用户名: 密码: 验证码:
厚冲积层立井井筒破坏的发生机理及防治技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立井井筒非采动破坏是一种特殊类型的工程地质灾害,是人类采矿活动和地质环境相互作用的结果。作者立足于广大科研人员十几年来的研究成果,采用力学分析、数值模拟、神经网络等方法,建立了立井井筒破坏的快速分析计算方法及立井井筒破坏的神经网络预测系统,且给出了新的治理方法设计,为彻底的根治立井井筒破坏的工程地质灾害提供了新的思路与理论依据。本文的主要结论为:
     1、基于立井井筒具体的工程地质及水文地质条件建立立井井筒破坏的数值模拟计算模型,对井筒破坏过程中的水、土、井筒三者的相互作用进行耦合模拟计算分析,确定立井井筒非采动破坏(初次破坏与重复破坏)的发生过程及发生机理,形成一套有效的立井井简破坏过程数值模拟计算方法与流程;
     2、根据立井井筒非采动破坏的工程地质力学模型,建立立井井筒非采动破坏过程的力学分析计算方法,对已建立井井筒破坏进行预防与治理,对类似工程地质条件下的矿区的新建立井设计提供计算依据;
     3、基于模糊神经网络理论与立井井筒具体的工程地质及水文地质条件建立立井井筒破坏的模糊神经网络的预测与判别系统,用此结果来指导矿山生产,形成一套有效的立井井筒破坏预测与判别方法;
     4、在充分研究现有的立井井筒破坏治理方法的基础上,结合底含加固、土体水平应力的卸荷及立井井筒保护三方面的支护机理提出一种立井井筒非采动破坏地质灾害的治理新方法,为有效的治理立井井筒破坏提供新的理论。
Non-mining fracturing of shaft lining is a special engineering geologic hazard and is caused by interaction between mining and geological environment. The neural network forecast system and new harnessing method were established based on the achievements of researchers before. The main conclusions of this thesis are:1. The numerical simulation model was built based on practical engineering geologic and hydrogeologic conditions of shaft fracturing. The simulation was carried out by three-dimensional coupling numerical simulation method. The result revealed the changing laws of different factors in the process of shaft-lining fracturing, and would play an important role in the fracturing mechanism analysis and prevention and harness for shaft lining.2. The calculation methods of mechanism analysis was founded for the forecast and harnessing of shaft fracture, and the new shaft could be designed according as this methods.3. The forecast system was established based on the fuzzy neural network theory. The forecast results indicated that the approach combining fuzzy logical judgment with artificial neural network could distinguish better the developing of shaft-lining non-mining fracture hazard and the results were reliable and could meet the practical requirement.4. The new harnessing method is drawn for the shaft lining fracture based on the mechanism analysis of harnessing methods for shaft lining fracture before, and the new theory was provided for harnessing shaft effectively according to this new harnessing method.
引文
[1] 李文平.深厚表土中煤矿立井破裂工程地质研究[M].徐州:中国矿业大学出版社.2001.11.
    [2] 卞政修.黄淮地区井筒破裂的地质因素[J].煤炭科学技术.1993.02:p56-60。
    [3] 冯开源.深厚表土冻结施工井壁的裂漏[J].煤炭科学技术.1991.4:11-13.
    [4] 顾孟寒.立井井壁破坏机理与治理的探讨[J].煤炭科学技术.1991.06:44-47.
    [5] 王吉祥.冻结施工井壁断裂分析[J].煤炭科学技术.1984.08:12-13.
    [6] 孙国权.对“冻结施工井壁断裂分析”一文的商榷[J].煤炭科学技术.1985.11:19-21.
    [7] 周治安.厚松散覆盖层底部机械潜蚀与黄淮地区井筒破裂[J].煤炭科学技术.1993.9:45-50.
    [8] 李义昌.厚表土采矿工程非采动环境效应[J].煤炭学报.1992,22(1):p22-26.
    [9] 李定龙,周治安.井壁混凝土渗水腐蚀破坏可能性分析.煤炭学报[J].1996, 21(2):158-163.
