用户名: 密码: 验证码:
超分子有机凝胶和水凝胶的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由小分子量化合物凝胶因子通过分子间氢键、π-π堆砌,以及其它非共价键作用可以形成二维或三维长程有序的超分子聚集体结构进而形成稳定的超分子有机(水)凝胶。由于其性质具有介于固、液体之间这一特性,被广泛应用在催化、纳米材料的模板、药物等分子控制释放载体等广泛领域。
     本文合成了几种L-苯丙氨酸衍生物凝胶因子及N-十八烷基马来酸可聚合凝胶因子,研究了其在有机溶剂或水中凝胶化性能及自组装机理。利用水凝胶为水杨酸模型药物的载体,探讨了水杨酸在凝胶中的扩散机理。分别利用L-苯丙氨酸衍生物凝胶因子及N-十八烷基马来酸可聚合凝胶因子在可聚合有机溶剂中的自组装,原位UV固化制备分子印迹聚合物,并考察了相应的印迹聚合物对D-或L-苯丙氨酸的吸附差别。本论文包括以下主要内容:
     1、由L-苯丙氨酸和二(三氯甲基)碳酸酯反应得到的L-苯丙氨酸-N-羧基-环内酸酐(L-Phe-NCA),在十八胺的引发下开环聚合得到平均聚合度为5的十八烷基-L-苯丙氨酸齐聚物(简称L-Phe-R18)。L-Phe-R18能在多种有机溶剂中发生聚集、自组装,并进而在这些有机溶剂中形成热可逆的物理凝胶。利用X射线衍射(XRD)和场发射扫描电镜(FE-SEM)表征和分子模拟了L-Phe-R18聚集体的微观形态和可能的聚集方式。
     2、合成具有手性结构的L-苯丙氨酸衍生物,3-{[(2R)-2-(十八酰胺基)-3-苯丙基]酰胺基}丁酸四乙基胺盐(简称TC18PheBu)。TC18PheBu在纯水及不同pH值的水溶液中进行自组装,形成超分子水凝胶。利用FE-SEM、POM、FT-IR、荧光探针以及CD观察了TC18PheBu自组装聚集体的形貌并对超分子水凝胶的形成机理进行了探讨。
     3、本文利用水杨酸为模型药物分子,研究水杨酸在小分子量凝胶因子TC18PheBu在水中自组装形成的超分子水凝胶中的释药行为。
     4、双十八烷基L-苯丙氨酸(Bis18-L-Phe)凝胶因子在可聚合溶剂中以氢键等非共价键相互作用自组装形成直径约为100~200nm的纤维状聚集体,纤维聚集体之间进一步相互作用形成稳定凝胶。以UV光引发原位聚合并将凝胶因子提取制备出非共价键印迹聚合物。为了探讨Bis18-L-Phe分子印迹聚合物对分子识别的机理,重点考察了印迹聚合物对D-和L-苯丙氨酸的pH7.4磷酸盐缓冲水溶液中D-和L-苯丙氨酸的吸附率差别。
     5、N-十八烷基马来酸(ODMA)可聚合凝胶因子在可聚合溶剂中以氢键等非共价键相互作用自组装形成稳定凝胶。以UV光引发原位聚合或热聚合并将印迹分子提取制备得到分子印迹聚合物。分别考察了不同聚合方法、不同模板分子以及不同凝胶因子用量对所制得的分子印迹聚合物对D-苯丙氨酸,L-苯丙氨酸磷酸盐缓冲水溶液中的D-和L-苯丙氨酸吸附量的差别。
In recent years, supramolecular hydrogels formed by the self-assembly of gelator through intermolecular hydrogen bonding,π-πstacking and other non-covalent bond interations were applied on catalyzer, nanomaterials, drug carriers and other fields because of its properties between the liquids and solids.
     Several gelators based on L-phenylalanine and a polymeric gelator N-Octadecyl Maleamic Acid (ODMA) were synthesized , the properties of gels and the process of self-assembly were investied. Salicylic acid (SA) release from supramolecular hydrogels and the diffusion mechanism of SA was investigated. The molecular imprinted polymers (MIPs) which prepared by in situ UV photopolymerization of self-assembly molecular gels and then the gelator was washed. The adsorbed difference of D- and L-Phenylalanine on MIPs were investied, respectively. This paper are consisted of several sections as the following:
     1. The L-phenylalanine-N-carboxyanhydride (L-Phe-NCA) was synthesized from bis(trichloromethyl)carbonate and L-phenylalanine. The average polymerization degree of Octadecyl-L-phenylalanine oligomer is 5 obtained by the ring-open reaction of L-Phe-NCA using octadecylamine as initiator. The morphology and structures of oligomer aggregates in the media were characterized by XRD, FE-SEM and simulated by molecular software.
     2. Tetraethylammonium 3-{[(2R)-2-(Octadecylamino)-3-phenylpropanoyl]Amino} butyrate (TC18PheBu), a new hydrogelator based on L-Phenylalaine with chirality was synthesized. It can self-assemble in water or different pH buffer solutions and form into superahydrogels . Suprahydrogels were characterized on using FE-SEM , POM, FT-IR, CD and Fluorescene probe.
