用户名: 密码: 验证码:
近50年气候变化对那曲地区环境承载力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
那曲草地地处青藏高原腹地,气候格局、NPP分布以及载畜量大小,直接反映出那曲草地的退化状况。全球气温变暖,导致青藏高原NPP的研究已成为全世界研究的热点。本研究通过在那曲地区布点,建立气象观测站的方法,采集了1955—2004年50年那曲地区的气象数据。那曲地区气温、降水、积温、生长期等气候因子的分析,建立自然植被净第一性生产力模型:
     NPP=RDI~2·P·(1+RDI+RDI~2)/((1+RDI)·(1+RDI~2))·exp(-(9.87+6.25RDI)~(1/2))模拟那曲地区草地净生产力(NPP),计算理论载畜量,与实际载畜量进行比较,分析那曲高寒草地退化的关键因子。
     气象要素总体上与载畜量情况存在着密切联系。牧草生长受光照、热量、水分等主要气象因子的影响,而水分是牧草生长发育的主要限制因子。那曲地区的气候变化呈现气温增高,降水量、相对湿度增加的趋势,有利于牧草的生长以及促进牧业生产的发展。分析那曲地区的草地气候格局变化、草地NPP的年际变化及环境承载力。主要研究结论包括:
     1)1955—2004年那曲地区50年气候变化趋势的分析,结果表明:那曲地区由东向西地势升高,温度和降水呈减少趋势,平均每升高100m,温度减少0.58℃,生长期减少7天,>0℃积温和>5℃有效积温均减少;随着纬度(或海拔)升高,年均降水量、空气湿度、可能蒸散率(PER)和辐射干燥度(RDI)均呈逐渐减少趋势,但变化均不明显。从而可推测出,那曲地区气候变化在经纬度和海拔梯度上的变化趋势,由东向西,降水量迅速减少,辐射干燥度和可能蒸散率均增加,气候逐渐干旱。
     2)50年来那曲地区降水和温度增加趋势明显,增速逐渐加快,平均降水量增加了近50mm,升温2℃,升温速度远超全球地表升温平均值0.4~0.8℃。生长期大幅延长,积温快速增加。随着时间的推移,气温、降水等因子都有增长的趋势,向着有利于牧草生长的方向发展,排除人为干扰因素,将导致那曲草地生产力大幅提升。
     3)建立那曲地区草地生产力(NPP)的“气候—植被”模型(综合模型),利用那曲地区50年的气象数据,研究那曲高寒草地生产力的分布格局,呈现出东部高,西部低的态势。而50年来,那曲地区NPP的增长趋势却是中部与西部基本相同,而东部却远小于中部和西部,这与高清竹利用CASA模型得出的结论完全相反。基于卫星遥感研究那曲地区1982—2003年的NDVI动态变化研究表明,反映出草地覆盖和生物量在空间上具有明显的差异性,草地覆盖率呈东部正逐年下降,中部基本持平,而西部却在缓慢增加。由于综合模型是排除人类活动的干扰,从而证明了上述所得结论与高清竹的研究结论并不矛盾。综合考虑各种因素的影响,气候变化(尤其气温和降水)条对那曲地区草地生产力的增长非常重要。
     4)持续增加的载畜量和不均匀放牧及不合理的管理模式导致那曲高原草地目前全部处于超载状态,经济越发达的地区,超载尤为严重,草地系统退化和沙化是那曲地区草原生态系统普遍存在的现象。
Nagqu grassland is at the hinterland of Tibetan plateau. The research on NPP has become one of the focused areas because of globe climate warming causing the grassland degradation in Nagqu. The climate data of grassland (1955-2004) on Nagqu were collected by the method of stationing and established weather observation station in Nagqu areas. The climatic factors were analyzed for temperature, precipitation, accumulated temperature, growth period, etc, and the natural vegetated NPP model is established in Nagqu areas:
     NPP=RDI~2·P·(1+RDI+RDI~2)/((1+RDI)·(1+RDI~2))·exp(-(9.87+6.25RDI)~(1/2))
     The crucial factors were analyzed by simulated the net productivity of Nagqu to compare the theoretical loading storage and practical loading storage
     In general, the meteorological element exists to close the loading storage. Those mainly meteorological factors of light, heat, water, etc effected the grass growing. Water was the mainly the restricting factor in the period of the grass growing. These climate’s factors of temperature, precipitation, relative humidity had been increasing gradually in Nagqu areas that favored to grow the grass and to develop the animal husbandry. The results of the climate’s pattern, the NPP change and the environmental capacity were analyzed in Nagqu grassland. The mainly results:
