Xie M. Y., Nie, S. P., et al. Primary structure and configuration of tea polysaccharide. Science in China, Series C:Life Science.2004,47:416-424
    [6]Marcel, W. L. K., & Chi, H. C. Pharmacological effects of green tea on the gastrointestinal system. Eur. J. Pharmacol.2004,500:177-185
    [7]Yu, F., Sheng, J. C., Xu, J., et al. Antioxidant activities of crude tea polyphenols, polysaccharides and proteins of selenium-enriched tea and regular green tea. Eur. Food Res. Technol.2007,225: 843-848
    [8]Chen, H. X., Zhang, M., Qu, Z. S., et al. Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis). Food Chem.2008,106:559-563
    [9]Wang, D. F., Zhou, X. L., Li, L., et al. A rapid quantitative method for polysaccharides in green tea and oolong tea. Eur. Food Res. Technol.2008,226:691-696
    [10]Zhou, Y. B., Wang D. F., Zhang, L., et al. Effect of polysaccharides on gelatinization and retrogradation of wheat starch. Food Hydrocoll.2007,21:1046-1054
    [11]Nie, S. P., Xie, M. Y., Fu, Z. H., et al. Study on the purification and chemical compositions of tea glycoprotein. Carbohydr. Polym.2008,71:626-633
    [12]Chen, H. X., Zhang, M., & Xie, B. J. Quantification of uronic acids in tea polysaccharide conjugates and their antioxidant properties. J. Agric. Food Chem.2004,52:3333-3336
    [13]Lv, Y., Yang, X. B., Zhao, Y., et al. Separation and quantification of component monosaccharides of the tea polysaccharides from Gynostemma pentaphyllum by HPLC with indirect UV detection. Food Chem.2009,112:742-746
    [14]Nie, S. P., Xie, M. Y., & Wang, Y. X. Preparation of tea glycoprotein and its application as a calibration standard for the quantification and molecular weight determination of tea glycoprotein in different tea samples by high-performance gel-permeation chromatography. Anal. Bioanal. Chem.2005,383:680-686
    [15]Millard, M. M., Dintzis, F. R., Willett, J. L., et al. Light-scattering molecular weights and intrinsic viscosities of precessed waxy maize starches in 90% dimethyl sulfoxide and H2O. Cereal Chem. 1997,74:687-691
    [16]Wyatt, P. J. Light-Scattering and the Absolute Characterization of Macromolecules. Anal. Chem. Acta.1993,272:1-40
    [17]ASTRA V Users Guide. ASTRA for Windows User's Guide for the DAWN EOS, mini DAWN, and Wyatt Light Scattering Instruments, Version 5.1. Wyatt Technology Corporation, Santa Barbara, CA.2004
    [18]Tao, Y. Z., & Zhang, L. N. Determination of Molecular Size and Shape of Hyperbranched Polysaccharide in Solution. Biopolym.2006,83:414-423
    [19]Huggins, M. L. The viscosity of dilute solutions of long-chain molecules. IV. Dependence on concentration. JACS.1942,64:2716
    [20]Wanchoo, R. K., & Sharma, S. K. Viscometric study on the compatibility of some water-soluble polymer-polymer mixtures. Eur. Polym. J.2003,39:1481-1490
    [21]Durand, A. Aqueous solutions of amphiphilic polysaccharides:concentration and temperature effect on viscosity. Eur. Polym. J.2007,43:1744-1753
    [22]Morris, E. R. (Eds.) Polysaccharide rheology and in-mouth perception. In E. R.Morris (Ed.), Food polysaccharides and their applications. New York:Marcel Dekker, Inc.1995:517-519
    [23]Funami, T., Kataoka, Y., Hiroe, M., et al. Thermal aggregation of methylcellulose with different molecular weights. Food Hydrocoll.2007,21:46-58
    [24]Brandrup, J., & Immergut, E. H. (Eds.) Polymer handbook. New York:Wiley.1989
    [25]Gabriela, G., & Walther, B. Starch fractions as examples for nonrandomlu branched marcromolecules,1. dimensional properties. Macromol.1995,289:2362-2370
    [1]Kalichevsky, M. T., and Ring, S. G. Incompatibility of amylose and amylopectin in aqueous solution. Carbohydrate Research.1987,162:323-328