     3. Release behavior of drug salicylic acid (SA) released from TC18PheBu LMWG hydrogels is invested.
     4. The gelator based on N-stearine-N′-steryl-L-Phenylalanine (Bis 18-L-Phe) self-assemble into fibres aggregates through molecular hydrogen bonding and hydrophobic interations in the polymerizable monomer HEMA and crosslinker DPEG200DMA and formed stable gels. The molecular imprinted polymers (MIPs) which prepared by in situ UV photopolymerization of self-assembly molecular gels and then the gelator was washed. The adsorbed difference of D- and L-Phenylalanine on MIPs were investied, respectively.
     5. The gelator based on N-Octadecyl Maleamic Acid (ODMA) self-assemble into fibres aggregates between molecular hydrogen bonding and hydrophobic interations in the polymerizable monomer HEMA ,MA and crosslinker DPEG200DMA and formed stable supragels. The molecular imprinted polymers (MIPs) which prepared by in situ UV photopolymerization of self-assembly molecular gels and then the imprinted molecular was washed. The adsorbed efficiency difference of D- and L-Phenylalanine on MIPs prepared by different methods, with different templates molecular and different concentration of ODMA were investied , respectively.
引文
[1] Gu W Q, Lu L D, Chapman G B, Weiss R G. Polymerized gels and“reverse aerogels”from methyl methacrylate or styrene and tetraoctadecylammonium bromide as gelator. J. Chem. Soc. Chem. Commun, 1997, 6: 543~544.
    [2] Terech P, Weiss R G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev, 1997, 97: 3133~3159.
    [3] Terech P. Small-angle-scattering study of 12-hydroystearic physical organogels and lubricating greases. Colloid Polym. Sci, 1991, 269: 490~500.
    [4] Brotin T, Utermohlen R, Fages F, et al. A novel small molecular luminescent gelling agent for alcohols. J. Chem. Soc. Chem. Commun, 1991, 416~418.
    [5] Brotin T, Desvergne J P, Fages F, et al. Tunable photoresponsive supramolecular systems. Photochem. Photobiol. 1992, 55: 349.
    [6] Campbell J, Kuzma M, Labes M. Low molecular weight gelators for organic solvents. Mol. Cryst. Liq. Cryst. 1983, 95: 45.
    [7] Kamiyama T, Yasuda Y, Shirota Y. A novel family of low-molecular-weight organic gels. Polym. J. 1999, 31: 1165~1170.
    [8] Hanabusa K, Okui K, Karaki K, et al. A small molecular gelling agent for organic liquids: N-benzyloxycarbonyl-L-alanine 4-hexadecanoyl-2-nitrophenyl ester. J. Chem. Soc. Chem. Commun, 1992, 18: 1371~1373.
    [9] Hanabusa K, Tange J, Taguchi Y, Koyama T, Shirai H. Small molecular gelling agents to harden organic liquids: alkylamide of N-benzyloxycarbonyl-L-valyl-L- valine. J. Chem. Soc., Chem. Commun, 1993, 4: 390~392.
    [10] Hanabusa K, Naka Y, Koyama T, et al. Gelling agents to harden organic fluids: oligomers ofα-amino acids. J. Chem. Soc. Chem. Commun, 1994, 23: 2683~2684.
    [11] Hanabusa K,Matsumoto Y,Miki T,et al. Cyclo(dipeptide)s as low-molecular-mass gellingagents to harden organic fluids. J. Chem. Soc. Chem. Commun, 1994, 11: 1401~1402.
    [12] De Vries E J, Kellogg R M. Small depsipeptides as solvent gelators. J. Chem. Soc., Chem. Commun, 1993, 3: 238~240.
    [13] Lu L, Weiss R G. New lyotropic phases (thermally-reversible organogels) of simple tertiary aminesand related tertiary and quaternary ammonium halide salts. J. Chem. Soc. Chem. Commun. 1996, 17: 2029~2030.
    [14] Van Esch J, Kellogg R M, Feringa B L. Di-urea compounds as gelators for organic solvents. Tetradron Lett, 1997, 38: 281~284
    [15] Carr A J, Melendez R, Geib S J, Hamilton A D. The design of organic gelators: solution and solid state properties of a family of bis-ureas. Tetradron Lett, 1998, 39: 7447~7450.
    [16] Van Esch J H, Feyter D S, Kellogg R M, et al. Self-assembly of bisurea compounds in organic solvents and on solid substrates. Chem. Eur. J, 1997, 3: 1238~1243.
    [17] Klyne, W. The Chemistry of Steroids[J]. New York: Willey, 1996.
    [18] Ramasseul R, Maldivi P, Marchon J C. New organic gelators bearing a porphyrin group: A new strategy to create ordered porphyrin assemblies. Liquid Crystals, 1993, 13: 729-734.
    [19] De Rango C, Charpin P, Navaza J, Keller N, Nicolis I, Villain F, Coleman A W.β-Cyclodextrin/pyridine gel systems. The crystal structure of a firstβ-cyclodextrin-pyridine-water compound. J. Am. Chem. Soc,1992, 114: 5475-5479.
    [20] De Loos M, van Esch J, Stokroos I, Kellogg R M, Feringa B L. Remarkable stabilization of self-assembled organogels by polymerization. J. Am. Chem. Soc, 1992, 119: 12675~12676.
    [21] Inoue K, Ono Y, Kanekiyo Y, Hanabusa K, Shinkai S. Preparation of new robust organic gels by in situ cross-link of a bis(diacetylene) gelator. Chem. Lett, 1999, 329: 429~430.
