用户名: 密码: 验证码:
低掺杂硅纳米线的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔硅由于新奇的发光性能及其在光电器件方面的应用,引起了纳米科技界的极大兴趣,其主要是通过化学刻蚀的制备方法获得。随着半导体纳米科技的发展,单晶多孔硅纳米线已经通过化学刻蚀制备出来,并且具有优良的光电性能,可用于光催化基底及活性纳米光电器械。但是,研究表明单晶硅片的掺杂浓度决定了硅纳米线的表面粗糙度及其孔结构,只有高掺杂的硅片(N型硅片电阻:0.008-0.02Ω·cm;P型硅片电阻率:<0.005Ω·cm)经过化学刻蚀后才能获得多孔结构。目前,以低掺杂单晶硅片为原材料通过化学刻蚀方法获得多孔硅纳米线仍然是一个挑战。本文采用化学刻蚀方法制备了低掺杂多孔硅纳米线、硅纳米线和多孔硅,并对样品进行形貌和结构表征,测试纳米材料相应的电学性能、光学性能和超疏水性能,探讨了低掺杂多孔硅纳米线可能的生长机理和分析其电学性能的提高。本论文的主要研究结果如下:
     (1)采用化学刻蚀方法,以低掺杂单晶硅片N-(100)作为硅源,通过调节刻蚀液组成、刻蚀温度及刻蚀时间,可使硅片表面获得不同微观结构的多孔硅纳米线,硅纳米线的表面有很多纳米孔。利用扫描电镜(SEM)、透射电镜(TEM)、高分辨透射电镜(HRTEM)和选区电子衍射(SAED)等测试手段进行相应的分析和表征,表明得到的低掺杂多孔硅纳米线是单晶结构,且表面没有被氧化,并进一步对产物的形成机理进行了阐述。同时,考察了H2O2对硅纳米线表面成孔的均匀性和密度的影响,当H2O2浓度愈大,硅纳米线的表面愈粗糙,局部区域有可能被横向贯穿。
     (2)考察了低掺杂多孔硅纳米线的电学性能,利用TEM-STM测量样品台,在透射电子显微镜内,通过移动,将低掺杂多孔硅纳米线连接到金悬臂和铂悬臂的两端,构成肖特基势连接,在硅线的两端施加-10V到10V的电压,获得相应的I-V数据,对比分析了低掺杂多孔硅纳米线和无孔硅纳米线的电学性能。实验结果表明:无孔硅纳米线的电流变化范围仅从-1.5nA到1.5nA;多孔硅纳米线的电流变化值从-4.5nA到4.5nA。在相同的加压条件下,多孔硅纳米线的电流变化范围大约是无孔硅纳米线的3倍,多孔硅纳米线的电学性能得到改善,导电能力增强,拓展了硅在纳米光电器件方面的应用。
     (3)采用化学刻蚀方法,以低掺杂单晶硅片P-(100)作为硅源,通过调节刻蚀液的组成及刻蚀温度,在硅片的表面获得不同形貌的硅纳米材料:多孔硅和硅纳米线阵列。在室温的条件下可获得多孔硅;在加热的条件下,能够获得大面积垂直于硅衬底的硅纳米线阵列,采用SEM分析纳米银的形貌以及硅纳米线阵列的微观结构,考察了硝酸银的浓度和刻蚀时间对硅纳米线形貌的影响。该法获得的硅纳米线反应活性高,可以作为制备硅纳米颗粒的硅源,在HF和HNO3的刻蚀酸液中,可获得硅纳米颗粒。
     (4)考察了一维硅纳米线的光致发光性质,在470nm的光激发条件下,分散在乙醇溶液中的硅纳米线在548nm处发出很强的绿光,量子限制效应引起了光致发光;具有一定粗糙度的纳米线阵列结构,通过化学气相沉积法,240℃条件下,在硅片的表面沉积一层二甲基硅油(PDMS),化学改性后的硅纳米线阵列结构接触角达到155°,转变为超疏水性;在单晶硅片表面沉积同样一层二甲基硅油,接触角达到100°。实验结果表明:不同的微观结构形貌直接影响着固体表面的润湿性能。
Porous Si has been extensively investigated for its lighting emitting properties and potential applications in optoelectronics. Usually, porous Si is synthesized by applying a voltage bias to a Si substrate immersed in hydrofluoric (HF)-containing aqueous or organic solutions or by chemical etching. With advancement of the semiconductor nanotechnology, based on the above synthetic method for producing porous Si, a metal-assisted deposition and chemical sacrificial etching process has been exploited to fabricate single-crystalline porous Si arrays, which show excellent optical properties and may be useful as photocatalytic substrates or active nanoscale optoelectronic devices for energy harvesting, conversion, and biosensing. It is found that the doping level of the Si wafers is a key factor determining the surface roughness or porous structures of the Si nanowires, and only the Si wafers with highly or heavily doped p-typed wafers (resistivity:< 0.005Ω·cm) and n- typed wafers (resistivity:0.008-0.02Ω·cm) can be etched to produce porosities inside them. So, the fabrication of the porous Si nanowires from lightly doped Si wafers by the above described chemical etching method has not yet been accomplished and remains a challenge. Porous silicon, silicon nanowires and lightly doped porous silicon nanowires with various morphologies were successfully fabricated using a chemical etching method. The morphologies and crystal structure of the as-synthesized products were characterized in detail. Photoluminescence properties, electrical measurements and superhydrophobic properties were also carefully carried out. The main results are summarized as follows:
