用户名: 密码: 验证码:
类土质边坡特性及其锚固设计理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对类土质边坡的性质、锚固特性及其锚固边坡稳定性计算方法进行了系统研究:首先通过大量的现场调研,完善了类土质边坡的地质模型,给出了该类边坡的分类和破坏方式及破坏机理;对锚索加固边坡的离心相似模型进行了研究:在离心模型试验中对锚索预应力进行了测量,通过离心模型试验对锚索预应力的扩散进行了研究;通过现场试验与离心模型试验相结合,对锚索框架的受力模式进行了研究;对预应力锚索加固边坡的稳定性计算方法分锚固体与坡体的耦合和解耦两个阶段进行了研究;最后采用FLAC~(3D)拉格朗日元对类土质边坡锚固效应、锚索预应力的损失、框架梁的内力分布及类土质边坡的开挖效应进行了数值模拟研究。取得了以下主要结论和成果:
     (1) 完善了类土质边坡的概念,认为类土质边坡为“由岩体风化而成的保留或部分继承了原岩的结构面等其它岩体特征且未经二次堆积的土体物质或破碎岩体物质构成,稳定特性明显区别于均质土边坡及岩质边坡的一类边坡”。并将类土质边坡按风化前原岩的软硬程度及其组合情况划分为三种类型:软岩全~强风化边坡、软硬岩相间的全~强风化边坡、硬岩全~强风化边坡。分析了类土质边坡的破坏方式及破坏机理。
     (2) 系统地研究了预应力锚索框架加固类土质边坡的离心相似模型,为此类试验提供了理论依据。研究了离心模型试验中锚索力及框架弯矩、锚固力自坡面向坡体内传递规律的测试方法。通过花岗岩残积土边坡的离心模型试验研究,得出在无结构面时,边坡的坡角与极限边坡高度的关系与马斯洛夫给出粗粒土边坡的坡度与稳定坡高的关系基本一致,可以用马斯洛夫方法指导此种边坡的设计。
     (3) 在研究现有锚固段锚土界面模型的基础上,阐述了基于锚固段土体位移的交界面模型,随着锚固力的逐渐增大,锚固段土体位移可以分为三个阶段:土体颗粒间的相对移动,土体的剪切应变,土体的整体移动。以此模型为基础,分析了锚固预应力损失的机理。
     (4) 针对无框架和有框架两种情况,分别推导了锚固力的传递范围,为锚索间距的大小提供了依据。并进行了离心模型试验及现
Centrifugal model experiments and field tests are put forward in the paper to synthetically study the characters of soil similar slope and its reactivities to anchor cables.The geologic model, categories, failure modes and collapse mechanism of soil similar slope are brought forward. Centrifugal models of Reinforced slope by prestressing anchor calbes are studied and devised. The tensile force in anchor cables is measured for the first time in centrifugal during running of centrifuger, and on the base of the measuring, the diffuse of the tensile force in the slope is studied. The frame-characters and odditional internal stress under anchor force are studied and calculated basing centrifugal model experiments and field tests. The analysis of slope stability is divided up into two moments respectively named coupling moment and releasing moment from coupling. The research work involves several aspect as follows:l.The concept of soil similar slope has been sophisticated.According to the formation of the slope medium, soil similar slope are categorized into three kinds,that is completely weathered or strongly weathered soft rock slope, completely weathered or strongly weathered hard rock interphase with soft rock slope and completely weathered or strongly weathered hard rock slope. The failure modes and collapse mechanism of soil similar slope are brought forward.2.The mathematical model of reinforced slope by anchor cable frames in centrifugal test has been advanced, which will provide academic theory. The measuring of strain in cable, bending moment in spar, diffuse of tensile force in slope are accomplished. Basing above, by centrifugal model tests, the collapse oderliness of weathered granite slope is discovered that the obliquity and height of a slope are fit for Masilofu equation which can be used for the design of the kind of slope.3.A new anchor-soil interface model has been put forward in which the displacement of the soil near the interface plays a important