    [22] Masuda M, Hanada T, Yase K, Shimizu T. Polymerizaton of bolaform butadiyne 1-glucosamide in self-assembled nanoscale-fiber morphology. Macromol, 1998, 31: 9403~9405.
    [23] Van Esch J, DeFeyter S, Kellogg R M, DeSchryver F, Feringa B L. Self-assembly of bis-urea compounds in organic solvents and on solid substrates . Chem. Eur. J, 1997, 3: 1238-1243.
    [24] Van Esch J, Kellog R M, Feringa B L. Di-urea compounds as gelators for organic solvents. Tetrahedron. Lett, 1997, 18: 281-284.
    [25] Wang G J, Hamilton, A D. Synthesis and self-assembling properties of polymerizable organogelators. Chem. Eur. J. 2002, 8: 1954-1961.
    [26] Xing B, Choi M F, Xu B. A stable metal coordination polymer gel based on a calyx[4]arene and its‘Uptake’of non-ionic organic molecules from the aqueous phase. Chem.Commun. 2002, 362-363.
    [27] Voet D, Voet J G. Biochemistry. 2nd ed, John Wiley&Sons:New YorK,1990.
    [28] Wang G, Hamilton A D. Low molecular weight organogelators for water. Chem. Commun, 2003, 310-311.
    [29] Kunitake T, Okahata Y, Shimomura M, Yasunami S, Takarabe K.Formation of stable bilayer assemblies in water from single-chain amphiphiles. Relationship between the amphiphile structure and the aggregate morphology. J. Am. Chem. Soc, 1981, 103:5401-5413.
    [30] Boettcher C, Stark H, van Heel M. Stacked bilayer helices: A new structural organization of amphiphilic molecules. Ultramicroscopy, 1996, 62: 133-139.
    [31] Boettcher C, Schade B, Fuhyhop J H. Comparative cryo-electron microscopy of noncovalent N-dodecanoyl-( D- and L-) serine assemblies in vitreous toluence and water. Langmuir 2001, 17: 873-877.
    [32] Imae T, Takahashi Y, Muramatsu H. Formation of fibrous molecular assemblies by amino acid surfactants in water. J. Am. Chem. Soc, 1992, 114: 3414-3419.
    [33] Imae T, Hayashi N, Matsumoto T, Tada T, Furusaka M. Structures of fibrous supramolecular assemblies constructured by amino acid surfanctants: Investigation by AFM, SANS, and SAXS. J. Colloid Interface Sci, 2000, 225: 285-290.
    [34] Suzuki M, Yumoto M, Kimura M, Shirai H, Hanabusa K. Novel family of low-molecular-weight hydrogelators based on L-lysine derivatives. Chem. Commun, 2002, 884-885.
    [35] Suzuki M, Yumoto M, Kimura M, Shirai H, Hanabusa K. New low-mole- cular-weight hydrogelators based on L-lysine derivatives with a positively charged pendant chain. New. J. Chem, 2002, 26: 817-818.
    [36] Nakashima T, Kimizuka N. Light-harvesting supramolecular hydrogels assembled from short-legged cationic L-glutamate derivatives and anionic fluorophores. Adv. Mater, 2002, 14: 1113-1116.
    [37] Franceschi S, de Viguerie N, Riviere M, Lattes A. Synthesis and aggregation of two-headed surfactants bearing amino acid moieties. New J. Chem, 1999, 23: 447-452.
    [38] Iwaura R, Yoshida K, Masuda M, Yase K, Shimizu T. Spontaneous fiber formation and hydrogelation of nucleotide bolaamphiphiles. Chem. Mater, 2002, 14: 3047-3053.
    [39] Kogiso M, Hanada T, Yase K, Shimizu T. Intralayer hydrogen-bond-directed self-assembly of nano-fibers from dicarboxylic valylvaline bolaamphiphiles. Chem. Commun, 1998, 1791-1792.
    [40] Kogiso M, Ohnishi S, Yase K, Masuda M, Shimizu T. Dicarboxylic oligopeptide bolaamphiphiles: proton-triggered self-assembly of microtubes with loose solid surface. Langmuir 1998, 14: 4978-4986.
    [41] Nakazawa I, Masuda M, Okada Y, Hanada T, Yase K, Asai M, Shimizu T. Spontaneous formation of helically twisted fibers from 2-glucosamide bolaamphiphiles: Energy-filtering transmission electron microscopic observation and even-odd effect of connecting bridge. Langmuir 1999, 15:4757-4764.
    [42] Shimizu T, Masuda M. Stereochemical effect of even-odd connecting links on supramolecular assemblies made of 1-glucosamide bolaamphiphiles. J. Am. Chem. Soc, 1997, 119: 2812-2818.
    [43] Iwaura R, Yoshida K, Masuda M, Ohnishi-Kameyama M, Yoshida M, Shimizu T. Oligonucl- Eotide-templated self-assembly of nucleotide bolaamphiphiles: DNA-like nanofibers edged by a double-helical arrangement of A-T base pairs. Angew. Chem. Int. Ed. Engl, 2003, 42: 1009-1012.
    [44] Shimizu T, Iwaura R, Masuda M, Hanada T, Yase K. Internucleobase-interaction-directed self-assembly of nanofibers fromhomo- and heteroditopic omeganucle-obase bolaamphiph- iles. J. Am. Chem. Soc, 2001, 123: 5947-5955.