    [10] 张振昌.立井混凝土井壁的防腐问题[J].煤炭科学技术.1996.12:5-7.
    [11] 杨维好,崔广心.特殊地层条件竖井井壁破坏机理及防治技术之一[J].中国矿业大学学报.1996,25(4):1-5.
    [12] 虞咸祥.大屯矿区立井井壁断裂原因分析[J].煤炭科学技术.1991.06:41-44.
    [13] 崔广心.特殊地层条件竖井井壁破裂机理[J].建井技术.1998,19(2):29-32.
    [14] 崔广心特殊地层条件竖井井壁破坏机理及防治技术[J].建井技术.1998,19(1):28-32.
    [15] 崔广心,程锡禄.徐淮地区井壁破坏原因的初步研究[J].煤炭科学技术.1991.08:46-50.
    [16] 吕恒林,崔广心.深厚表土层中井壁结构破裂的力学机理[J].中国矿业大学学报.1999,28(6):539-543.
    [17] 经来盛.表土沉降对井壁破裂的影响及防破裂措施的研究[J].煤炭学报.2001,26(1):49-53.
    
    [18] 王树常,葛洪章.兖州矿区立井井壁破裂的原因分析及防治[J].中国矿业大学学报.1999,28(5):494-498.
    [19] 李文平,于双忠.深厚表土中煤矿立井非采动破裂的研究[J].工程地质学报.1995,3(1):45-55.
    [20] 李文平.深部土层失水变形时土与井壁相互作用试验与理论研究[J].岩土工程学报.2000,22(4):475-480.
    [21] 李文平,都平平.大埋深土与井壁相互作用力学参数研究[J].中国矿业大学学报.1996,25(1):104-108.
    [22] 黄定华,喻怀君,马嘉荣.临涣矿区地表沉降对井壁破裂的影响[J].煤炭科学技术.1991.07:47-50.
    [23] 黄志平.立井井壁破裂原因解释[J].煤炭科学技术.1991.09:50-53.
    [24] 张忠华.立井表土段井壁破裂原因分析[J].煤炭科学技术.1992.02:43-44.
    [25] 陆孝军.立井井壁破裂的原因分析[J].煤炭科学技术.1994,22(12):41-44.
    [26] 黄定华,陈德胜.淮北矿区井筒破裂原因浅析[J].煤炭科学技术.1991.10:53-55
    [27] 张明龙.徐淮地区煤矿井筒破裂之机理研究[J].西部探矿工程.1996,18(2):21-22
    [28] M. A. Biot General theory of three-dimensional consolidation[J]. J. Appl. Phys. 1941, 12: 155-164
    [29] M. A. Biot Consolidation settlement under a rectangular load distribution[J]. J. Appl. Phys. 1941, 12: 426-430
    [30] M. A. Biot and F. M. Clingan Consolidation settlement of a soil with an impervious top surface[J]. J. Appl. Phys. 1941, 12: 578-581
    [31] M. A. Biot Theory of elasticity and consolidation for a porous anisotropic solid[J]. J. Appl. Phys. 1955, 26(2): 182-185
    [32] M. A. Biot Theory of deformation of a porous viscoelastic anisotropic solid[J]. J. Appl. Phys. 1956, 27(5): 459-467
    [33] M. A. Biot Mechanics of deformation and acoustic propagation in porous media[J]. J. Appl. Phys. 1962, 33(4): 1482-1497.
    [34] 黄传志,肖原.二维固结问题的解析解[J].岩土工程学报.1996,18(3):47-54.
    
    [35] 黄传志.多维太沙基固结微分方程求解[J].岩土工程学报.1996,13(1):35-47.
    [36] 周正明.饱和土大变形固结有限元分析[J].水利水运科学研究,1992.1:105-110.
    [37] N. Manoharan and Shambhu P. Dasgupta. Large Deformation Consolidation Analysis [J].. Indian Geotechnical Journal. 2000, 30(2): 146-173.
    [38] D. E. F. Stolle and P. A. Vermeer A consolidation model for a creeping clay [J]. Can. Geotech. J. 1999, 36: 754-759.