    role.basing the studying on the existed models. The displacement of the soil in anchored segment has different moments as follow: relative displacemen of particles, shearing strain and macroscopical displacement. And the decrease mechanism of tentile force in cables is analyzed.4. The diffuse area of anchorage force applied by anchor cable and anchor cable frame is respectively calculated.The results suggest reasonable intervals of cables. Centrifugal model tests were carried out, and the collected data almost agree with the calculated results.5. The mechanisms of reinforcing similar siil slopes by prestressed anchor cable sash(beam)are studied by the method of combination of field test and centrifugal modes test, theory analysis. As a result, the calculational pattern of internal ofrce of anchor cable beam is put forward. The new calculational pattern can optimized the design of anchor cable beam.6. The analysis of slope stability is divided up into two moments respectively named coupling moment and releasing moment from coupling.The formula about slope stability in coupling moment has been brought out considering that the action spot of anchorage force is on slope surface. And the stabilty in releasing moment, the displacements of soil along the slide surface are put great emphasis on. The calculation method of the sheraing force between the paste and soil is put forward.7.The example has make a conclusion that the existing calculation methods of slope stability gives a smaller stability factor, and then they will result in a larger investment.The paper involves several innovations as follow: The concept of soil similar slope has been sophisticated, and according to the formation of the slope medium, soil similar slope are categorized into three kinds. Centrifugal model test is used to synthetically study the slopes reinforced by anchor cable and cable beam for the first time. On the base of the data from field tests and centrifugal tests, the new calculation methods about slope stability and interval force of beam are
引文
[1] 杨明.路堑类土质边坡锚固技术研究.西南交通大学硕士学位论文,2002。
    [2] 张文华.花岗岩残积土的抗剪强度及土质边坡稳定性分析.水文地质工程地质,1994.3。
    [3] 张永波,张云等.花岗岩残积土工程类型划分体系研究.地球学报,1997.2。
    [4] 吴志峰.华南花岗岩风化土体粒度成份的分形特征.中国水土保持,1997.6。
    [5] Brand, E. W. Predicting the performance of residual soil slopes. Proce. 12~(th) ICSM FE, San Francisco, 1985, 5.
    [6] Mshana, N. S., Suzuki, A., Kitazono, Y. Effects of weathering on stability of natural slopes in north central Kumamoto. Sokls and Foundations. 1993. 33(4).
    [7] Judy Ehlen. Fracture characteristics in weathered granites. Geomorphology, 1999(31): 29~45.
    [8] Judy Ehlen. Some effects of weathering on joints in granitic rocks. Catena, 2002(49): 91~109.
    [9] Tatsuro Muro, Soichiro Kawahara, etc. Comparison between centrifugal and vertical vibro-compaction of high-lifted decomposed weathered granite sandy soil using a tracked vehicle. Journal of Terramechanics, 2001(38): 15~45.
    [10] Guangzheng Xiong. The characteristics of weathering granite regolith. Quatema ria Sinica, 1965, 4(2): 55~67.
    [11] Zelin Su. The relationship between weathering and granite seacoast landforms in Hong Kong. Tropical Geomorphology, 1988, 9(1): 1~13.
    [12] 陆国奇.海南岛红色风化壳的研究.热带地理,1982,(1):51~58.
    [13] Jiongxin Xu. Chemical denudational processes in different natural zones of the maonsoon-influenced eastern China. Scientia Geographica Sinica, 1994, 14(4): 306~313.
    [14] Smith B J. Weathering of superficial limestone debris in a hot desert environment. Geomorphology, 1988, (1): 355~367.
    [15] 张丽萍,朱大奎,等.长江三峡坝区花岗岩风化壳化学元素迁移特征.地理学报,2001.56(5):515~522.
    [16] 戴仕宝.花岗岩地区地下水溶质的形成机制探讨.河南大学学报,2001,31(2):83-86.
    [17] Denys, Brunsden. Weathering[A]. Geomorhology, Process[M]. London: 1979.
    [18] 龚子同.红色风化壳的生物地球化学[A].北京科学出版社,1983:24~39.
    [19] 陈晓明.广东沿海花岗岩风化剖面及其差异风化现象的特征分析.广东公路勘察设计,2002.2:34~40.