    [45] Makarevic J, Jokic M, Peric B, Tomisic V, Kojic-Prodic B, Zinic M. Bis(amino acid) oxalyl amides as ambidextrous gelators of water and organic solvents: Supramolecular gels with temperature dependent assembly/dissolution equilibrium. Chem. Eur. J,2001, 7: 3328-3341.
    [46] Jokic M, Makarevic J, Zinic M. A novel type of small organic gelators: Bis(amino acid) oxalyl amides. Chem. Commun, 1995, 1723-1724.
    [47] Song J, Cheng Q, Kopta S, Stevens R C. Modulating artificial membrane morphology: pH-induced chromatic transition and nanostructural transformation of a bolaamphiphilic conjugated polymer from blue helical ribbons to red nanofibers. J. Am. Chem. Soc, 2001, 123: 3205-3213.
    [48] Wang X F, Shen Y Z, Pan Y, Liang Y Q. Bolaamphiphilic single-chain bis-Schiff base derivatives: Aggregation and thermal behavior in aqueous solution. Langmuir 2001, 17: 3162-3167.
    [49] Menger F M, Keiper J S. Gemini Surfactants. Angew. Chem. Int. Ed. Engl, 2000, 39: 1906-1920.
    [50] Menger F M, Littau, C A. Gemini Surfactants: Synthesis and properties. J. Am. Chem. Soc,1991, 1133: 1451-1452.
    [51] Menger F M, Zhang H, Caran K L, Seredyuk V A, Apkarian R P. Gemini-induced columnar jointing in vitreous ice. Cry-HRSEM as a tool for discovering new colloidal morphologies. J. Am. Chem. Soc, 2002, 124: 1140-1141.
    [52] Menger F M, Seredyuk V A, Apkarian R P, Wright E R. Colloidal assemblies of branched geminis studies by cry-etch-HRSEM. J. Am. Chem. Soc, 2002, 124: 12408-12409.
    [53] Oda R, Huc I, Homo J C, Heinrich B, Schmutz M, Candau S. Elongated aggregates formed bycationic Gemini surfactants. Langmuir 1999, 15: 2384-2390.
    [54] Oda R, Huc I, Candau S I. Gemini surfactants, the effect of hydrophobic chain length and dissymmetry. Chem. Commun, 1997, 2105-2106.
    [55] Oda R, Huc I, Schmutz M, Candau S I, Mackintosh F C. Tuning bilayer twist using chiral counterions. Nature , 1999, 399: 566-569.
    [56] Berthier D, Buffeteau T, Leger J M, Oda R, Huc I. From chiral counterions to twisted membranes. J. Am. Chem. Soc, 2002, 124: 13486.
    [57] Jung J H, John G, Masuda M, Yoshida K, Shinka S, Shimizu T. Self-assembly of a sugar-based gelator in water: Its remarkable diversity in gelation ability and aggregate structure. Langmuir 2001, 17: 7229-7232.
    [58] Kobayashi H, Friggeri A, Koumoto K, Amaike M, Shinkai S, Reinhoudt D N. Molecular design of‘super’hydrogelators: Understanding the gelation process of azobenzene-based sugar derivatives in water. Org. Lett, 2002, 4: 1423-1426.
    [59] Kiyonaka S, Sugiyasu K, Shinkai S, Hamachi I. First thermally responsive supramolecular polymer based on glycosylated amino acid. J. Am. Chem. Soc, 2002, 124: 10954-10955.
    [60] Kiyonaka S, Shinkai S, Hamachi I. Combinatorial library of low-weight organo- and hydrogelators based on glycosylated amino acid derivatives by solid-phase synthesis. Chem. Eur. J, 2003, 9: 976-983.
    [61] Bhattacharya S, Acharya S N G. Pronounced hydrogel formation by the self-assembled aggregates of N-alkyl disaccharide amphiphiles. Chem. Mater, 1999, 11: 3504-3511.
    [62] Hanabusa K, Hirata T, Inoue D, Kimura I, Shirai H. Formation of physical hydrogels with terpyridine-containing carboxylic acids. Colloid Surf. A-Physicochem. Eng. Asp, 2000, 169: 307-315.
    [63] Sangeetha N M, Balasubramanian R, Maitra U, Ghosh S, Raju A R. Novel cationic and neutral analogues of bile acid: Synthesis and preliminary study of their aggregation properties. Langmuir 2002, 18: 7154-7157.
    [64] Maitra U, Mukhopadhyay S, Sarkar A, Rao P, Indi S S. Hydrophobic pockets in a nonpolymeric aqueous gel: observation of such a gelation process by color change. Angew. Chem. Int. Ed. Engl, 2001, 40: 2281-2283.
    [65] Menger F M, Caran K L. Anatomy of a gel. Amino acid derivatives that rigidify water at submillimolar concentrations. J. Am. Chem. Soc, 2000, 122: 11679-11691.
    [66] Haines S R, Harrison R G. Novel resorcinarene-based pH-triggered gelator. Chem. Commun, 2002, 2846-2847.
    [67] Hanabusa K, Okui K, Karaki K, Kimura M, Shirai H. Organogels formed by N-benzyloxy- carbonyl-L-alanine 4-hexadecanoyl-2-nitrophenyl ester and related compounds. J. Colloid. Interf. Sci. 1997, 195, 86-93.
