用户名: 密码: 验证码:
东中国海波候对局地气候变化的响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波候研究对于解释全球气候变化的内在物理机制,理解全球气候变化后人们的生产、生活环境由此而产生的相关变化都具有重要的现实意义。
     本文利用了欧洲中尺度气象中心(ECMWF)所提供的最新的近45年(1957-2002)全球同化资料集,该资料集提供每天4次天气尺度的环境要素信息。本研究从中提取海面矢量风场信息,并以此来驱动第三代海洋波浪模式WAVEWATCH-III v2.22,从而构建了历时45年的西北太平洋地区的波候资料。使用日本气象厅(Japan Meteorological Agency)所提供的B22001号浮标的实地观测资料,以及美国的TOPEX/POSEIDON卫星高度计资料对本研究通过数值模拟所获取的波候资料进行验证,发现通过这一方法所重建的历史波候资料完全满足对东中国海波候状况进行分析的精度要求。通过参考前人的研究成果,本研究所获取的波候时间序列满足对气候问题进行评估时所必需的数据序列一致性的基本要求,可以用于长时间序列的分析。
     运用经验正交函数(empirical orthogonal function,EOF)分析方法,本研究提取了东中国海地区的极值波高的分布特征。根据分析结果,本研究将时间序列分成“1977年前”和“1977年后”两段,并据此比较两段的变化特征。研究发现,东中国海北部地区(黄海)的极值波高在最近45年内存在缓慢的衰减现象,导致这一现象的原因主要是由于该地区的东亚夏季风正在慢慢减弱。而东中国海南部的极值波高在最近45年内则存在增强的现象,这主要是由于活跃在西北太平洋上的热带气旋正在慢慢加强,由于这些热带气旋所产生的涌浪对东中国近海的影响也在慢慢加深。
     通过将本研究的研究成果和前人的成果进行对比,我们不难发现:西北太平洋地区热带气旋活动的增强已经是一个比较普遍接受的事实,而这一变化对东中国近海所能构成的影响范围足以影响到整个东中国海的中南部地区。而东亚季风减弱对东中国海波候所造成的影响,也从另一个角度提示我们,从能量的角度重新审视全球气候变化的内在物理机制或许是非常必要的。
Studies of wave climate are important to interpret the internal physical mechanisms of global climate variations and are also helpful to explain the changes of human beings’living environments.
     Present study used the European Centre for Medium-Range Weather Forecasts (ECMWF) 40-year reanalysis products (1977-2002) to derive the sea surface wind field. By using the 4 times per day weather data, we can drive the third generation wave model WAVEWATCH-III v2.22 to retrieve the recent 45 year wave climate in the western North Pacific.
     The model retrieved wave climate had been compared with Japan Meteorological Agency B22001 buoy observed data and U.S. TOPEX/POSEIDON satellite altimeter measured wave height. Present retrieved wave climate is suitable to use to analyze the wave climate in the East China Sea.
     Empirical Orthogonal Function (EOF) analysis helped us to extract the spatial and temporal variation of extreme wave height distributions in the East China Sea. By comparison with“early year”and“later year”, decreases in extreme wave height in the northern East China Sea (Yellow Sea) correspond to attenuation of the East Asian Summer Monsoon, while increases in the south are primarily due to enhancement of tropical cyclone activities in the western North Pacific.
     By comparison with previous achievements, the intensification of tropical cyclones in the western North Pacific is identified as a reality. Such variation can influence the middle and southern part of the East China Sea, while the changes of East Asian Monsoon Circulation mentioned us that the energy transportation maybe another important aspect to clarify the internal mechanisms of global climate variations.
引文
[1] Rye, H., 1976. Long-term changes in the North Sea wave climate and their importance for the extreme wave predictions, Mar. Sci. Communication, 2, 420-448.
    [2] Lamb, H.H. and Weiss, I., 1979. On recent changes of the wind and wave regime of the North sea and outlook, Fach.Mitt.Wehrgeophys., 194,1-108.
    [3] Neu, H.J.A., 1984. Interannual variations and longer-term changes in the sea state of the North Atlantic from 1970 to 1982, J. Geophys. Res., 89, C4, 6397-6402.
    [4] Seymour, R.A. , Strange, R.R., Cayan, D.R. and Nathan, R.A, 1984. Influence of El Ni?os on California’s wave climate. 19th international Conference on Coastal Engineering, ASCE, pp. 577-592.