     1) By analyzing 50 years climate in Nagqu areas, The result show that Terrain of altitude increases gradually from east to west causing the temperature and Precipitation decreases gradually, the mean altitude increases 100m and Temperature decreases 0.58℃, the Growth period shortens 7d, the accumulated temperature of >0℃and the active accumulated temperature of >5℃decrease all in Nagqu areas; With the latitude (or altitude) increasing, the annual average Precipitation, the air humidity, the potential evaporating rate (PER) and the radiative aridity (RDI) decreased gradually that changes were not significant. we presumed that the climate drought with Latitude and Longitude(altitude)from east to west in Nagqu areas, Precipitation reduced rapidly, the potential evaporating rate (PER) and the radiative aridity(RDI) increased all.
     2) For 50 years, Precipitation and Temperature increase significantly in 50 years and the speed accelerates gradually. The average Precipitation increases recent 50mm, Temperature increases recent 2℃. Heating-temperature were well high above the average-heating of 0.4-0.8℃on the surface in the globe. Growth period of plant prolonged so far, the accumulated temperature increased fast. With the passage of time, precipitation and temperature were increasing that were benefit to the growth of forage. its world cause improvement of far the productivity except the human being were interfering in Nagqu grassland.
     3) Using 50 years Meteorological Data, the“climate-vegetation”model (Comprehensive model) of the productivity in Nagqu grassland were build. The grassland productive patterns were study in Nagqu area that reduced gradually from eastern to western. For 50 years, the western increases the same as the middle at NPP in Nag qu region, and that the eastern is less than theirs. The results are contrary to the Gao Qingzhu’s conclusion of using the CASA model. The grassland cover and biomass in space were obviously Difference by studying on the Urban Dynamic Changes by 1982-2003a NDVI in Nag qu region The grassland coverage decreased gradually in eastern, unchanged in middle and increased in western. The Comprehensive model were removed the interference of the human activity, therefore, the conclusion were not conflict with the Gao Qing zhu’s result. Considering all factors, Climate were very important increasing the grassland productivity in Nagqu areas.
     4) The increasing loading storage, the unevening grazing and managing model unreasonable caused all overload state at present in Nagqu grassland. The overloads were particularly serious in the ultra-economic developed region causing the degradation and desertification of the grassland system were commonly (ubiquitous) phenomenon in ecosystem of Nagqu grassland.
引文
1.蔡承侠.植被净第一性生产力及其对气候变化响应研究进展[J].新疆气象,2003,26(6):1~12.
    2.陈传友,关志华.羌塘高原水资源及其开发利用[J].自然资源学报,1989,4(4):298~307.
    3.除多,姬秋梅,德吉央宗.利用EOS/MODIS数据估算西藏藏北高原地表草地生物量[J].气象学报,2007,65(4):612~620.
    4.崔庆虎,蒋志刚,刘季科,等.青藏高原草地退化原因述评[J].草业科学,2007,24(5):20~26.
    5.第宝锋,艾南山,杨忠,等.基于GIS的草地生态系统退化评价—以西藏定结县为例[J].国土经济,2003(10):14~16.
    6.董明伟,喻梅.沿水分梯度草原群落NPP动态及对气候变化响应的模拟分析[J].植物生态学报,2008,32(3):531~543.