    [68] Suzuki M, Owa S, Kimura M, Kurose A, Shiraib H , Hanabusa K. Supramolecular hydrogels and organogels based on novel L-valine and L-isoleucine amphiphiles. Tetrahedron Lett. 2005, 46, 303-306
    [69] Heeres A, van der Pol C, Stuart M, Friggeri A, Feringa B L, van Esch J. Orthogonal self-assembly of low molecular weight hydrogelators and surfactants. J. Am. Chem. Soc, 2003, 125, 14252–14253.
    [70] Friggeri A, Feringa B L, van Esch J. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator. J. Controlled Release, 2004, 97: 241–248.
    [71] Suzuki M, Yumoto M, Kimura M, Shirai H, Hanabusa K. A family of low-molecular-weight hydrogelators based on L-lysine derivatives with a positively charged terminal group. Chem. Eur. J. 2003, 9, 348- 354.
    [72] Hirst A R, Smith D K, Feiters M C, Geurts Huub P M. Two-component dendritic gel: effect of stereochemistry on the supramolecular chiral assembly. Chem. Eur. J. 2004, 10, 5901- 5910.
    [73] Li Y G, Wang T Y , Liu M H. Ultrasound induced formation of organogel from a glutamic dendron. Tetrahedron. 2007. 02.070. on line.
    [74] Ji Y, Luo Y F, Jia X R, Chen E Q, et al. A dendron based on natural amino acids: synthesis and behavior as an organogelator and lyotropic liquid crystal. Angew. Chem. Int. Ed. 2005, 44, 6025-6029.
    [75] Das D, Dasgupta A, Roy S, Mitra R N, Debnath S, Das P K. Water gelation of an amino acid-based amphiphile. Chem. Eur. J. 2006, 23,5068-5074.
    [76] Lee K Y, Mooney D J. Hydrogels for tissue engineering. Chem. Rev, 2001, 101: 1869-1879.
    [77] Xing B, Yu C W, Chow K H, Ho P L, Fu D, Xu B. Hydrophobic interaction and hydrogen bondingcooperatively confer a vancomycin hydrogel: A potential candidate for biomaterials. J. Am. Chem. Soc, 2002, 124: 14846-14847.
    [78] Liu P,Lee S H,Tracy C E,Yan Y,Turner J A. Preparation and Lithium Insertion Properties of Mesoporous Vanadium Oxide. Avd. Mater, 2002, 14: 27-30.
    [79] Hoffmann M R, Martin S T, Choi W Y, Bahnermann D W. Environmental applications of semiconductor photocatalysis. Chem. Rev,1995, 95:69-96.
    [80] Imai H, Takahashi N, Tamura R, Hirashima H. Formation of whiskers of silicate mesostructures . Langmuir 2001, 17:17-20.
    [81] Caruso R A, Susha A, Caruso F. Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres . Chem. Mater, 2001, 13: 400-409.
    [82] Jung J H, Ono Y, Shinkai S. Sol-gel polycondensation of tetraethoxysilane in a cholesterol-based organogel system results in chiral spiral silica . Angew. Chem. Int. Ed,2000, 39: 1862- 1865.
    [83] Jung J H, Ono Y, Hanabusa K, Shinkai S. Creation of both right-handed and left-handed silica structures by sol-gel transcription of organogel fibers comprised of chiral diaminocycl- ohexane derivatives. J. Am. Chem. Soc, 2000, 122: 5008-5009.
    [84] Breen M L, Dinsmore A D, Pink R H, Qadri S B, Ratna B R. Sonochemically Produced ZnS-Coated Polystyrene Core-Shell Particles for Use in Photonic Crystals . Langmuir 2001, 17: 903– 907.
    [85] Van Bommel K J C,Jung J H,Shinkai S. Poly(L-lysine) aggregates as templates for the formation of hollow silica spheres . Adv. Mater, 2001, 13: 1472-1476.
    [86] Brinker C J, Scherer G W. Sol-Gel Science. Academic Press: San Diego. 1990.
    [87] Caruso R A, Antonietti M. Sol-gel nanocoating:An approach to the preparation of structured materials. Chem. Mater, 2001, 13: 3272.
    [88] van Bommel K J C, Shinkai S. Silica transcription in the absence of a solution catalyst: The surface mechanism. Langmuir 2002, 18: 4544-4548.
    [89] Zheng J Y, Qiu K Y. Synthesis of mesoporous titania materials with non-surfactant organic compounds as templates. Chemical Journal of chinese universities, 2000, 21: 647-649.
    [90] Chang X L, Wang L, Yang Y J, Yang X L, Xu H B. Bis-(4-stearoylaminophenyl)methane assembles in organic solvents and used as templates for preparation of SiO2 nanowires. Mater. Chem. Phys, 2006, 99: 61-65.
    [91] Jung J H,Kobayashi H,van Bommel J C K,Shinkai S, Shimizu T. Creation of novel helical ribbon and double-layered nanotube TiO2 structures using an organogel template . Chem. Mater, 2002, 14: 1445-1447.
    [92] Zhan C L, Wang J B, Yuan J, Gong H F, Liu Y H, Liu M H. Synthesis of right- and left-handed silver nanohelices with a racemic gelator. Langmuir 2003, 19: 9440-9445.