    [5] Carter, D.J.T and Draper, L., 1988. Has the north-east Atlantic become rougher? , Nature, 332,494.
    [6] Becan, S. and Carter, D.J.T., 1991. Wave climate changes in the North Atlantic and North Sea, Int.J.Climat., 11, 545-558.
    [7] Schmidt, H. and H. von Storch, 1993. German Bight storms analysed, Nature 365, 791.
    [8] Bacon S., Carter D. J. T., 1993. A connection between mean wave height and atmospheric pressure gradient in the North Atlantic. International Journal of Climatology vol. 13, No.4, pp. 423-436.
    [9] von Storch H., Eduardo Z. and Ulrich C., 1993. Downscaling of climate change estimates to regional scales: Application to winter rainfall in the Iberian Peninsula. Jouranl of Climate, 6, 1161-1171.
    [10] Hogben, N., 1994. Increase in wave heights over the North Atlantic: A reviewer of the evidence and some implications for the naval architect, Trans Roy. Inst. Naval Arch., pp93-101.
    [11] von Storch, H. and Hinrich Reichardt, 1994. Changing statistics of storms in the North Atlantic? MPI-Report 116.
    [12] WASA Group, 1994. Comment on “Increases in Wave Heights over the North Atlantic: A Review of the Evidence and some Implications for the NavalArchitect” by N Hogben. Trans Roy. Inst. Naval Arch., 137, 107-110.
    [13] WASA Group, 1995. The WASA project: Changing Storm and Wave Climate in the Northeast Atlantic and adjacent seas? Proceedings. 4th International Workshop on Wave Hindcasting and Forecasting, Banff, Canada, October 16-20, 1995, 31-44; also: GKSS Report 96/E/61.
    [14] Schmith, T., 1995. Development of occurrence and strength of severe winds over the Northeast Atlantic during the past 100 Years. Proceedings of the Sixth International Meeting on Statistical Climatology, Galway, Ireland, 83-86.
    [15] Lunkeit F., M. Ponater, R. Sausen, M. Sogalla, and U. Ulbrich, and M. Windelbamd, 1996. Cyclonic activity in a warmer climate. Beitr. Phys. Atmos., 69, 393-407.
    [16] Bouws, E., Jannink, D. and Komen, G.J., 1996. The increasing wave height in the North Atlantic Ocean, Bulletin of the American Meteorological society, Vol.77, 10, 2275-2277.
    [17] Bauer, E., Stolley, M., Vonstorch, H., 1996. On the response of surface waves to accelerating the wind forcing. GKSS report 96/E/89.
    [18] Kaas, E., Li T.-S. and Schmith T., 1996. Statistical hindcast of wind climatology in the North Atlantic and Northwestern European region. Climate Research, Vol.7, No. 2, pp.97-110.
    [19] Rider, K.M., Komen G.J. and Beersma J., 1996. Simulations of the response of the ocean waves in the North Atlantic and North Sea to CO2 doubling in the atmosphere. KNMI Scientific Report WR 96-05.
    [20] WASA Group, 1996. Annual Bulletin on the Climate in WMO Region VI. Deutscher Wetterdienst, 39.
    [21] Kushnir, Y., Cardone, V.J., Greenwood, J.G. and Cane, M.A., 1997. The Recent Increase in North Atlantic Wave Heights, Journal of Climate, Vol. 10, No. 8, pp. 2107–2113.
    [22] Bijl, W., 1997. Impact of a wind climate change on the surge in the southern North Sea. Climate Research, Vol. 8, pp. 45-49.
    [23] Beersma, J., K. Rider, G. Komen, E. Kaas and V. Kharin, 1997. An analysis ofextratropical storms in the North Atlantic region as simulated in a control and a 2 x CO2 time-slice experiment with a high resolution atmospheric model. Tellus 49A, 347 – 361.
    [24] Mietus, M., and H. von Storch, 1997. Reconstruction of the wave climate in the Proper Baltic Basin, April 1947-March 1988. GKSS Report 97/E/28.
    [25] Schmith, T., H. Alexandersson, K. Iden, H. Tuomenvirta, 1997. North Atlantic-European pressure observations 1868-1995 (WASA dataset 1.0; CD-ROM included). Technical report 97-3. Danish Meteorological Institute, Copenhagen, Denmark.
    [26] von Storch, H., 1997. Storm and Surge Climate in the North Sea Area: Changes in the Past Century. Proc. Harry van Loon Symposium: Studies in Climate II, NCAR TN-433+PROC, 252-268.