    [20] 阳发清,孙瑞娟.花岗岩残积土物理力学性质及变形特性的探讨.勘察科学技术,2002.6:34~37.
    [21] 魏克和,刘殿选.闽粤沿海花岗岩风化分带方法及地基承载力的研究.河海大学学报,1991.7:76~84.
    [22] 陈泳周,黄绍派等.广东花岗岩类岩石风化土的工程地质特征,桂林工学院学报,2002.7.
    [23] 刘明俊,李明雨.深圳花岗岩残积土的物理力学特性.工程勘察,1985.4.
    [24] 黄欢.广东番禺市花岗岩岩残积土的工程地质特征及其应用.水文地质工程地质,2000.3.
    [25] 王清,唐大雄等.中国东部花岗岩残积红土工程地质物征研究.长春地质学院学报(工程地质专辑).1988.
    [26] 邹广荣等.吉林中部花岗岩风化成土地球化学.环境地球化学会议论文集,贵州科技出版社,1990.
    [27] 王彦华等.花岗岩中黑云母风化的矿物变化机制.地球化学,1999.5.
    [28] 戴仕宝.花岗岩地区地下水溶质的形成机制探讨.河南大学学报,2001.6.
    [29] 吴宏伟,尚彦军,曲永新,等.香港花岗岩风化分级化学指标体系与风化壳分带.工程地质学报,1999.6.
    [30] 山中真一,中村三郎.地山崩一实态对策[M].大明堂发行,1974.
    [31] 王彦华,谢先德,王春云.风化花岗岩崩岗灾害的成因机理.山地学报,2000.12:496~501.
    [32] 李思平.广东崩岗形成的岩土本质.福建水土保持,1991(4).
    [33] 李思平.花岗岩风化壳的滑坡特性.热带地理,1992.9(3):202~213.
    [34] 王桢.裂土边坡坍塌稳定性分析.岩土工程学报,2002.10(2):160~164.
    [35] 谷德振,曲永新.土体结构对土体变形破坏的影响.工程勘察,1981,4:6~9.
    [36] 蒋建平,罗国煜.土坡中的优势结构面分.工程地质学报,2000,8(4):439~442.
    [37] 蒋建平,章杨松,罗国煜,等.优势结构面理论在岩土工程中的应用.水利学报,2001,8(4):54~59.
    [38] 蒋建平,章杨松,罗国煜,等.基于土体中结构面的岩土工程问题探讨.工程 地质学报,2002,10(2):160~164.
    [39] 中国岩土锚固:仁程协会.岩土锚固工程技术的应用与发展.北京:万国学术出版社.
    [40] 中国岩土锚固工程协会.岩土锚固技术的新进展.北京:人民交通出版社,2000.
    [41] 朱正武,李红超.预应力锚索与混凝土地梁在边坡治理中的应用.探矿工程.2001(增刊):107~109.
    [42] 夏雄,周德培.预应力锚索地梁在边坡加固中的应用实例.岩土力学,2002,23(2):242~245.
    [43] 汉纳 T H.锚固技术在岩土工程中的应用[M].北京:中国建筑工业出版社,1986:132~152.
    [44] Hobst L, Zajic J. Anchoring in rock and soil. New York, Elsevier Scientific Publishing Company, 1983.
    [45] 陈洪凯,唐继红,等.锚固岩体参数的等效方法研究.应用数学与力学,2001.22(8).
    [46] 李德芳,张友良,陈从新.边坡加固中预应力锚索地梁内力计算.岩土力学,2000,21(2):170~172.
    [47] 邹志晖,汪志林.锚杆在不同岩体中的工作机理.岩土工程学报,1993.11(6):71~79.
    [48] 王建宇,牟瑞芳.按共同变形原理计算地锚工程中黏结型锚头内力.
    [49] 夏雄.预应力锚索地梁的设计理论及工程应用.西南交通大学研究生学位论文,2002.
    [50] Yin Jianhua. Closed-form solution for reinforced timoshenko beam on elastic foundation.Journal of Engineering Mechanics, 2000, 126(8): 868~874.
