用户名: 密码: 验证码:
青藏高原气候动力学的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以青藏高原地表面感热作用对亚洲季风的影响为研究主线,采用大气环流模式和线性斜压模式为研究工具,基于大量观测资料的事实分析,通过设计各种有效的敏感性数值试验,展开了青藏高原气候动力学数值模拟的研究。论文首先从发展SAMIL大气环流模式着手,通过改进部分模式物理过程参数化方案,较大程度上提高模式模拟亚洲气候的能力。关于青藏高原气候动力效应对亚洲季风的作用,本文主要探讨了以下两个方面:第一,使用改进了的SAMIL模式,采用高质量卫星遥感资料,展开了高原地表热力状况对亚洲夏季风爆发影响的敏感性数值试验,从而探讨影响亚洲季风爆发可预报性的影响因素;第二,针对青藏高原持续增暖的事实,和政府间气候变化专门委员会第四次评估报告(IPCC AR4)中高原将继续增暖的预测,理解近50年青藏高原持续增暖趋势与东亚夏季降水变化趋势的动力联系。根据大气环流模式高原增暖实验的模拟结果,基于经典Rossby波能量频散理论、热力适应理论、Sverdrup涡度平衡关系和大气对深对流加热响应理论,并结合了线性斜压模式数值试验结果,从理论上分析和解释了高原增暖对东亚夏季风趋势变化影响的动力机制。另外,论文还对东亚夏季降水变化趋势的其他可能成因进行了简要的研究和讨论。论文的主要结论可概括如下:
     1、通过与青藏高原地区CAMP-Tibet 5个观测站点资料进行比较,AMSR-E卫星遥感产品,相对再NCEP和ERA40两套再分析资料而言,能够更加准确得反映青藏高原地区土壤湿度场的变化趋势,特别是时间尺度较小的信号;应用该卫星遥感产品的数值试验则表明,青藏高原地区土壤湿度准确度的提高有助于提高SAMIL模式对该地区陆气通量的模拟能力,进而有助于改善亚洲夏季风爆发的模拟。
     2、长期站点资料的分析表明,在1960到2003年期间,青藏高原地表温度以平均0.31℃/10年的幅度增暖。在年代际变化时间尺度上,青藏高原的地表增暖趋势与东亚夏季降水变化趋势(“南涝北旱”趋势)显著相关。因此,推测:青藏高原增暖可能是近50年来造成东亚地区降水变化趋势的重要原因。
     3、数值试验结果一定程度上验证了青藏高原增暖确是造成东亚夏季降水变化趋势(我国“南涝北旱”变化趋势)的重要原因。其主要物理动力过程描述如下:青藏高原增暖,导致高原感热驱动“气泵效应”增强和海陆热力对比增大,从而北印度洋的低空印度季风气流增强;另一方面,在感热加热和对流引起的潜热加热相互作用下,对流层高层南亚高压加强、使得对流层高空的高原北侧西风急流和高原南侧东风急流增强。高低空环流异常激发出Rossby波能量分别沿急流向东频散,当到达西北太平洋地区时均表现为反气旋环流异常,异常中心分别位于我国南海和日本以东地区,这种异常反气旋环流使得东亚地区低空西南暖湿空气输送增强,副热带锋区降水增强,其下游的副高区的降水减弱。在Sverdrup涡度平衡关系下,梅雨锋区东部的对流层上层出现异常气旋性环流,相对应的对流层低层的反气旋环流也得以增强。这样,对流层低层的三个异常反气旋性环流相互叠加,使得西北太平洋地区的异常反环流系统得以稳定加强。由此,高原增暖后降水异常表现为:印度西北部季风降水增加,长江中下游、朝鲜半岛和日本地区副热带锋区降水增多;西太平洋副热带高压控制下的广大地区和孟加拉湾东北部,季风降水减;副热带锋区西北侧盛行下沉气流,降水减少。
     4、近一步的数值实验表明,我国梅雨锋产生的非绝热加热(这里称为东亚季风变化趋势的“内强迫因子”)所引起上升气流的下沉支在华北地区,该下沉气流加强了我国华北夏季降水的负异常。另外,梅雨锋降水的非绝热加热在对流层高层可以激发出定常Rossby波。该Rossby波能量沿高空西风急流波导向东传播,由于其正压结构的特征,引起对流层低层气旋性环流异常,从而呈现出西南-东北向倾斜的结构,该倾斜结构又在基本气流的影响下加大。这种低层西南-东北倾斜的气旋性环流异常一方面增强韩国的‘Changma’和日本的‘Baiu’降水,另一方面,由于异常气旋环流中心两侧的西南风和东北风分别加强了西北太平洋副热带高压,和减弱我国华北地区低空暖湿气流的输送,西太副高控制地区和我国华北地区降水即表现为偏干趋势。因此,梅雨锋降水自身的非绝热加热作用可以强迫出与东亚夏季降水变化趋势相一致的“三明治”结构降水异常分布型。
     5、根据本文提出的物理模型,作者继而强调:如果温室气体和气溶胶等影响因子不能得到有效控制,青藏高原的增暖趋势将短期内无法抑制,这样,在内外强迫因子相互作用下,我国“南涝北旱”的气候格局还将持续。
     本论文的创新成果概括为以下几点:
     1.发展SAMIL大气环流谱模式,完善物理过程参数化方案,提高模式模拟气候的性能,并用于亚洲气候数值模拟的动力学研究。
     2.评估AMSR-E卫星遥感土壤湿度产品在青藏高原地区的质量,并利用该遥感资料进行亚洲季风爆发的模拟和预测的研究。
     3.指出青藏高原增暖是近50年来东亚夏季降水变化趋势(我国“南涝北旱”趋势)的重要成因。
     4.梅雨锋降水自身的非绝热加热作用作为内强迫因子可以强迫出与东亚夏季降水变化趋势一致的“三明治”结构降水分布型。
     5.根据IPCC AR4预测青藏高原持续增暖的事实,我国“南涝北旱”的气候格局还将持续。
     本论文通过一系列敏感性数值试验,更深刻得理解了青藏高原对亚洲季风影响的气候动力学过程。以此为基础,可以更好地理解亚洲季风爆发的可预报性以及东亚夏季风变化趋势的特征和成因,从而更准确地预测未来东亚气候变化的趋势。另外,本论文的研究结果也表明目前我国投入巨大的正在实施的“南水北调”工程将会在未来气候变化中发挥积极作用,有助于削减气候变化对我国人民生产生活的负面影响。