     (1) Lightly doped porous silicon nanowires with different microstructure morphologies have been fabricated on silicon wafer via the chemical etching method, through controlling the composition of etching solution, etching temperature and etching time. The morphology and crystal structure of the as-synthesized samples were characterized by SEM, TEM, HRTEM, SAED in detail. Si lattice fringes are continuous between the surface and the interior of the as-fabricated lightly doped porous Si nanowire, indicating that the surface of this Si nanowire is not native oxide and Si lattice integrity is not destroyed at the surface of the nanowire during the etching process. In addition, the formation mechanism of the product was seriously studied. An addition of H2O2 into the etchant played a significant role in the density and homogeneity of the lightly porous Si nanowires. An increase of the concentration of H2O2 will enhance the etching of the Si nanowire. The etching to this products partly penetrated the nanowires in the lateral direction.
     (2) The electrical measurements of lightly doped silicon nanowires were carried out using a new STM-TEM holder. The relative X, Y, and Z positions of the gold cantilever and a platinum cantilever with a mounted si nanowire were adjusted through the nanoscale precision piezodriven manipulation of the silicon nanowires inside the TEM, so as to build a silicon nanowire bridge between the gold and platinum cantilever. Silicon nanowire with a lower work function than those of platinum and gold makes a schottky contact between them. Both non-porous silicon nanowires and porous nanowires with the voltage range from -10 to 10V for 4000 milliseconds and I-V data were obtained. The current value of porous silicon nanowires varies from-4.5 to 4.5nA, while the current value of nonporous silicon nanowires varies from-1.0 to 1.5nA. The range of the current variation of porous silicon nanowires is-3 times as large as those of non-porous silicon nanowires at the same applied voltage. It is stated that the porous silicon nanowires possess improved electrical property and significantly increase conductance, compared with non-porous silicon nanowires. The porous silicon nanowires may expand opportunities for nanoscale optoelectronic devices, energy harvesting, conversion and sensors.
     (3) Porous silicon and silicon nanowires arrays with different morphologies have been prepared on the surface of the Si wafer via a chemical etching, through controlling the etching solution and etching temperature. Porous silicon was obtained at room temperature; straight and vertical Silicon nanowire arrays were obtained when heating. The morphology of nano-scale silver and silicon nanowire arrays were revealed in detail by SEM imaging. The effects of silver nitrate concentration and etching time on the morphologies of silicon nanowires were also studied. The as-synthesized silicon nanowires can be used as original silicon in order to prepare silicon nano-particles owing to its high activity.