    [51] Gendy A. S. Effective modeling of beams with shear deformations on elastic fundation. Structural Engineering and Mechanics.
    [52] Shoji E. Yamada. Beam on partially Yielded Foundation. Journal of Engineering Mechanics. 1988, 114(2): 353~363.
    [53] Bing Y. Ting, Eldon F. Mockry. Beam on elastic foundation finite element. Journal of Structural Engineering. 1984,110(10): 2324~2339.
    [54] 李德芳,张友良,陈从新.边坡加固中预应力锚索地梁内力计算.岩土力学.2000,21(2):170~172.
    [55] 程良奎.岩土锚固的现状与发展.土木工程学报,2001,34(3):7~16.
    [56] 赵晓彦,胡厚田.类土质边坡特性初探.工程地质学报,2004.12.
    [57] 韩贝传,曲永新,等.裂隙型硬黏土的力学模型及其在边坡工程中的应用[J],工程地质学报,2001,9(2):204~208.
    [58] 赵晓彦,胡厚田.类土质边坡开挖的卻荷作用及缷荷带宽度的确定.岩石力学与工程学报,2005.8.
    [59] 罗斌,胡厚田,卢才金等.清连公路沿线坡面冲刷研究.中国地质灾害与防治学报,2000,9(1):48~51.
    [60] [苏]叶米里扬诺娃著(铁道部科学研究院西北所滑坡室译).滑坡作用的基本原理.重庆出版社,1986.
    [61] 濮家骝.土工离心模型试验及其应用发展的趋势.岩土工程不报,1996,18(5).
    [62] Taylor R N. Geotechnical Centrifuge technology, Blackie Academic & Professional, 1995.
    [63] Leung C F, etal. Centriguge '94, Proc of the Inter conf Centrifuge'9, Singapoer, 1994.
    [64] Centrifuge'91, H-Y Ko(editor), Proc. of the inter. Conf.Centrifuge'91, Boulder Clolrade, 1991.
    [65] 第二届全国土工离心模拟技术学术会议论文集,上海,1991.
    [66] 包承纲.我国离心模拟试验技术的现状和展望.岩土工程学报,1991,13(6).
    [67] 陈安敏,顾金才,等.软岩加固中锚索张拉吨位随时间变化规律的模型试验研究.岩石力学与工程学报,2002,21(2):251~256.
    [68] 顾金才,明治清,等.预应力锚索内锚固段受力特点现场试验研究.岩石力学与工程学报,1998,17(增):788~792.
    [69] 高大水,曾勇.三峡永久船闸高边坡锚索预应力状态监测分析.岩石力学与工程学报,2001,20(5):653~656.
    [70] 岩石锚固与注浆技术专业委员会编,中国锚固与注浆工程实录选.科学出版社,1995.
    [71] 杨松林,徐卫亚,等.岩石锚杆抗拔实验数据处理及可靠度分析.岩石力学与工程学报,2003,22(1):61~64.
    [72] 赵晓彦,胡厚田.用离心模型试验研究花岗岩残积土边坡的破坏特性.工程地质学报,2005.12.
    [73] 包承纲,饶锡保.土工离心模型的试验原理.长江科学院院 报,1998,15(2):1~3.
    [74]] 汪小刚,张建红,等.用离心模型研究岩石边坡倾倒破坏.岩土工程学报,1996.9(5).
    [75] 白冰,周健.土工离心模型试验技术的一些进展.大坝观测与土工测试,2001,25(1):36~42.
    [76] 雷胜友.离心模型试验技术及其在中国的应用.西安公路交通大学学报.1998,18(4B):222~226.
    [77] 饶锡保.土石坝的离心模型试验研究.长江科学院研究生论文,1989.
    [78] 徐光明,章子民.离心模型中的粒径效应和边界效应.岩土工程学报,1996,18(3):80~86.
    [79] Malushitsky Y N. The centrifugal model testing of waste-heap embankments. London:Cambridge university press,1975: 5~11.
    [80] Santamarina J C, Gooding D J. Centrifuge modeling: A study of similarity. Geotechnial Testing Journal, 1989, 12(2): 163~166.