This work takes the effects of Sensible Heat driven‘Air Pump’(SHAP) over the Tibetan Plateau (TP) on Asian Summer Monsoon as the research mainline. According to the observational analysis, here, with sensitivity experiments from Atmospheric General Circulation Model (AGCM) and Linear Barotropic Model (LBM) ,we deploy the numerical simulation study on the climate dynamics of TP.
     At the beginning of this work, the performance of Spectral Atmosphere Model of IAP LASG (SAMIL) has been improved greatly by inducing and modifying some physical processes. This thesis studys the climatic dynamical effects of TP on Asian Summer Monsoon (ASM) from the following two aspects: on the one hand, with the improved SAMIL model, the onset predictability of ASM has been investigated by the application of high-quality remote sensing products in numerical experiments, and focus on the effects of TP thermal condition. On the other hand, Intergovermental Panel for global Climate Change (IPCC) Fourth Assessment reported warming of more than 4oC will likely occur over TP by the end of 21st century, the numerical experiments have been used to understand the possible dynamical relationship between the warming TP and the interdecadal change of East Asian Summer Monsoon (EASM) rainfall. Basing on the classical theory of Rossby wave dispersion, thermal adaption, Sverdrup balance, the theory of the atmospheric response to convective heating and the results from a linear baroclinic model, this thesis reveals the mechanisms of climatic dynamical effects of TP on interdecadal change of EASM rainfall. Additionally, there is some discussion on the possible factors of interdecadal change of EASM rainfall. The conclusions this thesis draws can be list as following:
     1. The soil moisture remote sensing products of AMSR-E have been evaluated by five gauged stations from CAMP-Tibet datesets, comparing with reanalysis from NCEP and EAR40, remote sensing products of AMSR-E have the ability to catch the variability of soil moisture over TP, especially on the short timescale; The application of remote sensing products presents that reasonable soil moisture will improve model’s performance of land surface flux, thereafter, the onset predictability of ASM can benefit a lot from it with numerical model.