     (4) The photoluminescence properties of the resulting silicon nanowires were seriously investigated. Using the excitation of 470nm laser beam from a diode laser, the silicon nanowires dispersed in ethanol solution apparently emitted a strong green emission band centered at 560nm. The PL emission can be attributed to the quantum confinement. Detailed experiments have been carried out to investigate the wetting behavior of silicon surfaces. Both the starting silicon wafer and the silicon nanowires substrates were coated with a polydimethysiloxane (PDMS) film via a vapor deposition technique, heating at 240℃. The modified silicon wafer was hydrophobic with a contact angle of 100°. However, the modified silicon nanowires combined with a contact angle of 155°became superhydrophobic. The contrast results suggest that different microstructure morphologies made a great impact on the wetting properties of solid surfaces.
引文
[1]Chen Y.Q., Zhang K., Miao B., et al. Temperature dependence of morphology and diameter of silicon nanowires synthesized by laser ablation. Chem. Phys. Lett.,2002,358:396-400.
    [2]Morales A.M., Lieber C.M., A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science,1998,279:208-211.
    [3]Wang N., Tang Y.H., Zhang Y.F., et al. Transmission electron microscopy evidence of the defecet structure in Si nanowires synthesized by laser ablation. Chem. phys. Lett.,1998,283:368-372.
    [4]Yu D.P., Lee C.S., Bello I., et al. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature. Solid State Commun.,1998,105: 403-407.
    [5]Zhang Y.E., Tang Y.H., Wang N., et al. Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett.,1998,72:1835-1837.
    [6]Yang Y.H., Wu S.J., Chiu H.S., et al. Catalytic Growth of Silicon Nanowires Assisted by Laser Ablation. J. Phys. Chem. B,2004,108:846-852.
    [7]Park H.D., Hogan T.P., Growth of Si wires on a Si(111) substrate under ultrahigh vacuum condition. J. Vae. Sci. Technol. B,2004,22:237-239.
    [8]Peng K.Q., Yan Y.J., Gao S.P., et al. Dendrite-assisted growth of silicon nanowires electroless metal deposition. Adv. Funct. Mater.,2003,2:7-32.
    [9]Peng K.Q., Xu Y., Wu Y., et al. Aligned single-crystalline Si anowire arrays for photovoltaic applications. Small,2005,1(11):1062-1067.
    [10]Peng K.Q., Hu J.J., Wu Y., et al. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater.,2006,16(3):387-394.
    [11]Peng K.Q., Zhu J., Simultaneous gold deposition and formation of silicon nanowires arrays. J. Electroanal. Chem.,2003,558:35-39.
    [12]Peng K.Q., Wu Y., Fang H., et al. Uniform, Axial-Orientation Alignment of One-Dimensional Single-Crystal Silicon Nanostructure Arrays. Angew. Chem. Int. Edit.,2005,44:2737-2742.
    [13]Zhang M.L., Peng K.Q., Fan X., et al. Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching. J. Phys. Chem. C.,2008,112(12):4444-4450.
    [14]Huang Z.H., Fang H., Zhu J., Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density. Adv. Funct. Mater.,2007,19: 744-748.
    [15]Westwater J., Gosain D.P., Tomiya S., et al. Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction. J. Vae. Sci. Technol. B,1997,15: 554-557.
    [16]Liu Z.Q., Xie S.S., Zhou W.Y., et al. Catalytic synthesis of straight silicon nanowires over Fe containing silica gel substrates by chemical vapor deposition. J. Cryst. Growth,2001,224(3-4):230-234.
    [17]Zhang Y.J., Zhu J., Synthesis of thin Si whiskers (nanowires) using SiCl4. J. Cryst. Growth,2001,226:185-191.
    [18]Kamins T.I., Li X., Williams R.S., Thermal stability of Ti-catalyzed Si nanowires. Appl. Phys. Lett.,2003,82(2):263-265.
    [19]Kamins T.I., Williams R.S., Basile D.P., et al. Ti-catalyzed Si nanowires by chemieal vapor deposition, Mieroscopy and growth mechanisms. J. Appl. Phys., 2001,89(2):1008-1016.
    [20]Garnett E.C., Growth and Electrical Characteristics of Platinum-Nanoparticle-catalyzed silicon nanowires. Adv. Mater.,2007,19: 294-2950.