    [27] von Storch, H. and Hinrich Reichardt, 1997. A scenario of storm surge statistics for the German Bight at the expected time of doubled atmospheric carbon dioxide concentration, Journal of Climate, Vol. 10, pp. 2653-2662.
    [28] Swail V.R, Cardone V.J. and Cox A.T., 1998. A long term North Atlantic Wave Hindcast. Proc. 5th International Workshop on Wave Hindcasting and Forecasting January 26-30, 1998 Melbourne, Florida.
    [29] Alexandersson, H., T. Schmith, K. Iden and H. Tuomenvirta, 1998. Long-term trend variations of the storm climate over NW Europe. The Global Atmosphere and Ocean System, Vol. 6, pp. 97-120.
    [30] WASA Group, 1998. Changing waves and storms in the Northeast Atlantic? Bulletin of American Meteorological Society, Vol.79, 5, 741-759.
    [31] Beckmann, B. and Tetzlaff, 1998. Modifications of the frequency of storm surges at the Baltic coast of Mecklenburg-Vorpommern. The Global Atmosphere and Ocean System, Vol. 6, pp. 177-192.
    [32] Seymour, R.J., 1998. Effects of El Ni?os on the West Coast wave climate. Shore & Beach [Shore Beach]. Vol. 66, No. 3, pp. 3-6.
    [33] Flather, R.A. and J.A. Smith, 1998. First estimates of changes in extreme storm surge elevation due to doubling CO2. The Global Atmosphere and Ocean System(Global Atmos. & Ocean Sys.), Vol. 6, pp. 193-208.
    [34] Flather, R.A., J.A. Smith, J.D. Richards, C. Bell, and D.L. Blackman, 1998. Direct estimates of extreme storm surge elevations from a 40 year numerical model simulation and from observations. The Global Atmosphere and Ocean System (Global Atmos. & Ocean Sys.), Vol. 6, pp. 165-176
    [35] Günther, H., W. Rosenthal, M. Stawarz, Carretero, J.C., M. Gomez, I. Lozano, O. Serano and M. Reistad, 1998. The wave climate of the Northeast Atlantic over the period 1955-94: the WASA wave hindcast. The Global Atmosphere and Ocean System (Global Atmos. & Ocean Sys.), Vol.6, pp. 121-163.
    [36] Schmith T., Kaas E., T.-S. Li, 1998. Northeast Atlantic storminess 1875-1995 re-analysed. Climate Dynamics, Vol. 14, pp. 529-536.
    [37] Sergey K. Gulev, Lutz Hasse, 1999. Changes of wind waves in the North Atlantic over the last 30 years. International Journal of Climatology, Vol.19, Issue 10, pp. 1091 – 1117.
    [38] Young I.R., 1999. Seasonal variability of the global ocean wind and wave climate. International Journal of Climatology, Vol. 19, Issue 9, pp. 931 – 950.
    [39] Bijl, W., R. Flather, M. Reistad, J. de Ronde and T. Schmith, 1999. Changing storminess? An analysis of long-term sea level data sets. Climate Research, Vol. 11, pp.161-172.
    [40] Langenberg H., Pfizenmayer A., von Storch H., Sundermann J., 1999. Storm-related sea level variations along the North Sea coast: natural variability and anthropogenic change. Continental Shelf Research, Vol. 19, No. 6, May 1999, pp. 821-842(22).
    [41] Swail V., Cox A. and Cardone V., 1999. Trends and Potential Biases in NCEP-DRIVEN Ocean Wave Hindcasts. Proc. 2nd International Conference on Reanalyses. 23-27 August 1999, Reading, UK.
    [42] Cox, A.T., Cardone, V.J. and Swail V.R., 1999. On the Use of In-Situ and Satellite Wave Measurements for Evaluation of Wave Hindcasts. CLIMAR 1999 Preprints. Sept. 8-15, 1999, Vancouver, Canada.
    [43] Grevemeyer I, Herber R, Essen HH., 2000. Microseismological evidence for achanging wave climate in the northeast Atlantic Ocean. Nature, 16 Nov. 2000; 408(6810): 349-52.
    [44] Swail, V.R. and Cox, A.T., 2000. On the use of NCEP-NCAR reanalysis surface marine wind fields for a long-term north Atlantic wave hindcast. Journal of Atmospheric and Oceanic Technology, Vol. 17, No. 4, pp. 532–545.