     2. The surface of TP is warming up in recent decades. Basing on the analysis from in-situ surface temperature (TS), TP is wamring up with the speed of 0.31℃/10 from 1960 to 2003. Furthermore, there is a significant relationship between TS over TP and rainfall trend of EASM (well known as the trend of‘Southern China flood and Northern China drought’) on the interdecadal timescale. Therefore, observationaly the warming TP might contribute to occurring frequently of‘Southern China flood and Northern China drought’in recent decades.
     3. Results from numerical experiments confirm that warming TP is one of possible reasons to favor the interdecadal change of‘Southern China flood and Northern China’. Warming TP can echance the effect of SHAP, and then uplift the South Asian Hight on upper level and strengthen the Somalia lower level jet over Arabian Sea due to enhanced land-sea thermal contrast. Rossby waves can be given rise at both upper and lower levels. Rossby wave energy both disperse eastward and is traped within westly jet at upper and lower levels separately. Due to the barotropic character of Rossby wave propagation in mid-latitude region, the response of lower level is as same as upper level in mid-latitude region. Therefore, there is anticyclonic anomaly center to the east of Japan at the level of 850hPa. Due to the easterly vertical shear of basic state over north Indian Ocean, the Rossby wave energy can't influence the circulation on the upper level. So there is also anticyclonic anomaly around South China Sea when the energy propagates there. Thereafter, the two anticyclonic anomalies over northwest Pacific interact with each other and orient southwest-northeast eventually. The moisture is transported towards East Asian subtropical front and releases latent heating. As same as the response of atmosphere to imposed heating and the corresponding cooling, according to the Sverdrup balance, there is baroclinic structure over northwest Pacific, the lower anticyclonic anomaly further enhances moisture transport and strengthens North-West Pacific Subtropical High (NWPSH), then causes the diabatic cooling over ocean. Evently,‘Meiyu’(‘Changma’in Korean and‘Baiu’in Japan) front has been echanced, and northern China and northwest Pacific regions under the control of NWPSH become dry due to the subsidence anmoaly.
     4. Internal forcing of‘Meiyu’front in China was also studied in this thesis. Results from numerical experiment suggest that the latent heating released from‘Meiyu’front (China part) can firstly echances the‘Changma’(Korean part) and‘Baiu’(Japan part) due to the barotropic character of Rossby wave train in upper troposphere. Secondly, the phase speed of Rossby wave induced by Meiyu heating propagates northwestward, which exactly causes the subsidence over North China. In the lower troposphere, the cyclonic anomaly over‘Meiyu’front (China part) has been modified both by mean flow and cyclonic anomaly on its northeast, then tilts southwest-northeast. Therefore, the southwesterly wind can transport more warmer and moister flow to‘Changma’and‘Baiu’regions and strengthen NWPSH simultaneously. Meanwhile, the northeasterly wind on the other side of cyclonic anomaly can weaken the monsoon flow at the lower level over North China. As a result, in terms of both linear and non-linear responses, the internal forcing from‘Meiyu’front itself can also casue the‘Sandwich pattern’of EASM rainfall.
     5. According to the physical mechanism proposed in this thesis, if the warming factors (e.g. green house gas, aerosol etc.) are still out of control, TP is also warming up, under the external and internal forcing,‘Meiyu/Changma/Baiu’front will get more rainfall during the summer monsoon season, and the structure of‘Southern China flood and Northern China drought’will be maintained.
     As the summary of this thesis, the innovation points can be listed as following:
     1. Developing SAMIL AGCM by improving its physical package and performing the numerical experiments to study climatic dynamical effects of TP.
     2. Evaluating the ASMR-E soil moisture products over TP and using them to investigate the onset predictability of ASM.
     3. Pointing out that warming TP is one of the possible reasons for the interdecadal change of EASM rainfall in recent 50 years.