    [93] Xue P C, Lu R, Huang Y, Jin M, Tan C H, Bao C Y, Wang Z M, Zhao Y Y. Novel pearl-necklace porous CdS nanofiber templated by organogel. Langmuir 2004, 20: 6470-6475.
    [94]谭昌会,苏丽红,卢然,薛鹏冲,包春燕,刘新立,赵英英.水凝胶体系中CuS纳米纤维的模板合成[J].吉林大学学报(理学版), 2006, 44: 126-129.
    [95]薛鹏冲,卢然,金明,张铁锐,苏丽红,赵英英.手性模板合成CdS纳米棒[J].高等学校化学学报, 2003, 24: 1172-1174.
    [96] Gao P, Zhan C L, Liu M H. Controlled synthesis of double- and multiwall silver nanotubes with template organogel from a bolaamphiphile. Langmuir 2006, 22: 775-779.
    [97] Hanabusa K, Numazawa T, Kobayashi S, Suzuki M, Shirai H. Preparation of metal oxide nanotubes using gelators as structure-directing agents. Macromol. Symp, 2006, 235: 52–56.
    [98] Tiller J C. Increasing the local concentration of drugs by hydrogel formation. Angew. Chem. Int. Ed, 2003, 42: 3072–3075.
    [99] Yang Z, Gu H, Zhang Y, Wang L, Xu B. Small molecule hydrogels based on a class of anti-inflammatory agents. Chem. Commun, 2004, 2, 208–209.
    [100] Yang Z, Gu H, Fu D, Gao P, Lam J K, Xu B. Enzymatic Formation of Supramolecular Hydrogels. Adv. Mater.2004, 16, 1440–1444.
    [101] Valenta C, Nowack E, Bernkop-Schnürch A. Deoxycholate-hydrogels: novel drug carrier systems for topical use. Int. J. Pharm,1999, 185: 103–111.
    [102] Moreau L, Barthélémy P, El Maataoui M, Grinstaff M W. Supramolecular assemblies ofnucleoside phosphocholine amphiphiles. J. Am. Chem. Soc, 2004, 126: 7533–7539.
    [103] Kiyonaka S, Sada K, Yoshimura I, Shinkai S, Kato N, Hamachi I. Semi-wet peptide/protein array using supramolecular hydrogel. Nature Materials, 2004, 3: 58–64.
    [104] Kiyonaka S, Sada K, Yoshimura I, Shinkai S, Kato N, Hamachi I. Semi-wet peptide/protein array using supramolecular hydrogel. Nature Materials 2004, 3, 58–64.
    [105] Kiyonaka S, Shinkai S, Hamachi I. Combinatorial Library of Low Molecular-Weight Organo- and Hydrogelators Based on Glycosylated Amino Acid Derivatives by Solid-Phase Synthesis. hem. Eur. J. 2003, 9, 976–983.
    [106] Luo X Z, Liu B, Liang Y Q. Self-assembled organogels formed by mono-chain L-alanine derivatives. Chem. Commun, 2004, 21, 2424–2425.
    [107] Yang Z, Gu H, Fu D, Gao P, Lam J K, Xu B. Enzymatic formation of supramolecular hydrogels. Adv. Mater, 2004, 16: 1440–1444.
    [108] Heeres A, van der Pol C, Stuart M, Friggeri A, Feringa B L, van Esch J. Orthogonal self-assembly of low molecular weight hydrogelators and surfactants. J. Am. Chem. Soc, 2003, 125: 14252–14253.
    [109] van Bommel K J C, van der Pol C, Muizebelt I, Friggeri A, Heeres A, Meetsma A, Feringa B L, van Esch J. Responsive cyclohexane-based low-molecular-weight hydrogelators with modular architecture. Angew. Chem. Int. Ed, 2004, 43: 1663–1667.
    [110] Kiser P F, Wilson G, Needham D. A synthetic mimic of the secretory granule for drug delivery. Nature, 1998, 394: 459–462.
    [111] Yang Y G.,Nakazawa M,Suzuki M,Kimura M,Shira H,Hanabusa K. Formation of helical hybrid silica bundles. Chem. Mater, 2001, 13: 3791-3793.
    [112] Meng Y B,Yang Y J.碳酸丙烯酯分子凝胶电解质的电化学行为.Chin. J. Anal. Chem, 2004, 32: 998-1001 (in chinese).(孟亚斌,杨亚江,分析化学, 2004, 32: 998-1001.)
    [113] Meng Y B,Yang Y J.分子凝胶电解质的电导率研究. Acta. Chim. Sinica, 2004, 62: 1509-1513 (in Chinese).(孟亚斌,杨亚江,化学学报, 2004, 62: 1509-1513.)
    [114] Guan L,Zhao Y. Self-assembly of a liquid crystalline anisotropic gel .Chem. Mater, 2000, 12:3667-3673.
    [115] Lin L H,Zhang X Q,Yang Y J,Yang X L,Xu H B.十四酸异丙酯分子凝胶及其促进透皮性能研究. Acta. Pharm. Sinica, 2005, 40: 470-475 (in Chinese). (林丽华,张雪勤,杨亚江,杨祥良,徐辉碧,药学学报, 2005, 40: 470-475.)