    [45] Alexandersson, H., T. Schmith, K. Iden and H. Tuomenvirta, 2000. Trends of storms in NW Europe derived from an updated pressure data set. Climate Research (Clim. Res.), Vol. 14(1), pp. 71-73.
    [46] Bauer, E., H. von Storch and M. Stolley, 2000. Sensitivity of ocean waves to speed changes of the weather stream. The Global Atmosphere and Ocean System (Global Atmos. & Ocean Sys.), Vol. 7, pp. 91-106.
    [47] Kauker F. and Langenberg H., 2000. Two models for the climate change related development of sea levels in the North Sea. Climate Research, Vol. 15, pp. 61–67.
    [48] Weisse, R. and Gayer G., 2000. An approach towards a 40-year high-resolution wave hindcast for the Southern North Sea. Proc., 6th International Workshop on Wave Hindcasting and Forecasting, Monterey, USA, 2000, 204-210.
    [49] Swail V.R, Ceccacci E.A and Cox A.T., 2000. The AES40 North Atlantic Wave Reanalysis: Validation and climate assessment. Proc., 6th International Workshop on Wave Hindcasting and Forecasting, November 6-10, 2000 Monterey, California, USA
    [50] Xiaolan L. Wang and Val R. Swail, 2001. Changes of Extreme Wave Heights in Northern Hemisphere Oceans and Related Atmospheric Circulation Regimes. Journal of Climate, Vol. 14, No. 10, pp. 2204–2221.
    [51] Cox, A.T. and Swail, V.R., 2001. A global wave hindcast over the period 1958-1997: Validation and climate assessment. Journal of Geophysical Research (J. Geophys. Res.), Vol.106, C2, 2313-2329.
    [52] Pfizenmayer A. and von Storch H., 2001. Anthropogenic climate change shown by local wave conditions in the North Sea. Climate Research, Vol. 19: 15–23, 2001.
    [53] Hargreaves J.G., Carter D.J.T., Cotton P.D., Wolf J., 2002. Using the SWAN Wave Model and Satellite Altimeter Data to Study the Influence of Climate Change at the Coast. The Global Atmosphere and Ocean System, Vol. 8, No. 1 / 2002, pp 41-66.
    [54] Woolf D. K., Challenor P. G., and Cotton P. D., 2002. Variability and predictability of the North Atlantic wave climate. Journal of Geophysical Research, Vol. 107, doi:10.1029/2001JC001124, 2002
    [55] Swail V. R., Xiaolan L. Wang and Cox A., 2002. The wave climate of the North Atlantic─ past, present and future. Proc., 7th International Workshop On Wave Hindcasting and Forecasting, Banff, Alberta, Canada October 21 - 25, 2002, B1.
    [56] Calverely, M.J., Szabo D., Cardone V.J., et al., 2002. Wave Climate Study of the Caribean Sea. Proc., 7th International Workshop On Wave Hindcasting and Forecasting, Banff, Alberta, Canada October 21 - 25, 2002, C1.
    [57] You, Z.J. and Jayewardene, 2003. The occurrence of extreme coastal storms along the NSW coast. Australian National Environment Conference, Brisbane, pp. 1-5.
    [58] Johns T.C., Gregory J.M., Ingram W.J., et al., 2003. Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Climate Dynamics (2003) 20: 583–612.
    [59] Caires S., Sterl A., American Geophysical Union, 2003. Validation of ocean wind and wave data using triple collocation. Journal of Geophysical Research (J. geophys. res.), 2003, vol. 108, Issue C3, pp. 43.1-43.16.
    [60] Wang, Xiaolan L.; Zwiers, Francis W.; Swail, Val R., 2004. North Atlantic Ocean Wave Climate Change Scenarios for the Twenty-First Century. Journal of Climate, Jun2004, Vol. 17 Issue 12, p2368-2383.
    [61] Sofia Caires and Val Swail, 2004. Global wave climate trend and variability analysis. Proc., 8th International Workshop on Wave Hindcasting and Forecasting, North Shore, Oahu, Hawaii, USA, November 14-19, 2004, Section A1.
    [62] Weisse R. and Stawarz M., 2004. Long-term changes and potential future developments of the North Sea wave climate. Proc., 8th International Workshopon Wave Hindcasting and Forecasting, North Shore, Oahu, Hawaii, USA, November 14-19, 2004, Section B2.