     4. The internal forcing coming from diabatic heating of‘Meiyu’front (China part) can also favor the interdecadal change of EASM rainfall.
     5. According to the prediction from IPCC AR4, TP will still warm up, therefore, the structure of‘Southern China flood and Northern China drought’will also be maintained.
     By the numerical sensitive experiments, the climatic dynamical effects of TP become more and more clearly. As a result, the onset predictability of ASM, features of interdecadal changes of EASM and the climate change in the futher can all be better understood. Furthermore, results from this study also suggest that, in term of the climate change, the current big project named‘South-to-North Water Diversion’will play a positive role in the future and our people will benefit a lot from this diversion.
引文
1. Aldrian, E., et al. (2007), Seasonal variability of Indonesian rainfall in ECHAM4 simulations and in the reanalyses: The role of ENSO, Theor Appl Climatol, 87(1-4), 41-59.
    2. Ananthakrishnan, R., and MK Soman, 1988: The onset of south-west monsoon over Kerala:. 1901–1980. J. Climatol., 8, 283–296.
    3. Annamalai H, Hamilton K,Sperber KR (2007) The South Asian Summer Monsoon and Its Relationship with ENSO in the IPCC AR4 Simulations. Journal of Climate 20(6): 1071.
    4. Annamalai, H., K. Hamilton, and K.R. Sperber: South Asian Summer Monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, in press.
    5. Ashrit, R. G., et al. (2001), ENSO-Monsoon relationships in a greenhouse warming scenario, Geophys Res Lett, 28(9), 1727-1730.
    6. Ashrit, R. G., Kumar, K. R., and Kumar, K. K., ENSO-Monsoon relationships in a greenhouse warming scenario. Geophys Res Lett 28 (9), 1727 (2001).
    7. Barnett TP, Dumenil L, Schlese U, et al., The effect of Eurasian snowcover on regional and global climate variations. Journal of the Atmospheric Sciences 1989, 46: 661–685.
    8. Bergthorson, P. and B. R., D??s (1955), Numerical weather map analysis. Tellus, 7, 329-340.
    9. Bonan, G. B., The land surface climatology of the NCAR land surface model coupled to the NCAR Community Climate Model. Journal of Climate, 1998, 11: 1307~1326.
    10. Bonan, G. B.,1998: The land surface climatology of the NCAR land surface model coupled to the NCAR Community Climate Model. J. Climate, 11, 1307~1326.
    11. Bourke,W., 1974: A multi-level spectral model. I. Formulation and hemispheric integrations. Mon.Wea.Rev.,102,687-701.
    12. Brinkop, S., and E. Roeckner (1995), Sensitivity of a General-Circulation Model to Parameterizations of Cloud-Turbulence Interactions in the Atmospheric Boundary-Layer, Tellus A, 47(2), 197-220.
    13. Brohan, P., J.J. Kennedy, I. Haris, S.F.B. Tett and P.D. Jones, 2006: Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J. Geophysical Research 111, D12106, doi:10.1029/2005JD006548
    14. Charney, J. G., 1975 Dynamics of deserts and drought in Sahel, Quart. J. Roy. Meteor. Soc., 101,193~202.
    15. Charney, J. G., W.K. Quirk, S.H. Chow and J. Kornfield,1977, A comparative study of the effects of albedo changes on drought in semiaridregions, J. Atmos. Sci., 34,1366~1385.
    16. Charney, J.G., A. Eliassen, 1949: A numerical method for predictiong the perturbation of the middle latitude westerlies. Tellus, 1, 38-55.
    17. Chen B, Chao W C and Liu X. Enhanced climatic warming in the Tibetan Plateau due to double CO2: A model study, Climate Dynamics, 2003, 20, 401~413
    18. Chen M., Xie P, Janowiak J. E, et al. Global land precipitation: A 50-yr monthly analysis based on gauge observations, J. Hydrometeorol., 2002, 3, 249~266.