    [39] Jian-Hua Yin and Jun-Gao Zhu. Elastic viscoplastic consolidation modelling and interpretation of pore-water pressure responses in clay underneath tarsiut island [J]. Can. Geotech. J. 1999, 36: 708-711.
    [40] R. G. Robinson. Consolidation analysis with pore water pressure measurements [J]. Geotechnique. 1999, 49(1): 127-132.
    [41] C. C. Hird, V. J. Moseley. Model study of seepage in smear zones around vertical drains in layered soil [J]. Geotechnique. 2000, 50(1): 89-97.
    [42] G. Mesri. Coefficient of consolidation inflection point method [J]. Journal of Geotechnical and Geoenvironmental Engineering. 1999. 8: 716-718.
    [43] Jian-Hua Yin and Jun-Gao Zhu. Elastic viscoplastic consolidation modelling and interpretation of pore-water pressure responses in clay underneath tarsiut island [J]. Can. Geotech. J. 1999, 50(5): 607-608.
    [44] M. S. S. Almeida and P. E. L. Santa. Consolidation of a very soft clay with vertical drains [J]. Geotechnique. 2000, 50(6): 633-643.
    [45] E. A. Toorman. Sedimentation and self-weight consolidation: constitutive equations and numerical modeling [J]. Geotechnique. 1999, 49(6): 709-726.
    [46] G. Zhu, J. H. Yin. Consolidation of soil with vertical and horizontal drainage under ramp load [J]. Geotechnique. 2001, 51(4): 361-367.
    [47] G. Zhu and J. -H. Yin. Consolidation of double soil layers under depth-dependent ramp load [J]. Geotechnique. 1999, 49(3): 415-421.
    [48] D. F. T. Nash. Modeling consolidation accelerated by vertical drains in soils subject to creep [J]. Geotechnique. 2001, 51(3): 257-273.
    [49] Lai Fa Cao. Back-calculation of consolidation parameters from fields measurements at a reclamation site [J]. Can. Geotech. J. 2001, 38: 755-769.
    
    [50] Goro Imai and Kouichiro Yano. Applicabiity of hydraulic consolidation test for very soft clayey soils. Soils and Foundtions [J]. 1984, 24(2): 29-42.
    [51] S. Hansbo. Consolidation equation valid for both darcian and non-darcian flow. Geotechnique [J]. 2001, 51(1): 51-54.
    [52] G. T. Houlsby and R. S. Sharma. A conceptual model for the yielding and consolidation of clays [J]. Geotechnique. 1999, 49(4): 491-501.
    [53] Mikio Shoji and Hideki Ohta. Two-dimensional consolidation back-analysis. Soils and Foundations[J]. 1990, 30(2): 60-78.
    [54] Hareyuki Yamaguchi. Undrained shear characteristics of normally consolidated peat under triaxial compression and extension conditions [J]. Soils and Foundations. 1985, 25(3): 1-18.
    [55] D. M. Burmister. The general theory of stresses and displacements in layered soil systems I [J]. Journal of Applied Physics. 1945, 6(2): 89-96.
    [56] D. M. Burmister. The general theory of stresses and displacements in layered soil systems Ⅱ [J]. Journal of Applied Physics. 1945, 6(3): 126-127.
    [57] D. M. Burmister. The general theory of stresses and displacements in layered soil systems Ⅲ [J]. Journal of Applied Physics. 1945, 6(5): 296-302.
    [58] Zhong Qi Yue. On generalized Kelvin solutions in a multiayered elastic medium. Joumal of Elasticity [J]. 1995, 40: 1-43.
    [59] 陈子荫.围岩力学分析中的解析方法[M].北京:煤炭工业出版社.1994: 199-202.
    [60] 芮加白,徐秉业.轴对称空间问题的塑性解法[J].工程力学.1992,9(3):23-31.
    [61] 罗祖道.有限空心圆柱的轴对称变形问题[J].力学学报.1979.7:219-228.
    [62] 林小松.有限长厚壁圆筒空间轴对称应力分析的康托洛维奇变分法[J].工程力学.1997,14(3):70-77.