    [21]Takeda S., Ueda K., Ozaki N., et al. Formation mechanism of nanocatalysts for the growth of silicon nanowires on a hydrogen-terminated Si{111} surface template. Appl. Phys. Lett.,2003,82(6):979-981.
    [22]Zhang X.Y., Zhang L.D., Meng G.W., Synthesis of Ordered Single Crystal Silicon NanowireArrays. Adv. Mater.,2001,13:1238-1241.
    [23]Cui Y., Lauhon L., Gudiksen M., et al. Diameter-controlled synthesis of Single-crystal silicon nanowires. Appl. Phys. Lett.,2001,78:2214-2218.
    [24]Wu Y., Cui Y., Huynh L., et al. Controlled growth and struetures of molecular-seale silicon nanowires. Nano Lett.,2004,4(3):433-436.
    [25]Hochbaum A.I., Fan R., He R.R., et al. Controlled growth of si nanowire arrays for device integration. Nano Lett.,2005,5(3):457-460.
    [26]Shingubara S., Okino O., Sayama Y., et al. Two-dimensional nanowire arrays formation on Si substlate using self-organized nanoholes of anodically oxidized aluminum. Solid-State Electron.,1999,43 (6):1143-1146.
    [27]Zhang X.Y., Zhang L.D., Meng G.W., et al. Synhtesis of Ordered Single Cyrstal Silicon Nnaowire Arryas. Adv. Mater.,2001,13:1238-241.
    [28]Lew K.K., Reuther C., Carim A.H., et al. Template-diercted vapor-liquid-solid growth of silicon nnaowires. J. Vac. Sci. Technol. B,2002, 20:389-392.
    [29]Lew K.K., M.Redwing J., Growth characteristics of silicon nanowiers synthesized by vapor-liquid-solid growth in nanoporous alumina templates. J. Cryst. Growth,2003,254:14-22.
    [30]E.Bogart T., Dey S., Lew K.K., et al. Diameter-Controlled Synthesis of Silicon Nanowires Using Nanoporous Alumina Membranes. Avd. Mater.,2005,17: 114-117.
    [31]M.RedWing J., Lew K.K., E.Bogart T., et al. Synthesis and Properties of Si and SiGe-Si nanowiers. Proceedings of SPIE,2004,5361:52-59.
    [32]Zhang H.Z., Yu D.R., Ding Y., et al. Dependence of the Silicon nanowire diameter on ambient pressure. Appl. Phys. Lett.,1998,73(23):3396-3398.
    [33]Yu D.P., Bai Z.G., Ding Y., et al. Nanoscale silicon wires synthesized using simple physical evaporation. Appl. Phys. Lett.,1998,72(26):3458-3460.
    [34]Feng S., Yu D., Zhang H., et al. The growth mechanism of silicon nanowires and their quantum confinement effect. J. Cryst. Growth,2000,209(2-3):513-517.
    [35]Gundiah G., Deepak E., Govindaraj A., et al. Carbon-assisted synthesis of silicon nanowires. Chem. Phys. Lett.,2003,381(5-6):579-583.
    [36]Zhang Y.F., Lee S.T., Bulk-quantity Si nanowires synthesized by SiO sublimation. J. Cryst. Growth,2000,212:115-118.
    [37]Zhang R., Chu T., Cheung H., et al. Mechanism of oxide-assisted nucleation and growth of silicon nanostructures. Mater. Sci. Eng., C,2001,16(1-2):31-35.
    [38]Wang N., Tang Y.H., Zhang Y.F., et al. Si nanowires Grown from silicon oxide. Chem. Phys. Lett.,1999,299:237-242.
    [39]Liu H.I., Biegelsen D.K., Johnson N.M., et al. Self-limiting oxidation of Si nanowires. J. Vac. Sci. Technol. B,1993,11:2532-2537.
    [40]Liu H.I., Biegelsen D.K., Ponce F.A., Self-limiting oxidation of fabricating sub-5nm silicon nanowires. Appl. Phys. Lett.,1994,64:1383-1385.