    19. Cherchi, A., and A. Navarra (2003), Reproducibility and predictability of the Asian summer monsoon in the ECHAM4-GCM, Clim Dynam, 20(4), 365-379.
    20. Cherchi, A., and A. Navarra (2007), Sensitivity of the Asian summer monsoon to the horizontal resolution: differences between AMIP-type and coupled model experiments, Clim Dynam, 28(2-3), 273-290.
    21. Claudio Paniconi, Marino Marrocua, Mario Puttib and Mark Verbunt Advances in Water Resources Volume 26, Issue 2 , February 2003, Pages 161-178
    22. Claussen, M., et al. (1994), A global dataset of land surface parameters, Max-Planck-Institute for Meteorology, Hamburg,Germany.
    23. Cohen J, Rind D. The effect of snow cover on the climate. Journal of Climate 1991, 4: 689–706.
    24. Dai, Y., and Q.-C. Zeng, 1997: A land surface model (IAP94) for climate studies. Part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci., 14, 433~460.
    25. Deardroff, J. W.. 1972. Parameterization of the planetary boundary layer for use in general circulation modes. Mon. Wea. Rev., 100: 93~106.
    26. Ding Y. H. et al, 2007: Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon Part I: Observed evidencesInternational Journal of Climatology (In press)
    27. Dorman J L, and Sellers P J. A global climatology of albedo, roughness length and stomatal resistance for atmospheric general circulation models as represented by the Simple Biosphere model (SiB). J. Appl. Meteor., 1989, 28, 833~855.
    28. Douville H., Viterbo P., Mahfouf J.F. and Beljaars A., 2000. - "Evaluation of Optimum Interpolation and Nudging Techniques for Soil Moisture Analysis using FIFE Data". Mon. Wea. Rev., 128 , 1733-1756.
    29. Duan A M,Wu Guoxiong,Zhang Qiong, et al. New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions , Chinese Science Bulletin, 2006, 51(11), 1396~1400.
    30. Duan, A. M., and G. X. Wu (2006), Change of cloud amount and the climate warming on the Tibetan Plateau, Geophys Res Lett, 33(22), -.
    31. Duan, A. M., et al. (2006), New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions, Chinese Sci Bull, 51(11), 1396-1400.
    32. Dümenil, L., and E. Todini (1992), A rainfall-runoff scheme for use in the Hamburg climate model, New York:Elsevier science publishers.
    33. Duzheng Ye, R. Wetherald and S. Manabe ,1984: The effect of soil moisture on the short-term climate and hydrology change * a numerical experiment, Mon. Wea. Rev., 112, 474-485.
    34. Edwards JM, Slingo,A Studies with a flexible new radiation code. I: choosing a configuration for a large-scale model. Quarterly Journal of the Royal Meteorological Society,1996,122:689~720.
    35. Eymard, L., Bernard, R. and Lojou, J. Y. (1993), “Validation of microwave radiometer geophysical parameters using meteorological model analysis”, Int. J. Remote Sens., Vol. 14, No. 10, pp. 1945-1963.
    36. Fasullo, J., and P. J., Webster, 2003: A hydrological definition of the Indian summer monsoon onset and withdrawal. J. Climate, 16 (19), 3200–3211.
    37. Findlater J., 1969: Interhemispheric transport of air in the lower troposphere over the western Indian Ocean. Quart. J. Roy. Meteor. Soc., 95, 400–403.
    38. Flohn, H. (1957), Large-scale aspects of the summer monsoon in South and East Asia, J Meteorol Soc Jpn, 75, 180-186.
    39. Foster J, Owe M, Rango A. Snow cover and temperature relationships in North America and Eurasia. Journal of Climate and Applied Meteorology 1982, 22: 460–469.
    40. Fouquart Y and Bonnel B. Computation of solar heating of the Earth's atmosphere: A new parameterization. Beitr. Phys. Atmos., 1980, 53, 35~62.
    41. Fu, X. H., and B. Wang (2003), Influences of continental monsoons and air-sea coupling on the climate of the equatorial Pacific, J Climate, 16(19), 3132-3152.