    [63] 林小松.有限长厚壁圆筒空间轴对称问题的高级康托洛维奇应力变分解[J].工程力学.1999,16(6):119-132.
    [64] 休小松.有限长复合厚壁圆筒井壁的空间轴对称应力分析[J].煤炭学报.1990,15(4):35-45.
    
    [65] 任放.圆柱孔的轴对称分析[J].长江科学院院报.1991,8(3):8-18.
    [66] 任青文,赵引.任意轴对称荷载作用下的圆杆分析[J].工程力学.2002,19(5):156-159.
    [67] 王文友.有限空心圆柱的轴对称变形问题的应力场[J].江苏力学.1990.6:72-74.
    [68] 顿志林.层状横观各向同性地基轴对称问题的位移解法[J].焦作工学院学报.2002,21(6):420-426.
    [70] 舒同林,苏培德.厚壁圆筒力学中的非拉梅问题[J].天津轻工业学院学报.1998.1:37-42.
    [71] 张仲毅.二次广义拉梅问题的弹性理论解[J].工程力学.1997,14(2):68-71.
    [72] 苗德华.舒同林.非拉梅问题的过盈配合结构装配应力的研究[J].工程力学.1994,11(1):45-51.
    [73] 单锐,刘助柏.厚壁筒柱面受双曲余弦分布压力、端面受常力之解及圆筒无限长时的极限[J].中国机械工程.2003,14(17):1526-1529.
    [74] P. F. Hou, H. M. Wang. Analytical solution for the axisymmetric plane strain electroelastic dynamics of special non-homogeneous piezoelectric hollow cylinder [J]. International Journal of Engineering Science. 2003, 41: 1849-1868.
    [75] 陈光敬.成层横观各向同性体非轴对称问题的解析解[J].同济大学学报.1998,26(5):522-527.
    [76] 单锐,刘助柏.厚壁筒受正弦分布压力之解及圆筒无限长时的极限[J].机械工程学报.2004,40(1):73-77.
    [77] 候宇,何福保.有限长圆柱体轴对称问题的弹性理论解[J].应用数学和力学.1991,12(10):903-912.
    [78] J. Q. Ye and H. Y Sheng. Free-edge dffect in cross-ply laminated hollow cylinders subjected to axisymmetric transverse loads [J]. International Journal of Engineering Science. 2003, 45: 1309-1326.
    [79] 蒋斌松.地下衬砌的变几何应力分析[J].岩土工程学报.1999,21(1):41-45.
    [80] 王思敬,岩体工程地质力学中数值分析,岩体工程地质力学问题(8),1987:72-85,科学出版社.
    [81] 张海民.桥梁桩基负摩阻力的计算[J].中南汽车运输.2000.6:34-36.
    
    [82] 惠焕利.桩基设计中负摩阻力的探讨[J].陕西水利发电.2000,16(2):26-29.
    [83] 施风英,张以刚.负摩阻力的计算及对桩承载力的影响[J].化工矿山技术.1996,25(6):49-51.
    [84] 张厚先.湿陷性黄土地基大直径单桩负摩阻力计算的试验研究[J].施工技术.1994.9:36-38.
    [85] 马时先.桩身负摩阻力的现场测试与研究[J].岩土力学.1997,18(1):8-15.
    [86] 陈正成,陈建中.包覆型钢骨钢筋混凝土梁之挠曲特性[J].中国土木水利工程学刊.2001,13(2):263-275.
    [87] 翁正强,汪铭洪.钢骨钢筋混凝土梁抗弯试验与力学特性[J].中国土木水利工程学刊.2001,13(2):249-261.
    [88] 邱耀正,蔡仁卓.钢筋混凝土结构破裂分析之数值模拟[J].中国土木水利工程学刊.2001,13(2):277-291.
    [89] Liming Hu and Jia Liu Pu. Application of damage model for soil-structure interface [J]. Computers and Geotechnics. 2003, 30: 165-183.
    [90] Y. S. Karinski, A. N. Dancygier, I. Leviathan. An analytical model to evaluate the static soil pressure on a buried structure[J]. Engineering Structures. 2003, 25: 91-101.