    7.董玉祥.西藏沙漠化灾害现状及其驱动力研究[J].自然灾害学报,2001,5(2):96~102.
    8.方精云.全球生态学[M].北京:高等教育出版社,2000.
    9.甘肃草原生态研究所草地资源室,西藏自治区那曲地区畜牧局.西藏那曲地区草地畜牧业资源[M].兰州:科学技术出版社,1991.
    10.甘肃草原生态研究所草地资源室和西藏自治区那曲地区畜牧局.西藏那曲地区草地畜牧业资源[M].兰州:甘肃科学技术出版社,1991.
    11.高清竹,李玉娥,林而达,等.藏北草地退化日控特征[J].地理学报.2005,61(6):965~973.
    12.高清竹,万运帆,李玉娥,等.藏北高寒草地NPP变化趋势及其对人类活动的响应[J].生态学报,2007,27(11):4612~4619.
    13.何勇,董文杰,季劲均,等.基于AVIM的中国陆地生态系统净初级生产力模拟[J].地球科学进展,2005,3:34~39.
    14.侯英雨,张佳华,何延波.利用遥感信息研究西藏地区主要植被年内和年际变化规律[J].生态学杂志,2005,24(11):1273~1276.
    15.李才,翟庆国,徐锋,等.藏北草地资源及其演化趋势—以申扎地区为例[J].地质通报,2003,22(1,2):991~997.
    16.李凡,李森,陈同庆.西藏那曲藏北草地观光畜牧业发展的探讨—以才曲塘草地畜牧业科技示范区为例[J].四川草原,2004,12:38~42.
    17.李辉霞,刘淑珍.基于NDVI的西藏自治区草地退化评价模型[J].山地学报,2003,21(增刊):69~71.
    18.李辉霞,刘淑珍.西藏自治区北部草地退化驱动力系统分析——西藏自治区那曲县试验区[J].水土保持研究,2005,12(6):215~217.
    19.李明森.藏北高原草地资源合理利用[J].自然资源学报,2000,15(4):335~339.
    20.李明森.羌塘高原土壤特点及其利用[J].自然资源,1980,(4):60~69.
    21.李世华,牛锋,李壁成.NPP过程模型遥感驱动因子分析[J].西藏科技,2005,12(3):120~123.
    22.刘淑珍,周麟,仇崇善,等.西藏自治区那曲地区草地退化沙化研究[M].拉萨.西藏人民出版社.1999.
    23.刘淑珍,周麟,仇崇善,等.西藏自治区那曲地区草地退化沙化研究[M].拉萨:西藏人民出版社,1999.
    24.刘雪松,马玉才,等.那曲地区牧业气候区划[M].北京:气象出版社,2003.
    25.刘岩,赵英时,冯晓明,等.半干旱草地净第一性生产力遥感模型研究[J].中国科学院研究生院学报,2006,23(5):620~627.
    26.刘岩.半干旱草地NPP遥感模型和环境响应研究[J].中国科学院研究院硕士学位论文,2006,5.
    27.刘毅华,甘明超.西藏土地沙漠化形成机制的生态足迹分析[J].中国沙漠,2006,26(3):460~465.
    28.卢玲,李新,Frank Veroustraete.中国西部地区植被净初级生产力的时空格局[J].生态学报,2005,5:342~349.
    29.罗天祥,李文华,冷允法,等.青藏高原自然植被总生物量的估算与净初级生产量的潜在分布[J].地理研究,1998,17(4):337~344.
    30.毛飞,卢志光,张佳华,等.近20年藏北地区AVHRR NDVI与气候因子的关系[J].生态学报,2007,27(8):3198~3205.
    31.毛飞,卢志光,郑凌云,等.近40年那曲地区日照时数和风速变化特征[J].气象,2006,32(9):77~83.
    32.钱拴,毛留喜,侯英雨,等.青藏高原载畜能力及草畜平衡状况研究[J].自然资源学报,2007,22(3):389~397.