    [81] Ovesen N K.The use of physical models in design: the scaling law relationships Proc-dings of 7~(th) Europen Conference on Soil Mechanics and Foudation Engineering Bright-on, 1979, 4: 318~323.
    [82] 朱维新,徐光明,等.浅基础承载力离心模型试验研究—国际合作试验项目.第三界华东地区岩土力学学术讨论会论文集.华中理工大学出版社,1995.
    [83] 张定.土工离心试验中饱和黏性土模型的拟合制作.铁道学报,1999.10(5).
    [84] 潘家铮.建筑物的抗滑稳定和滑坡分析.北京:水利出版社,1980.
    [85] 黄文熙.土的工程性质.北京:水利水电出版社.
    [86] Lutz L. Gergeley P. Mechanics of band and slip of deformed bars in concrete. Journal of American Concrete Insitute, 1967, 64(11): 711~721.
    [87] Hansor, N. W. Influence of surface roughness of prestressing strand on band performance. Journal of American concrete Institute, 1969, 14(1): 32~45.
    [88] Goto, Y., Cracks formed in concrete around deformed tension bars. Journal of American Concrete Institute.
    [89] Fuller,P G.,Cox R H T.Mechanics load transfer from steel tendons of cement based grouted.Fifth Australasian Conference on the Mechanics of structures and Materials, M-elbourne: Published by Australasian Institude of Mining and Metallurgy, 1995.
    [90] Stillborg B. Experimental investigation of steel cables for rock reinforcement in hard rock [Doctoral thesis D].Sweden: Lulea University of Technology, 1984.
    [91] [英]T H.汉纳著.胡定等译.锚固技术在岩土工程中的应用.北京:中国建筑工业出版社,1986.
    [92] 程良奎,胡建林.土层锚杆的几个力学问题[A].中国岩土锚固工程协会编.岩土工程中的锚固技术[C].北京:人民交通出版社,1996.
    [93] 陈安敏.顾金才,等.软岩加固中锚索张拉吨位随时间变化规律的模型试验研究.岩石力学与工程学报,2002,21(2):251~256.
    [94] 丁秀丽,盛谦,等.预应力锚索锚固机理的数值模拟试验研究,岩石力学与工程学报.2002,21(7):980~988.
    [95] 朱杰兵,韩军,等.三峡永久船闸预应力锚索加固对周边岩体力学性状影响的研究.岩石力学与工程学报,2002,21(6):853~857.
    [96] 张发明,刘宇,等.岩质边坡预应力锚固的力学行为及群锚效应.岩石力学与工程学报,2000,19(增):1077~1080.
    [97] Q&S框架工法,日本Q&S框架协会,1995.
    [98] 胡时友,框架护坡技术的新进展,西部探矿工程,1999,11(4).
    [99] 王跃敏.预应力锚索与格形地梁的联合应用.路基工程,1997(5):56~59.
    [100] 唐树名,吕常新,等.混合式锚固结构在高速公路路堑边坡加固中的应用研究.岩石力学与工程学报,2002,21(5):702~704.
    [101] 李明,唐树名,等.路堑边坡锚固格子梁模型试验工程力学,2003(增):59~62.
    [102] 夏雄.预应力锚索地梁的设计理论及工程应用.西南交通大学研究生学位论文,2002.
    [103] 孔宪宾,余跃心,等.土—锚界面模型的改进和应用.力学与实践,1999,5(10).
    [104] 孔宪宾,余跃心,等.土—锚相互作用机理研究.工程力学,2003,3(17).
    [105] 孔宪宾.土—锚界面模型试验研究.河海大学学报,2001,9(5).
    [106] 盛维高,孔宪宾.根据土体位移分析锚固边坡的稳定性.人民长江,2003,34(11).
    [107] 梁明学,夏雄.预应力锚索加固边坡的有限元模拟和稳定性分析,铁道标准设计,2003(12).
    [108] 房定旺.深层滑动的岩土边坡稳定性分析与锚固力计算.金属矿山,1995,234(12).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700