    [41]Namatsu H., Takahashi Y., Nagase M., et al. Fabrication of thickness conrtolled silicon nanowires and their characteristics. J. Vac. Sci. Technol. B,1995,13: 2166-2169.
    [42]Namatsu H., Kurihara K., Nagase M., et al. Fabrication of 2-nm-wide Silicon quantum wires through a combination of a partially-shitfed resist pattem and or orientation-dependent etching. Appl. Phys. Lett.,1997,70:619-621.
    [43]Namatsu H., Nagase M., Kurihara K., et al. Fabrication of One-Dimensional Silicon Nanowire structures with a Self-Aligned Point Contact. Jpn. J. Appl. Phys.,1996,35:1148-1150.
    [44]Gotza M., Dutoit M., llegems M., Fabrication and Photoluminescence investigation of silicon nanowires on silicon-on-insulator material. J. Vac. Sci. Technol. B,1998,16:582-588
    [45]Yin Y.D., Gates B., Xia Y., A soft lithography approach to the fabrication of nanostructures of single crystalline silicon with well-defined dimensions and shapes. Adv. Mater.,2000,12(19):1426-1430.
    [46]Juhasz R., Elfstrom N., Linnros J., Controlled Fabrication of Silicon Nanowires by Electron Beam Lithography and Electrochemical Size Reduction. Nano Lett., 2005,5(2):275-280.
    [47]Holmes J.D., Korgel B.A., Control of Thickness and Orientation of Solution-Grown Silicon Nanowires. Science,2000,287:1471-1473.
    [48]Hanrath T., Korgel B.A., Supercritical fluid-liquid-solid(SFLS) synthesis of Si and Ge Nanowires seeded by colloidal metal nanocrystals. Adv. Mater.,2003, 15(5):437-440.
    [49]Lu X.M., Hanrath T., Johnston K.R., et al. Growth of single crystal nanowires in supercritical silicon solution from tethered gold particles on a silicon substrate. Nano Lett.,2003,3(1):93-99.
    [50]Shah P.S., Hanrath T., Johnston K.P., et al. Nanocrystal and nanowires synthesis and dispersibility in supercritical fluids. J. Phys. Chem. B,2004,108(28): 9574-9587.
    [51]Lee D.C., Hanrath T., Korgel B.A., The role of Precursor-decomposition kinetics in silicon-nanowire synthesis in organic solvents. Angew. Chem. Int. Edit.,2005,44(23):3573-3577.
    [52]Tuan H.Y., Lee D.C., Korgel B.A., Nanocrystal-mediated crystallization of silicon and germanium nanowires in organic solvents:The role of catalysis and solid-phase seeding. Angew. Chem. Int. Edit.,2006,45(31):5184-5187.
    [53]Heitseh A.T., Fanfair D.D., Tuan H.Y., et al. Solution-liquid-solid (SLS) growth of silicon nanowires. J. Am. Chem. Soc.,2008,130(16):5436-5437.
    [54]Holmes J.D., Johnston K.P., Doty R.C., et al. Control of thickness and orientation of solution-grown silicon nanowires. Science,2000,287(5457): 1471-1473.
    [55]Tuan H.Y., Ghezelbash A., Korgel B.A., Silicon nanowires and silica nanoitubes seeded by copper nanoparticles in an organic solvent. Chem. Mater., 2008,20(6):2306-2313.
    [56]Wagner R.S., Ellis W.C., Vapor-Liqui-Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett.,1964,4:89-98.
    [57]Tian B.Z., Zheng X.L., Kempa T.J., et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature,2007,449(7164):885-889.
    [58]Zhou X.T., Hu J.Q., Li C.P, et al. Silicon nanowires as chemical sensors. Chem. Phys. Lett.,2003,369(1-2):220-224.
    [59]Elibol O., Morisette D., Akin D., et al. Integrated nanoscale silicon sensors using top-down fabrication. Appl. Phys. Lett.,2003,83:4613-4618.
    [60]Cui Y., Wei Q.Q., Park H.K., et al. Nanowire nanosensors for highly, sensitive and selective detection of biological and chemical species. Science,2001, 293(5533):1289-1292.