    [91] M. Boulon, V. N. Ghionna, G. Mortara. A strain-hardening elastoplastic model for sand-structure interface under monotonic-and cyclic loading [J]. Mathematical and Computer Modelling. 2003, 37: 623-630.
    [92] A. N. Dancygier, Y. S. Karinski. A simple model to assess the effect of soil shear resistance on the response of soil-buried structures under dynamic loads [J]. Engineering Structures. 1999, 21: 1055-1065.
    [93] M. C. Genes, S. Kocak. A combined finite element based soil-structure interaction model for large-scale systems and applications on parallel platforms [J]. Engineering Structures. 2002, 24: 1119-1131.
    [94] A. V. Mendonca, J. B. de Paiva. A boundary element method for the static analysis of raft foundations on piles [J]. Engineering Analysis with boundary Elements. 2000, 24: 237-247.
    [95] Sekhar Chandra Dutta, Rana Roy. A critical review on idealization and modeling for interaction among soil-foundation-structure system [J]. Computers and Structures. 2002, 80: 1597-1594.
    
    [96] Mohamed Ashour, G. Norris. Modeling lateral soil-pile response based on soil-pile interaction [J]. Journal of Geotechnical and Geoenvironmental Engineering, May 2000: 420-428.
    [97] Samir Belkhir, Salim Mezazigh, Denniel Levacher. Non-linear behavior of lateral-loaded pile taking into account the shear stress at the sand [J]. Geotechnical Testing Journal, 1999: 308-316.
    [98] Joseph E. Dove, J. David Frost. Peak friction behavior of smooth geomembrane-particle interfaces [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999: 544-555.
    [99] Toru Shibata, Hideo Sekiguchi and Hiroshi Yukitomo. Model test and analysis of negative friction acting on piles [J]. Soils and Foundations, 1982, 22(2): 29-39.
    [100] Saibaba Reddy, D. N. Chapman, V. V. R. N. Sastry. Direct shear interface test for shaft capacity of piles in sand [J]. Geotechnical Testing Journal, 1999: 199-205
    [101] Fumio Tatsuoka. On the angle of interface friction for cohesionless soils [J]. Soils and Foundations, 1985, 25(4): 135-141.
    [102] Morimichi Uesugi, Hideaki Kishida and Yuichiro Uchikawa. Friction between dry sand and concrete under monotonic and repeated loading [J]. Soils and Foundations, 1990, 30(1): 115-128.
    [103] M. Z. A. Gutub, A. M. Khan. Shear strength characteristics of Madinah Clay with sand compaction piles [J]. Geotechnical Testing Journal, 1998: 356-364.
    [104] Educrdo Rojas, Celestino Valle and Miguel R Romo. Soil-pile interface model for axially loaded single piles [J]. Soils and Foundations, 1999, 39(4): 35-45.
    [105] Suleyman Kocak, Yalcin Mengi. A simple soil-structure interaction model [J]. Applied Mathematical Modeling, 2000, 24: 607-635.
    [106] 何积善.可缩性新井壁结构可改善受力状况[J].煤炭科学技术.1979.3:1-5.
    [107] 王明恕.竖井冻结施工的井壁问题[J].煤炭科学技术.1979.7:1-4.
    [108] 郑青林.介绍几种冻结井筒复合井壁[J].煤炭科学技术.1979.7:4-8.
    [109] 梁惠生,赵琳,王家成.冻结井壁与冻土[J].煤炭科学技术.1979.8:6-7.
    [110] 张锦松.对潘集煤田冻结井筒合理井壁结构的探讨[J].煤炭科学技术. 1979.8:6-7.
    
    [111] 孙文若,冯志兴.深井冻结复合井壁的设计计算方法[J].煤炭科学技术.1980.9:29-32.
    [112] 高齐瑞.开滦煤矿冻结井筒的双层井壁[J].煤炭科学技术.1983.2.23-25.
    [113] 邱世武,陈明华.夹层复合井壁的研究[J].煤炭科学技术.1983.7:24-27.