    [63] Weisse, Ralf; von Storch, Hans; Feser, Frauke, 2005. Northeast Atlantic and North Sea Storminess as Simulated by a Regional Climate Model during 1958–2001 and Comparison with Observations. Journal of Climate, Feb2005, Vol. 18, Issue 3, p465-479.
    [64] Caires, S.; Sterl, A., 2005. 100-Year Return Value Estimates for Ocean Wind Speed and Significant Wave Height from the ERA-40 Data. Journal of Climate, Apr2005, Vol. 18 Issue 7, p1032-1048.
    [65] Gaslikova L. and Weisse R., 2005. Applications of dynamical and statistical downscaling methods to small-scale wave climate simulations for coastal areas. GKSS 2005/3, ISSN 0344-9629.
    [66] Harrison G.P. and Wallace A.R., 2005. Climate sensitivity of marine energy. Renewable Energy, Vol.30 (12), pp. 1801-1817.
    [67] Harrison, G.P. and Wallace, A.R., 2005. Sensitivity of wave energy to climate change. Energy Conversion, IEEE Transactions on Energy Conversion, Vol. 20, Issue: 4, pp. 870- 877.
    [68] Bauer, E. Staabs, C. (1998), Statistical properties of global significant wave heights and their use for validation. J. Geophys. Res., 103(C1), 1153-1166.
    [69] Bacon, S., and D. J. T. Carter (1991), Wave climate changes in the North Atlantic and the North Sea. Int. J. Climatol., 11, 545-558.
    [70] Bouws, E., D. Jannink, and G.. J. Komen (1996), The increasing wave height in the North Atlantic Ocean. Bull. Amer. Meteor. Soc., 77, 2275-2277.
    [71] Caires, S., and A. Sterl (2001), Comparative assessment of ERA-40 ocean wave product. Proc. ECMWF Workshop on Re-analysis, Reading, United Kingdom, ECMWF, ERA-40 Project Report Series 3, 353–368.
    [72] Caires, S., Stearl, A., Komen, G., and V. Swail (2004), The Web-basedKNMI/ERA-40 global wave climatology atlas. Royal Netherlands Meteorological Institute, Wilhelminalaan 10, 3732 GK, De Bilt, Netherlands. Bulletin - World Meteorological Office, 53, No. 2, 142-146.
    [73] Condron, A., G.R. Bigg, and I.A. Renfrew (2006), Polar Mesoscale Cyclones in the Northeast Atlantic: Comparing Climatologies from ERA-40 and Satellite Imagery. Mon. Wea. Rev., 134, 1518–1533.
    [74] Cardone, V.J., J.G. Greenwood, and M.A. Cane (1990), On Trends in Historical Marine Wind Data. J. Climate, 3, 113–127.
    [75] Carter, D. J. T., and L. Draper (1988), Has the north-east Atlantic become rougher? Nature, 332, 494.
    [76] Chang, C.P., Y. Zhang, and T. Li (2000a), Interannual and Interdecadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part I: Roles of the Subtropical Ridge. J. Climate, 13, 4310–4325.
    [77] Chang, C.P., Y. Zhang, and T. Li (2000b), Interannual and Interdecadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part II: Meridional Structure of the Monsoon. J. Climate, 13, 4326–4340.
    [78] Cox, A. T. Swail, V.R. (2001), A global wave hindcast over the period 1958-1997: Validation and climate assessment. J. Geophys. Res., 106(C2), 2313-2329.
    [79] Fiorino, M. (2002), Analyses and forecasts of tropical cyclones in the ECMWF 40-year Reanalysis (ERA-40). Preprints, 25th Conf. on Hurricanes and Tropical Meteorology. San Diego, CA, Amer. Meteor. Soc., 261-265.
    [80] Greatbatch, R.J., and P.p. Rong (2006), Discrepancies between Different Northern Hemisphere Summer Atmospheric Data Products. J. Climate, 19,1261–1273.
    [81] Huang RH, and Lu L. (1989), Numerical simulation of the relationship between the anomaly of the subtropical high over East Asia and the convective activities in the western tropical Pacific. Adv. Atmos. Sci., 6, 202-214.
    [82] Huang, R., and F. Sun (1992), Impact of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan, 70(1B), 243–256.
    [83] Kushnir Y., V. J. Cardone, J. G. Greenwood, and M. A. Cane (1997), The recent increase in North Atlantic wave heights. J. Climate, 10, 2107-2113.