    [61]Mu L.X., Shi W.S., Chang J.C., et al. Silicon nanowires-based huorescence sensor for Cu(Ⅱ). Nano Lett.,2008,8(1):104-109.
    [62]Hahm J., Lieber C.M., Direct ultrasensitive electrical detection of DNA and DNA sequenee variations using nanowire nanosensors. Nano Lett.,2004,4(1): 51-54.
    [63]Patolsky F., Zheng G., Lieber C., Fabrication of silicon nanowire devices for ultrasensitive label-free, real-time detection of biological and chemical species. Nature Protoc.,2006,4:1711-1724.
    [64]Cui Y., Lieber C.M., Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science,2001,291(5505):851-853.
    [65]Cui Y., Zhong Z., Wang D., et al. High Performance Silicon Nanowire Field Effect Transistors. Nano Lett.,2003,3(2):149-152.
    [66]Goldberger J., Hochbaum A., Fan R., et al. Silicon vertically integrated field effect transistors. Nano Lett.,2006,6(5):973-977.
    [67]Huang Y., Duan X., CuiY., et al. Logic gates and computation from assembled nanowire building blocks. Science,2001,294:1313-1317.
    [68]Lauhon L.J., Gudiksen M.S., Wang C.L., et al. Epitaxial core-shell and Core-multishell nanowire heterostructures. Nature,2002,420(6911):57-61.
    [69]Chung S., Yu J., Heath J., Silicon nanowire devices. Appl. Phys. Lett.,2000,76: 2068-2071.
    [70]秦国刚,张丽珠,发可见光的多孔硅.半导体情报,1992,29(6):10-17.
    [71]Lehmann V., Gosele U., Porous silicon formation:a quantum wire effect. Appl. Phys. Lett.,1991,58:856-858.
    [72]裴立宅,刘翠娟,多孔硅的应用研究进展.光电技术应用,2004,19:17-19.
    [73]王晓静,李清山,王佐臣,多孔硅的小同制备方法及其光致发光.发光学报,2003,24(2):203-207.
    [74]Lim P., Brock J.R., Trachtenberg I., Appl. Phys. Lett.,1992,60:486-450.
    [75]Witten T.A., Sander L.M., Diffusion-limited aggregation. Phys. Rev. B,1983, 27:5686-5697.
    [76]Chen Q.W., Zhu J.S., Li X.G., et al. Photoluminescence in porous silicon obtained by hydrothermal etching. Phys. Lett. A,1996,220(4-5):293-296.
    [77]Nishino T., Meguro M., Nakamae K., et al. The lowest surface free energy based on-CF3 alignment. Langmuir,1999,15(13):4321-4323.
    [78]Wenzel R.N., Resistance of solid surfaces to wetting by water. Ind. Eng. Chem., 1936,28(8):988-994.
    [79]Cassie A.B.D., Baxter S., Wettability of porous surfaces. Trans. Faraday Soc., 1944,40:546-551.
    [80]Xiang S., Hwang J.Y., Shi S.Z., Hydrogen Storage in Mesoporous Metal Oxides with Catalyst and External Electric Field. J. Phys. Chem. C,2010,114: 7178-7184.
    [81]Wang H.L., Gao Q.M., Hu J., High Hydrogen Storage Capacity of Porous Carbons Prepared by Using Activated Carbon. J. Am. Chem. Soc.,2009,131: 7016-7022.
    [82]Liu J.Y., Tao L., Meng F.L., et al. Porous Hierarchical In2O3 Micro-/Nanostructures:Preparation, Formation Mechanism, and Their Application in Gas Sensors for Noxious Volatile Organic Compound Detection. J. Phys. Chem. C,2010,114:4887-4894.
    [83]Li Y.Y., Ding Y., Porous AgCl/Ag Nanocomposites with Enhanced Visible Light Photocatalytic Properties. J. Phys. Chem. C,2010,114:3175-3179.
    [84]Keiki-Pua S. D., Douglas P. G., Michael J. S., A Porous Silicon Optical Biosensor:Detection of Reversible Binding of IgG to a Protein A-Modified Surface. J. Am. Chem. Soc.,1999,121:7925-7930.