    33.陶波,李克让,卲雪梅,等.中国陆地净初级生产力时空特征模拟[J].地理学报,2003,3:104~110.
    34.万运帆,高清竹,林而达,等.西藏那曲地区草地植被及土壤养分状况调查[J].草业科学,2005,23(5):7~11.
    35.汪松,谢彼德,解焱.《保护中国的生物多样性(二)》-保护西藏高原生物多样性的关键种-高原鼠兔[M].北京:中国环境科学出版社,1996:148~192.
    36.王宗明,梁银丽.植被净第一性生产力模型研究进展[J].西北林学院学报,2002,17(2):22~25.
    37.魏兴琥,李森,杨萍,等.藏北高山蒿草草甸植被和多样性在沙漠化过程中的变化[J].中国沙漠,2004,27(5):750~757.
    38.魏兴琥,杨萍,李森,等.超载放牧与那曲地区高山嵩草草甸植被退化及其退化指标的探讨[J].草业学报,2005,14(3):41~49.
    39.魏兴琥,杨萍,王亚军,等.西藏那曲现行草场管理方法与草地退化的关系[J].草业科学,2003,20(9):49~53.
    40.魏兴琥,杨萍,王亚军,等.西藏那曲现行草场管理方式与草地退化的关系[J].草业科学,2003,20(9):49~53.
    41.魏学红,郑维列,张跃为.西藏野生优良牧草资源及其开发利用[J].中国野生植物资源,2004,23(4):24~25。
    42.西藏自治区那曲地区畜牧局.西藏那曲地区土地资源[M].北京:中国农业科技出版社,1991.
    43.西藏自治区统计局.2001年西藏自治区统计年鉴[M].北京:中国统计出版社,2001.
    44.西藏自治区土地管理局,西藏自治区畜牧局.西藏自治区草地资源[M].北京:科学出版社,1994.
    45.徐雅梅,苗彦军.西藏那曲地区草地资源现状及其开发利用对策[J].中国草食动物,2001, 3(5):36~37.
    46.薛世明.西藏自治区那曲地区草地资源[M].拉萨:西藏那曲地区区划办,1990.
    47.鄢燕,刘淑珍.西藏自治区那曲地区草地资源现状与可持续发展[J].山地学报,2003,
    12(增刊):40~44.
    48.阎福礼,李霞,邵芸.基于NOAA/AVHRR数据的西部植被覆盖变化监测[J].兰州大学学报,2005,6(2):12~15.
    49.杨秀海,扎西央宗,卓嘎,等.西藏那曲地区植被覆盖状况与气象条件分析[J].草业学报,2008,17(2):102~109.
    50.杨正礼,杨改河.中国高寒草地生产潜力与载畜量研究[J].资源科学,2007,22(4):72~77.
    51.余成群,郭万军.西藏高原草地主要类型生态环境现状及恢复对策[J].西藏科技,2003(2):34~35.
    52.云文丽,王永利,侯琼,等.净第一性生产力模型在内蒙古典型草原区的应用分析[J].中国草地学报,2008,30(2):1~4.
    53.张建平,刘淑珍,周麟,等.西藏那曲地区主要土壤退化分析[J].土壤侵蚀与水土保持学报,1998,4(3):6~11.
    54.赵东升,李双成,吴绍洪.青藏高原的气候植被模型研究进展[J].地理科学进展,2006,25(4):68~78.
    55.赵好信.西藏草地退化现状、成因及改良对策[J].西藏科技,2007,2:48~51.
    56.赵士洞,罗天祥.区域尺度陆地生态系统生物生产力研究方法[J].资源科学,1998,20(1):23~34.
    57.郑凌云.基于卫星遥感与BFPS生态模式的藏北草地变化及NPP动态研究[J].中国气象科学研究院硕士学位论文,2006,5.
    58.钟诚,何晓荣,李辉霞.遥感技术在西藏那曲地区草地退化评价中的应用[J].遥感技术与应用,2003,18(2):99~102.