    [84] Lau, N.C., and M.J. Nath (2000), Impact of ENSO on the Variability of the Asian–Australian Monsoons as Simulated in GCM Experiments. J. Climate, 13, 4287–4309.
    [85] Lau, K.M., and H.T. Wu (2001), Principal Modes of Rainfall–SST Variability of the Asian Summer Monsoon: A Reassessment of the Monsoon–ENSO Relationship. J. Climate, 14, 2880–2895.
    [86] Nitta Tsuyoshi (l987), Convective activities in the Tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 64, 373-390.
    [87] Sasaki, W., S. I. Iwasaki, T. Matsuura, S. Iizuka, and I. Watabe (2005a), Changes in wave climate off Hiratsuka, Japan, as affected by storm activity over the western North Pacific, J. Geophys. Res., 110, C09008, doi:10.1029/2004JC002730.
    [88] Sasaki, W., S. I. Iwasaki, T. Matsuura, and S. Iizuka (2005b), Recent increase in summertime extreme wave heights in the western North Pacific, Geophys. Res.Lett., 32, L15607, doi:10.1029/2005GL023722.
    [89] Sasaki, W., and T. Hibiya (2007), Interannual Variability and Predictability of Summertime Significant Wave Heights in the Western North Pacific, Journal of Oceanography, 63, 203-213.
    [90] Sterl, A. (2004), On the (In)Homogeneity of Reanalysis Products. J. Climate, 17, 3866–3873.
    [91] Stowasser, M., Y. Wang, and K. Hamilton (2007), Tropical Cyclone Changes in the Western North Pacific in a Global Warming Scenario. J. Climate, 20, 2378–2396.
    [92] Sturaro, G. (2003), A closer look at the climatological discontinuities present in the NCEP–NCAR reanalysis temperature due to the introduction of satellite data. Climate Dyn., 21, 309–316.
    [93] Tolman, H. L. (2002), User manual and system documentation of WAVEWATCH-III version 2.22. NOAA/NWS/NCEP/MMAB Technical Note 222, Natl. Oceanic and Atmos. Admin., Silver Spring, MD.
    [94] WAMDI Group (1988), The WAM model – a Third Generation Oceans Wave Prediction Model. J. Phys. Oceanogr., 18, 1775-1810.
    [95] Wang, B., R. Wu, and T. Li (2003), Atmosphere–Warm Ocean Interaction and Its Impacts on Asian–Australian Monsoon Variation. J. Climate, 16, 1195–1211.
    [96] Wang, H.J. (2001a), The weakening of the Asian monsoon circulation after the end of 1970's. Adv. Atmos. Sci., 18, 376-386.
    [97] Wang, X.L., and V.R. Swail (2001b), Changes of Extreme Wave Heights in Northern Hemisphere Oceans and Related Atmospheric Circulation Regimes. J.Climate, 14, 2204–2221.
    [98] Wang, X.L., V.R. Swail, and F.W. Zwiers (2006), Climatology and Changes of Extratropical Cyclone Activity: Comparison of ERA-40 with NCEP–NCAR Reanalysis for 1958–2001. J. Climate, 19, 3145–3166.
    [99] WASA Group (1995), The WASA project: changing storm and wave climate in the Northeast Atlantic and adjacent seas? Proc. Fourth Int. Workshop on Wave Hindcasting and Forecasting, Banff, Alberta, Canada, Environment Canada, 31-44.
    [100] WASA Group (1998), Changing waves and storms in the northeast Atlantic? Bull. Amer. Meteor. Soc., 79, 741-760.
    [101] Xu, M., C.-P. Chang, C. Fu, Y. Qi, A. Robock, D. Robinson, and H. Zhang (2006), Steady decline of east Asian monsoon winds, 1969–2000: Evidence from direct ground measurements of wind speed, J. Geophys. Res., 111, D24111, doi:10.1029/2006JD007337.
    [102] Xue Feng (2001), Interannual to Interdecadal Variation of East Asian Summer Monsoon and Its Association with the Global Atmospheric Circulation and Sea Surface Temperature. Adv. Atmos. Sci., 18, 567-575.
    [103] Zhang, Y., T. Li, and B. Wang (2004), Decadal Change of the Spring Snow Depth over the Tibetan Plateau: The Associated Circulation and Influence on the East Asian Summer Monsoon. J. Climate, 17, 2780–2793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700