    [85]Vasconcelos E. A., Silva E. F., Santos B. E. C. A., et al. A new method for luminescent porous silicon formation:reaction-induced vapor-phase stain etch. phys. stat. sol. (a),2005,202 (8):1539-1542.
    [86]Qu Y.Q., Liao L., Li J., et al. Electrically Conductive and Optically Active Porous Silicon Nanowires. Nano Lett.,2009,9(12):4539-4543.
    [87]Hochbaum A.I., Gargas D., Hwang Y.J., et al. Single Crystalline Mesoporous Silicon Nanowires. Nano Lett.,2009,9(10):3550-3554.
    [88]Lettieri S., Maddalena P., Di Francia G., et al. Influence of doping concentration on the photoluminescence of silicon nanocrystals. phys. stat. sol. (a),2003, 197(2):399-402.
    [89]Guo C.S., Luo L.B., Yua G.D., et al. Surface Passivation and Transfer Doping of Silicon Nanowires. Angew. Chem. Int. Ed.,2009,48:9896-9900.
    [90]Singh A.K., Kumar V., Note R., et al. Effects of Morphology and Doping on the Electronic and Structural Properties of Hydrogenated Silicon Nanowires. Nano Lett.,2006,6(5):920-925.
    [91]Cullis A.G., Canham L.T., Calcott P.D.J., The structural and luminescence properties of porous silicon. J. Appl. Phys.,1997,82 (3):909-965.
    [92]Pan C.F., Zhu J., The syntheses, properties and applications of Si, ZnO, metal, and heterojunction nanowires. J. Mater. Chem.,2009,19:869-884.
    [93]Peng K.Q., Xu Y., Wu Y., et al. Aligned Single-Crystalline Si Nanowire Arrays for Photovoltaic Applications. Small,2005,1(11):1062-1067.
    [94]Peng K.Q., Huang Z.P., Zhu J., Fabrication of Large-Area Silicon Nanowire p-n Junction Diode Arrays. Adv. Mater.,2004,16:73-76.
    [95]Canham L.T., Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett.,1990,57:1046-1048.
    [96]Teo B.K., Sun X. H., Silicon-Based Low-Dimensional Nanomaterials and Nanodevices. Chem. Rev.,2007,107:1454-1532.
    [97]Li Z., Chen Y., Li X., et al. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett.,2004,4:245-247.
    [98]Cui Y., Wei Q.Q., Park H.K., et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science,2001,293: 1289-1292.
    [99]Bruchez Jr. M., Moronne M., Gin P., et al. Shimon Weiss Semiconductor Nanocrystals as Fluorescent Biological Labels. Science,1998,281 (5385): 2013-2016.
    [100]Heinrich J.L., Curtis C.L., Credo G.M., et al. Luminescent colloidal silicon suspensions from porous silicon. Science,1992,255:66-68.
    [101]Llansola P., Manuel J., Gara, P.M. D., et al. Silicon nanoparticle photophysics and singlet oxygen generation. Langmuir,2010,26:10953-10956.
    [102]Peng K.Q., Fang H., Hu J.J., et al. Metal-Particle-Induced, Highly Localized Site-Specific Etching of Si and Formation of Single-Crystalline Si Nanowires in Aqueous Fluoride Solution. Chem. Eur. J.,2006,12:7942-7947
    [103]王宪芬,纳米硅的合成、表征以及光学性能研究.山东大学硕士学位论文,2009年5月.
    [104]Liu Y., Mu L., Liu B., et al. Controlled Switchable Surface. Chem. Eur. J.2005, 11:2622-2631.
    [105]Feng X.J., Lei J., Design and Creation of Superwetting/Antiwetting Surfaces. Adv. Mater.,2006,18:3063-3078.
    [106]Piret G., Coffinier Y., Roux C., et al. Biomolecule and Nanoparticle Transfer on Patterned and Heterogeneously Wetted Superhydrophobic Silicon Nanowire Surfaces. Langmuir,2008,24:1671-1674.
    [107]Yuan J.K., Liu X.G., Akbulut O., et al. Superwetting nanowire membranes for selective absorption. Nat. Nanotechnol.,2008,3:332-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700