    [2]Maria, G. S. Thermodynamic analysis of the impact of molecular interactions on the functionality of food biopolymers in solution and in colloidal systems. Food Hydrocolloids.2007,21(1):23-45
    [3]Alloncle, M., Lefebvre, J., Llamas, G., et al. A rheological characterization of cereal starch-galactomannan mixtures. Cereal Chemistry,1989,66:90-93
    [4]Annable, P., Fitton, M. G., Harris, B., et al. Phase behavior and rheology of mixed polymer systems containing starch. Food Hydrocolloids,1994,8:351-359
    [5]Chee, K. K. Determination of Polymer-Polymer Miscibility by Viscometry. Eur. Polym. J.1990,26: 423-426
    [6]Chen, H. X., Zhang, M., Xie, B. J. Quantification of uronic acids in tea polysaccharide conjugates and their antioxidant properties. Journal of Agricultural and Food Chemistry,2004,52:3333-3336
    [7]Krigbaum, W. R., and Wall, F. T. Viscosities of Binary Polymeric Mixtures. J. Polym. Sci.1950,5: 505-514
    [8]Conde-Petit, B., Pfirter, A., Escher, F. Influence of xanthan on the rheological properties of aqueous starch-emulsifier systems. Food Hydrocolloids,1997,11:393-399
    [9]Didem, Z. I., Kokini, J. L. Theoretical analysis of predictive miscibility of carbohydrate polymers-Software calculations for inulin-amylopectin systems. Carbohydrate Polymers,2008,72:52-59
    [10]French, D. Organization of starch granules. In:Whistler, R., Bemiller, J. N., Paschall, E. F. (Eds.), Starch:Chemistry and technology. Orlando Academic Press,1984,183-256.Galinski G., Burchard W. Macromolecules,1995,28:2363
    [11]Kulshreshtha, A. K., Singh, B. P., and Sharma, Y. N. Viscometric Determination of Compatibility in PVC/ABS polyblends-I. Viscosity-Composition Plots. Eur. Polym. J.1988,24:29-31
    [12]Maria, G. S. Thermodynamic analysis of the impact of molecular interactions on the functionality of food biopolymers in solution and in colloidal systems. Food Hydrocolloids,2007,21(1):23-45
    [13]Shi, X., & BeMiller, J. N. Effects of food gums on viscosities of starch suspensions during pasting. Carbohydrate Polymers,2002,50:7-18
    [14]Yoo, B., Yoo, D., Kim, Y. R., et al. Effect of sugar type on rheological properties of high-methoxyl pectin gels. Food Science and Biotechnology,2003,12:316-319
    [15]Mamza, P. A. A. P., and Folaranmi, F. M. Compatibility Studies on Solution of Polystyrene and Polyvinyl Acetate Blend by Density and Viscometric Methods. Eur. Polym. J.1996,32:909-912
    [16]Krause, S., Paul, D. R., and Newman, S. (eds.) Polymer-polymer compatibility. Polymer Blends, Academic Press, New York,1978
    [17]Olabisi, O., Robeson, L. M., and Shaw, M. T. Polymer-Polymer Miscibility Academic Press, New York,1979
    [18]Lizymol, P. P., and Thomas, S. Binary Polymer Systems-Interactions in Solutions and Their Relationship to Solid State Compatibility. Eur. Polym. J.1994,30:1135-1142
    [19]Huggins, M. L. The Viscosity of Dilute Solutions of Long-Chain Molecules. Ⅳ. Dependence on Concentration. J. Am. Chem. Soc.1942,64:2716-2718
    [20]Williamson, G. R., and Wright, B. Interactions in binary polymer systems. J. Polym.Sci. A3,1965, 3885-3891
    [21]Chee, K. K. Determination of Polymer-Polymer Miscibility by Viscometry. Eur. Polym. J.1990, 26:423-426
    [22]Rundin, A., Hoegy, H. L.W., and Johnson, H. K. Estimation of viscosities of mixed polymer solutions. J. Appl. Polym. Sci.1972,16:1281-129
    [1]Liu P, Yu L, Liu HS, Chen L and Li L, Glass transition temperature of starch studied by a high-speed DSC. Carbohydrate Polymers 2009,77:250-253
    [2]McGregor C and Bines E, The use of high-speed differential scanning calorimetry (Hyper-DSCTM) in the study of pharmaceutical polymorphs. International Journal of Pharmaceutics,2008,350: 48-52
    [3]Saunders M, Podluii K, Shergill S, Buckton G and Royall P, The potential of high speed DSC (Hyper-DSC) for the detection and quantification of small amounts of amorphous content in predominantly crystalline samples. International Journal of Pharmaceutics,2004,274:35-40