    [114] 王学金.淮北冻结井壁结构的新形式[J].煤炭科学技术.1986.1:19-21.
    [115] 吴建议.冻结新型井壁设计探讨[J].煤炭科学技术.1988.9:37-41.
    [116] 李仁静.深厚冲积层冻结新型井壁结构[J].煤炭科学技术.1989.12:35-38.
    [117] 王明恕.冻结施工井壁结构的合理设计[J].煤炭科学技术.1991.2:26-28.
    [118] 刘占明.立井井壁破裂的原因和预防[J].煤炭科学技术.1993.1:20-21.
    [119] 宋琳.表土-冻结壁-外井壁复合弹塑性体系的分析和计算[J].煤炭学报.1981.4:9-19.
    [120] 王明恕,姚鑫林,张剑铮.深井冻结井壁壁座设计的新问题-负摩擦力[J].煤炭学报.1982.2:48-54.
    [121] 孙启凯.复合井壁技术在淮北矿区的应用和发展[J].煤炭学报.1991,16(1):13-26.
    [122] 王渭明.千米立井井壁应力分析及设计问题探讨[J].煤炭学报.1993,18(5):63-71.
    [123] 鲁兼泉,刘百臣.立井井壁断裂综合治理[J].煤炭科学技术.1995.7:9-12.
    [124] 汪仁和,方兴华,杨平.卸压槽位置的选择和在井壁加固中的作用[J].煤炭科学技术.1996,24(1):47-49.
    [125] 杨平,汪仁和.治理破裂井壁的观测[J].煤炭科学技术.1996,24(8):32-34.
    [126] 杨永平,白开圣,王分胜.地面注浆治理破坏井壁[J].煤炭科学技术.1997,25(10):26-28.
    [127] 刘全林,樊平.混凝土井壁竖向极限承载能力计算的研究[J].煤炭学报.1995,20(6):583-588.
    [128] 蒋斌松.复合井壁的弹性分析[J].煤炭学报.1997,22(4):397-401.
    [129] 张印,董玉华.深厚表土层中的井壁破裂与治理[J].青岛建筑工程学院学报.2001,22(4):10-12.
    [130] 经来旺.冻结立井井壁防破裂措施的研究[J].西安科技学院学报.2000, 20(1):14-17.
    
    [131] 吕恒林,崔广心.卸压法治理井壁破裂的力学机理[J].中国矿业大学学报.2000,29(4):343-347.
    [132] 刘希亮,罗静.特殊地层井壁破裂粘弹性数值模拟研究[J].焦作工学院学报.1999,18(3):219-222.
    [133] 汪仁和,吴祥.祁南矿副井井壁破裂原因分析与卸压槽结构设计[J].东北煤炭技术.1997.6:17-19.
    [134] 吕恒林,张强.卸压法治理井壁结构破裂的模拟试验研究[J].中国矿业大学学报.2001,30(2):130-134.
    [135] 吕恒林,杨维好.特殊地层条件竖井井壁破坏机理及防治技术之二[J].中国矿业大学学报.1997,26(2):1-4.
    [136] 黄家会,杨维好.加固地层防治井壁破裂技术可行性的模拟试验研究[J].建井技术.1997,18:53-55.
    [137] 黄家会,杨维好.特殊地层条件竖井井壁破坏机理及防治技术之三[J].中国矿业大学学报.1997,26(3):10-13.
    [138] 骆念海,杨维好.井壁竖直附加力的影响因素分析[J].煤炭科学技术.2000,28(12):41-43.
    [139] 刘希亮,罗静.疏水沉降矿区井壁外侧剪应力分布[J].矿山压力与顶板管理.2000.2:79-83.
    [140] 杨平.卸压槽治理井壁破裂研究[J].岩土工程学报.1998,20(3):19-22.
    [141] 姚直书,吕渊.地层沉降时破裂井壁治理方法的探讨[J].东北煤炭机术.1995.12:16-20.
    [142] 都平平.井壁非采动破裂治理措施的探讨[J].中州煤炭.1995.2:18-20.