    [116] Motulsky A,Lafleur M,Couffin-Hoarau A C,Dider H,Franck B. Characterization and biocompatibility of organogels based on L-alanine for parenteral drug delivery implant. Biomaterials, 2005, 26: 6242-6252.
    [117] Yamaguchi S, Yoshimura I, Kohira T, Tamaru S, Hamachi I. Cooperation between artifical receptors and supramolecular hydrogels for sensing and discriminting phosphate derivative . J .Am .Chem. Soc, 2005, 127: 11835-11841.
    [118] Jung J H, Ono Y, Shinkai S. Sol-gel polycondensation in a cyclohexane based organogel creation of both right-and left-handed silica structures by helical organogel fibers. Chem. Eur. J, 2000, 6: 4552-4557.
    [119] Kimura M, Kobayashi S, Kuroda T, Hamabusa K. Assembly of gold nanoparticles into fibrous aggregates using thiol-terminated gelators. Adv. Mater, 2004, 16: 335-339.
    [120] Maji S K, Malik S, Michael G. B, Drew M G. B, Arunk N, Arindam B. Synthetic tripeptide as a novel organogelator:A structural investigation. Tetrahedron Lett, 2003, 44: 4103-4107.
    [121] Jung J H, Lee S H, Shin J. Creation of Double silica Nanotubes by using crown-appended cholesterol Nanotubes. Chem. Eur. J, 2003, 9: 5307-5331.
    [122] Koumura N, Kudo M, Tamaoki N. Photocontrolled gel-to sol-gel phase transitioning of metal-substituted azobenze bisurethanes through the breaking and reform ing of hydrogon bonds. Langmuir , 2004, 20: 9897-9900.
    [123] Gronwald O, Shinkai S. Sugar-integrated gelators of organic solvents. Chem. Eur. J, 2001, 7: 4328-4334.
    [124] Bhuniya S,Park S M,Kim B H. Biotin-amino acid conjugates: An approach toward self-assembled hydrogelation. Org. Lett, 2005, 7: 1741-1744.
    [125] Leo F,Milan J,Janja M,Kristina W,Mladen Z. Bis(PheOH) maleic acid amide-fumaric acidamide photoizomerization induces microsphere-to-gel fiber morphological transition: The photoinduced gelation system. J. Am. Chem. Soc, 2002, 124: 9716-9717.
    [126] Koga T,Taguchi K,Kobuke Y,Kinoshita T,Higuchi M. Structural regulation of a peptide-conjugated graft copolymer: A simple model for amyloid formation. Chem. Eur. J, 2003, 9: 1146-1156.
    [127] Nery J G.,Bolbach G.,Weissbuch I,Lahav M. Homochiral oligopeptides cenerated by induced“mirror symmetry breaking”lattice-controlled polymerations in racemic crystals of phenylalanine -N-carboxyanhydride. Chem. Eur. J, 2005, 11: 3039-3048.
    [128] Jean-Francois L,Dagmar S,Stephan K. Preparation of well-defined diblock copolymers with short polypeptide segments by polymerization of N-carboxy anhydrides. Macromol. Rap. Commun, 2005, 26: 23-28.
    [129] CarréA, Le Grel P, Baudy-Floch M. Hydrazinoazadipeptides as aromatic solvent gelators. Tetrahedron Lett, 2001, 42: 1887-1889.
    [130] Van E J,Schoonbeek F,de Loos M,Kooijman H,Spek A L,Kellogg R M, Feringa B L. Cyclic bis-urea compounds as gelators for organic solvents. Chem. Eur. J, 1999, 5: 937-950.
    [131] Abdallah D J,Weiss R G. Organogels and low molecular mass organic gelators. Adv. Mater, 2000, 12: 1237-1247.
    [132] Hirst A R, Smith D K. Solvent effects on supramolecular gel-phase materials: two-compon-ent dendritic gel. Langmuir 2004, 20: 10851-10857.
    [133] Kamlet M J,Abboud Jose Luis M, Abraham M H,Taft R W. A Comprehensive Collection of the Solvatochromic Parameters,π*, a, andβ, and Some Methods for Simplifying the Generalized Solvatochromic Equation. J. Org. Chem,1983, 48:2877-2887.
    [134] George M, Tan G, John V T, Wieiss R G. Urea and thiourea derivatives as low molecular-mass organogelators. Chem. Eur. J, 2005, 11: 3243-3254.
    [135] Estroff L A, Hamilton A D. Water gelation by small organic molecules. Chem. Rev, 2004, 104: 1201-1218.
    [136] de Loos M, Feringa B L, van Esch J H. Design and application of self-assembled low molecularweight hydrogels. Eur. J. Org. Chem, 2005, 3615–3631.
    [137] Suzuki M, Sato T, Kurose A, Shirai H, Hanabusa K. New low-molecular weight gelators based on L-valine and L-isoleucine with various terminal groups. Tetrahedron lett, 2005, 46: 2741–2745.
    [138] Friggeri A, Feringa B L, Jan van Esch. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator. J. Control . Release, 2004, 97: 241-248
    [139] Suzuki M, Owa S, Kimura M, Kurose A, Shiraib H, Hanabusa K.Supramolecular hydrogels and organogels based on novel L-valine and L-isoleucine amphiphiles. Tetrahedron Lett, 2005, 46:303–306.