    [4]王振宇.淀粉的玻璃化转变及其对食品品质的影响.粮食与饲料工业,2000,2:40-42
    [5]Zhou, J., Ding, J. P., Wang, Z. N., et al. Effect of tea polysaccharides on blood-glucose, blood lipid and immunological functions of mice. Tea Science,1997,17:75-79
    [6]Andrea, R. P., & Michael, H. G. Antioxidant properties of catechins and green tea extracts in model food emulsions. Journal of Agricultural and Food Chemistry,1997,45:4267-4270
    [7]Chen, H. X., & Xie, B. J. The preventive and curative effect on diabetic mice of tea polysaccharides. Acta Nutr Sin,2002,24:85-86
    [8]Chen, H. X., Zhang, M., & Xie, B. J. Quantification of uronic acids in tea polysaccharide conjugates and their antioxidant properties. Journal of Agricultural and Food Chemistry,2004,52:3333-3336
    [9]Marcel, W. L. K., & Chi, H. C. Pharmacological effects of green tea on the gastrointestinal system. European Journal of Pharmacology,2004,500:177-185
    [10]Kalichevsky, M. T., & Ring, S. G. Incompatibility of amylose and amylopectin in aqueous solution. Carbohydrate Research,1987,162:323-328
    [11]Alloncle, M., Lefebvre, J., Llamas, G., et al. A rheological characterization of cereal starch-galactomannan mixtures. Cereal Chemistry 1989,66:90-93
    [12]Tecante, A., & Doublier, J. L. Rheological investigation of the interaction between amylose and K-carrageenan. Carbohydrate polymers,2002,49:177-183
    [13]Didem, Z. I., & Kokini, J. L. Theoretical analysis of predictive miscibility of carbohydrate polymers-Software calculations for inulin-amylopectin systems. Carbohydrate Polymers,2008, 72:52-59
    [14]Conde-Petit, B., Pfirter, A., & Escher, F. Influence of xanthan on the rheological properties of aqueous starch-emulsifier systems. Food Hydrocolloids,1997,11:393-399
    [15]Annable, P., Fitton, M. G., Harris, B., et al. Phase behavior and rheology of mixed polymer systems containing starch. Food Hydrocolloids,1994,8:351-359
    [16]Hermans, P. H., & Weidinger, A. Quantitative x-ray investigations on the crystallinity of cellulose fibers, a background analysis. Journal of Applied Physics,1948,19:491-506
    [17]Bizot, H., Bail, P. L., Leroux, B., et al. Calorimetric evaluation of the glass transition in hydrated, linear and branched polyanhydroglucose compounds. Carbohydrate Polymers,1997,32,33-50
    [18]Myllarinen, P., Buleon, A., Lahtinen, R., et al. The crystallinity of amylose and amylopectin films. Carbohydrate Polymers,2002,48:41-48
    [19]Chatakanonda, P., Varavinit, S., & Chinachoti, P. Relationship of gelatinization and recrystallization of cross-linked rice to glass transition temperature. Cereal Chemistry,2000,77, 315-319
    [20]Muraa, P., Bettinetti, G, P., Faucci, M. T., et al. Differential scanning calorimetry in compatibility testing of picotamide with pharmaceutical excipients.Thermochimica Acta,1998,321:59-65
    [21]Slade, L., & Levine, H. Beyond water activity:recent advances based on an alternative approach to the assessment of food quality and safety. CRC Crit. Rev. Food Sci. Nutr.1991,30,115-360
    [22]Zhou, Y. B., Wang, D. F., Zhang, L., et al. Effect of polysaccharides on gelatinization and retrogradation of wheat starch. Food Hydrocolloids 2007,21:1046-1054
    [23]Fox JTG and Flory PJ, Second-order transition temperatures and related properties of polystyrene. I. influence of molecular weight, J. Appl. Phys.1950,21:581-591
    [24]Huang, R. M., Chang, W. H., Chang, Y. H., et al. Phase transition of rice starch and flour gels. Cereal Chemistry,1994,66,411-415
    [25]BeMiller, J. N., & Whistler, R. L. Carbohydrates. In:O. R. Fennema. (Ed.), Food Chemistry, Marcel Dekker, New York.1997, pp.157-159