    [143] 许廷春,耿德庸.井壁破坏的模糊聚类分析和预测[J].煤炭科学技术.1992.7:16-19.
    [144] 蔡国庆,黄尹龙.模糊类神经网路应用于集水区出流量之预测[J]_中国土木水利工程学刊.2001,13(2):395-403.
    [145] 张凯,钱锋.模糊神经网络技术综述[J].信息与控制.2003,32(5):431-435.
    [146] 韩敏,孙燕楠.多输入模糊神经网络及其应用[J].系统工程与电子技术.2003,25(10):1249-1250.
    
    [147] Yusuf Oysal, Yasar Becerikli and A. Ferit Konar. Generalized modeling principles of a nonlinear system with a dynamic fuzzy network [J]. Computers & Chemical Engineering, 2003, 27: 1657-1664.
    [148] Dong Zhang, Xiao-Li Bai and Kai-Yuan Cai. Extended neuro-fuzzy models of multilayer perceptrons [J]. Fuzzy Sets and Systems , 2004, 142(2): 221-242.
    [149] Sung-Kwun Oh and Witold Pedrycz. Self-organizing polynomial neural networks based on polynomial and fuzzy polynomial neurons: analysis and design [J]. Fuzzy Sets and Systems, 2004, 142(2): 163-198.
    [150] Arnold F. Shapiro. The merging of neural networks, fuzzy logic, and genetic algorithms [J]. Mathematics and Economics, 2002, 31(1): 115-131.
    [151] Sung-Kwun Oh, Witold Pedrycz and Tae-Chon Ahn. Self-organizing neural networks with fuzzy polynomial neurons [J]. Applied Soft Computing, 2002, 2(1): 1-10.
    [152] Meng Joo Er and Shiqian Wu. A fast learning algorithm for parsimonious fuzzy neural systems [J]. Fuzzy Sets and Systems, 2002, 126(3): 337-351.
    [153] Robert Babuka and Henk Verbruggen. Neuro-fuzzy methods for nonlinear system identification [J]. Annual Reviews in Control, 2003, 27(1): 73-85.
    [154] Bunchingiv Bazartseren, Gerald Hildebrandt and K. -P. Holz. Short-term water level prediction using neural networks and neuro-fuzzy approach [J]. Neurocomputing, 2003, 55(3-4): 439-450.
    [155] P. Provenzano , S. Ferlisi and A. Musso. Interpretation of a model footing response through an adaptive neural fuzzy inference system [J]. Computers and Geotechnics, 2004, 31(3): 251-266.
    [156] M. S. Rahman and Jun Wang. Fuzzy neural network models for liquefaction prediction [J]. Soil Dynamics and Earthquake Engineering, 2002, 22(8): 685-694.
    [157] Fi-John Chang and Yen-Chang Chen. A counter propagation fuzzy-neural network modeling approach to real time streamflow prediction [J]. Journal of Hydrology, 2001, 245(1): 153-164.
    [158] R. J. Kuo. A sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm [J]. European Journal of Operational Research. 2001. 129(3): 496-517.
    
    [159] M. Alvarez Grima. Fuzzy model for the prediction of unconfined compressive strength of rock samples [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(3): 339-349.
    [160] 杜江.模糊神经网络及其在油气预测中的应用[J].石油物探1999,38(4): 25-30.
    [161] 吴财芳,曾勇.基于模糊神经网络的煤与瓦斯突出区域预测研究[J].煤田地质与勘探.2002,30(6):4-7.
    [162] 刘春.用模糊神经网络对建筑物变形进行短期预测[J].工程勘查.1998.6:42-45.
    [163] 沈珠江.理论土力学[M].北京:中国水利水电出版社.2000.5:114-115.
    [164] 付中英、王建国、吕恒林.厚表土层中滑动可缩井壁结构设计[J].辽宁工程技术大学学报,1999,18(4):356-359.
    [165] 吕恒林等.卸压法治理井壁结构破裂的模拟试验研究[J].中国矿业大学学报.2001,30(2):131-134.
    [166] 杨平.卸压槽治理井壁破裂研究[J].岩土工程学报.1998,20(3):19-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700