    59.周广胜,王玉辉.全球生态学[M].北京:气象出版社,2003.
    60.周广胜,袁文平,周莉,等.东北地区陆地生态系统生产力及其人口承载力分析[J].植物生态学报,2008,32(1):65~72.
    61.周广胜,张新时.全球气候变化的中国自然植被的净第一性生产力研究[J].植物生态学报,1996,20(1):11~19.
    62.周广胜,张新时.中国气候—植被关系初探[J].植物生态学报,1996,20(2):113~119.
    63.周广胜,张新时.自然植被第一性生产力模型初探[J].植物生态学报,1995,(3):193~200.
    64.周广胜,郑元润,陈四清,等.自然植被净第一性生产力模型及其应用[J].林业科学,1998,34(5):2~11.
    65.朱文泉,陈云浩,徐丹,等.陆地植被净初级生产力计算模型研究进展[J].生态学杂志,2005,24(3):296~300.
    66.卓嘎,杨秀海,罗文红.西藏那曲地区气候变化与牧业生产的关系[J].西藏科协第四届学术年会论文集,2008,10:381~389.
    67. Duan Z H,Xiao H L, Li X R. Evolution of soil properties on stabilized sands in the Tengger Desert,China[J]. Geomorphdogy, 2004, 59(1): 237~246.
    68. Field C B, Randerson J T, Malmstr?m C M. Global net primary production:Combining ecology and remote sensing[J]. Remote Sensing Environ, 1995, 51: 74~88.
    69. Goetz S J, Prince S D, Goward S N, et al. Satellite remote sensing of primary production:An improved production efficienty modeling approach[J]. Ecol Mod, 1999, 122: 239~255.
    70. Johnson R D, Kasischke E S. Change vector analysis:a technique for the multispectral monitoring of land cover and condition[J]. International Journal of Remote Sensing, 1998, 19(3): 411~426.
    71. Kaduk J, Heimaann M. A prognostic phendogy scheme for global terrestrial carbon cycle model[J]. Clim Res, 1996, 6: 1~19.
    72. Knorr W, Heimann M. Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model[J]. Tellus, 1995, 47B: 471~789.
    73. Lieth H, Wittaker R H. Primary productivity of the Biosphere[M]. New York:Springer-verlag press, 1975.
    74. Lieth H, Wittaker R H. Modeling the primary productivity of the world[A]Primary Productivity of the Biosphere[c]. New York.Springer-verlag, 1975.
    75. Liu J, Chen J M, Chen W. Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data[J]. J.Geophys.Res, 1999, 104(D22): 27735~27754.
    76. Mc Guire A D, Melillo J M, Kicklighter D W, et al. Equilibrium responses of soil carbon to climate change-Empirical and process-based estimates[J]. J Biogeogr, 1995, 22(4-5): 785—796.
    77. Mc Guire A D, Melillo J M, Kicklighter D W, et al. Eqriligrium responses of global net primary production and carbon storage to doubled atmospheric Carbon dioxide[J]. Global Biogeochem Cyc, 1997, 11(2): 173~189.
    78. Parton W J, Scurlock J M O, Ojima D S, et al. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J]. Global Biogeochem Cyc, 1993, 7: 785~890.
    79. Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production:A process model based on global satellite and surface data[J]. Global Biogeochem Cyc, 1993, 7: 811~841.
    80. Prine S D, Goward S N. Global primary production:A remote sensing approach[J]. J Biogeogr, 1995, 22: 815~835.
    81. Vchijima Z, Seino H. Agroclimate evaluation of net primary productivity of natural vegetation I Chikugo model for evaluating productivity[J]. J Agric Meteor, 1985, 40: 343~353.
    82. Young S S, Wang C Y. Land-cover change analysis of China using global-seale pathfinder AVHRR land cover(PAL) data 1082-92[J]. International Journal of Remote Sensing, 2001(22): 1457~1477.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700