    [140] Estroff L A, Hamilton A D. Effective gelation of water using a series of bis-urea dicarboxy-lic acids. Angew. Chem., Int. Ed , 2000, 39: 3447-3450.
    [141] Suzuki M, Sato T, Kurose A, Shirai H, Hanabusa K. Addition of phenyl radical to t-butyl isocyanide an example of a cyanide transfer reaction . Tetrahedron lett, 2005, 46: 2741-2745.
    [142] Bromberg L , Barr D P. Aggregation phenomena in aqueous solutions of hydrophobically modified polyelectrolytes. A probe solubilization study. Macromol, 1999 , 32 : 3649-3657.
    [143] Beinhoff M, Weigel W, Rettig W, Bruedgam I, Hartl H, Schlueter A. D. J. Org. Chem, 2005, 70: 6583.
    [144] Pistolis G, Malliaris A. Study of Poly(propylene imine) Dendrimers in Water, by Exciplex Formation. Langmuir 2002, 18: 246-251.
    [145] Yang Z, Xu B. A small visual assay based on small molecule hydrogels for detecting inhibitors of enzymes. Chem. Commun, 2004, 21, 2424-2425.
    [146] Masara L, Zhu X X. Physical models of diffusion for polymer solutions, gels and solids. Prog. Polym. Sci. 1999, 24: 731.
    [147] Ercken M, Adriaensens P, Reggers G, Carleer R, Vanderzande D, Gelan J. Use of magnetic resonance imaging to study transport of methanol in poly(methyl methacrylate) at variable temperature. Macromolecules,1996, 29: 5671-5677.
    [148] Kiyonaka S, Sugiyasu K, Shinkai S, Hamachi I. First thermally responsive supramolecularpolymer based on glycosylated amino acid. J. Am. Chem. Soc. 2002, 124: 10954-10955.
    [149] Moreau L, Barthélémy P, Maataoui M E, Grinstaff M W. Supramolecular Assemblies of Nucleoside Phosphocholine Amphiphiles . J. Am. Chem. Soc. 2004, 126, 7533–7539.
    [150] van Bommel K J C, van der P C, Muizebelt I, Friggeri A, Heeres A, Meetsma B L, van Esch F J. Responsive Cyclohexane-Based Low-Molecular-Weight Hydrogelators with Modular Architecture. Angew. Chem. Int. Ed. 2004, 43: 1663–1667.
    [151] Placin F, Desvergne J P, Lassegues J C. Organogel electrolytes based on a low molecular weight gelator: 2,3-bis(n-decyloxy)anthracene. Chem. Mater. 2001, 13: 117-121.
    [152] Saltzman W M. Drug delivery,engineering principles for drug therapy, Oxford Univ. Press, New York, 2001.
    [153] Higuchi T. Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. 1961, 50: 874-875.
    [154] Peschka R, Dennehy C, Szoka F C. J. A simple in vitro model to study the release kinetics of liposome encapsulated material . J. Control. Release, 1998, 56: 41-51.
    [155] Lescanne M, Colin A, Mondain-Monval O, Heuze K, Fages F, Pozzo J L. Flow-induced alignment of fiberlike supramolecular self-assemblies during organogel formation with various low molecular mass organogelator-solvent systems. Langmuir 2002, 18: 7151-7153.
    [156] Hanabusa K, Yamada M, Kimura M, Shirai H. Prominent gelation and chiral aggregation of alkylamides derived from trans-1,2-diaminocyclohexane. Angew. Chem. Int. Engl, 1996, 35: 1949-1951.
    [157] Jung J H, Ono Y, Shinkai S. Sol-gel polycondensation in a cyclohexane-based organogel system in helical silica: creation of both right-and left-handed silica structures by helical organogel fibers. Chem. Eur. J, 2000, 6: 4552-4557.
    [158] Friggeri A, Van der Pol C, Van Bommel et al. Cyclohexane-based low molecular weight hydrogelators: a chirality investigation. Chem. Eur. J, 2005, 11: 5353-5361.
    [159] Lee S J, Lee S S, Kim J S, Lee J Y, Jung J H. Mirror Image Nanostructures of New Chromogenic Azobenzene Gels by Introduction of Alanine Moiety. Chem. Mater, 2005, 17: 6517-6520.
    [160] Tan G, Singh M, He J, John V T, McPherso G L. Use of a Self-assembling organogel as a reverse template in the preparation of imprinted porous polymer films. Langmuir, 2005, 21: 9322-9326.
    [161] Gu W Q, Lu L D, Chapman G B, Weiss R G. Polymerized gels and‘reverse aerogels’from methyl methacrylate or styrene and tetraoctadecyllammonium bromide as gelator. Chem. Commun, 1997, 543-544.
    [162] Tang S W, Kong L, Ou J J, Liu Y Q, Li X, Zou H F. Application of cross-linkedβ-cyclo-dextrin polymer for adsorption of aromatic amino acids. J. Mol. Recognit. 2006, 19: 39–48.
    [163] Brinksma J, Feringa B L, Kellogg R M, Vreeker R, van Esch J. Rheology and thermotropic properties of bis-urea-based organogels in various primary alcohols. Langmuir, 2000, 16: 9249-9255.
    [164] Cameron A , Louise D , Wayne H. Imprinted polymers : artificial molecular recognition materials with application in synthesis and catalysis . Tetrahedron , 2003 , 59, 2025 - 2057.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700