    [26]Zimeri, J. E., & Kokini, J. L. Phase transitions of inulin-waxy maize starch systems in limited moisture environments. Carbohydrate Polymers,2003,51,183-190
    [27]Athina, L., & Costas, G. B. Thermophysical properties of chitosan, chitosan-starch and chitosan-pullulan films near the glass transition. Carbohydrate Polymers,2002,48,179-190
    [28]Jetnapa, T., Manop, S., & James, N. B. Effects of cellulose derivatives and carrageenans on the pasting, paste, and gel properties of rice starches. Carbohydrate Polymers,2008,73,417-426
    [1]何曼君,张红东,陈维孝等.高分子物理.复日.大学出版社,第三版,2008,9 1-101
    [2]Lee, M. H., Back, M. H., Cha, D. S., et al. Freeze-thaw stabilization of sweet potato starch gel by polysaccharide gums. Food Hydrocolloids,2002 (16):345-352
    [3]Huang, M., Kennedy, J.F., Li, B., et al. Characters of rice starch gel modified by gellan, carrageenan, and glucomannan:A texture profile analysis study. Carbohydrate Polymers,2007 (69): 411-418
    [4]Fredrisson, H., Sliverio, J., Andersson, R., et al. The influence of amylase and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydrate Polymers,1996,31:20-35
    [5]Maria, G. S. Thermodynamic analysis of the impact of molecular interactions on the functionality of food biopolymers in solution and in colloidal systems. Food Hydrocolloids, 2007,21(1):23-45
    [6]Gunaratne, A., Ranaweera, S., Corke, H. Thermal, pasting, and gelling properties of wheat and potato starches in the presence of sucrose, glucose, glycerol, and hydroxypropyl β-cyclodextrin. Carbohydrate Polymers,2007, (70):112-122
    [7]Liu H S., Yu L., Xie F G., Chen L. Gelatinization of cornstarch with different amylose/amylopectin content. Carbohydrate Polymers,2006 (65):357-363
    [8]Nishinari, K., Takahashi, R. Interaction in polysaccharide solutions and gels. Current Opinion in Colloid and Interface Science,2003, (8):396-400
    [9]Ortega-Ojeda, F. E., Larsson, H., Eliasson, A. C. Gel formation in mixtures of amylose and high amylopectin potato starch. Carbohydrate Polymers,2004 (57):55-66
    [10]Lucia, F., Silvia K.., Flores, L. et al. Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures. Carbohydrate Polymers. 2006,66 (1):8-15
    [11]Acquarone, V. M., and Rao, M. A. Influence of sucrose on the rheology and granule size of cross-linked waxy maize starch dispersions heated at two temperatures. Carbohydrate Polymers. 2003,51 (4):451-458
    [12]Choi, S. G., and Kerr, W. L Water mobility and textural properties of native and hydroxypropylated wheat starch gels. Carbohydrate Polymers.2003,51 (1):1-8
    [13]Tolstoguzov, V. Thermodynamic considerations on polysaccharide functions. Carbohydrate Polymers.2003,54 (3):371-380
    [14]Fredrisson, H., Sliverio, J., Andersson, R., et al. The influence of amylase and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydrate Polymers,1996,31:20-35
    [15]Svegmark, K., Hermansson, A-M. Microstructure and rheological properities of composites of potato starch granules and amylase:A comparison of observed and predicted structures. Food Structure,1993,12:181
    [16]Tester, R, F., Morrison, W. R. Swelling and gelatinization of cereal starches. I. effects of amylopeamylose and lipids.Cereal Chem.,1990,67 (6):551-557
    [17]Orford, P. D., Ring, S. Carroll, V., et al. The effect of concentration and botanical source on the gelatin and retrogradation of starch. Sci. Food Agri.,1987,39:169-177
    [18]Evans, I. D., Raisman, H. D. The effect of solutes on the gelatinization temperature range of potato starch. Starch,1982,34:224-231
    [19]Yoshimura, M., Takayab, T., Nishinarib, K. Effects of xyloglucan on the gelatinization and retrogradation of com starch as studied by rheology and differential scanning calorimetry. Food Hydroeolloids,1999(13):101-111

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700