    42. Fu, X. H., et al. (2002), Impacts of air-sea coupling on the simulation of mean Asian summer monsoon in the ECHAM4 model, Mon Weather Rev, 130(12), 2889-2904.
    43. Fu, X. H., Yang, B., Bao, Q. and Wang, B., 2007: Sea Surface Temperature Feedback Extends the Predictability of Tropical Intraseasonal Oscillation (TISO), Monthly Weather Review. (In press)
    44. Gandin, L. S. (1963), Objective analysis of meteorological field. (in Russian), (English translation by Israel Program for Scientific Translations, Jerusalem, 1965), 1963.
    45. Gao, R., et al. (2005), Impact of the anomalous thawing in the Tibetan Plateau on summer precipitation in China and its mechanism, Adv Atmos Sci, 22(2), 238-245.
    46. Gerber, H. E., et al. (1984), Aerosols and their climatic effects, x, 297 p. pp., A. Deepak Pub., Hampton, Va.
    47. Gong, D. Y., and C. H. Ho (2002), Shift in the summer rainfall over the Yangtze River valley in the late 1970s, Geophys Res Lett, 29(10), -.
    48. Hahn, D. G. and S. Manabe, 1975: The role of mountains in the south Asian monsoon circulation. J. Atmos. Sci.,32, 1515-1541.
    49. Hahn, D. G., and S. Manabe (1975), The Role of Mountains in the South Asian Monsoon Circulation, J Atmos Sci, 32(8), 1515-1541.
    50. Haiyan HE, Chung-Hsiung SUI, Maoqiu JIAN, Zhiping WEN and Guangdong LAN: “The Evolution of Tropospheric Temperature Field and its Relationship with the Onset of Asian Summer Monsoon”. JMSJ, Vol. 81, 1201-1223. (2003)
    51. Hansen, J., Mki. Sato, L. Nazarenko, R. et al. 2002. Climate forcings in Goddard Institute for Space Studies SI2000 simulations. J. Geophys. Res. 107, no. D18, 4347, doi:10.1029/2001JD001143.
    52. He, H. J., W. McGinnis, Z. Song, and M. Yanai, Onset of the Asian monsoon in 1979 and the effect of the Tibetan Plateau, Mon. Wea. Rev., 115, 1966– 1995, 1987.
    53. Held, I. M.,1983: Stationary and quasi-stationary eddies in the extratropical troposphere: Theory. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins and R. P. Pearce, Eds., Academic Press, 127~168
    54. Holtslag A.A.M. et al. 1990. A high resolution air mass transformation model for short-range weather forecasting, Mon. Wea. Rev., 118: 1561~1575.
    55. Holtslag A.A.M. et al. 1991. Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer, J. Atmos. Sci., 48: 1690~1698.
    56. Holtslag A.A.M. et al. 1993. Local versus nonlocal boundary-layer diffusion in a global climate model, J. Climate, 6: 1825~1842.
    57. Hoskins, B. J. and T. Ambrizzi, 1993: Rossby-Wave Propagation on a Realistic Longitudinally Varying Flow. Journal of the Atmospheric Sciences, 50, 1661-1671.
    58. Hoskins, B. J., and B. Wang (2006), Large-scale atmospheric dynamics, in The Asian Monsoon, edited, pp. 357-415.
    59. Hoskins, B. J., and D. J. Karoly (1981), The Steady Linear Response of a Spherical Atmosphere to Thermal and Orographic Forcing, J Atmos Sci, 38(6), 1179-1196.
    60. Hsu H H and Liu X. Relationship between the Tibetan Plateau heating and East Asian summer monsoon rainfall, Geophysical Research Letters, 2003, 30(20), 2066, doi:10.1029/2003GL017909
    61. Intergovernmental Panel on Climate Change., et al. (1990), Climate change : the IPCC scientific assessment, xxxix, 364 p. pp., Cambridge University Press, Cambridge ; New York.
    62. Jiang, D. B., et al. (2005), Evaluation of East Asian climatology as simulated by seven coupled models, Adv Atmos Sci, 22(4), 479-495.
    63. Jin, F. F., and B. J. Hoskins (1995), The Direct Response to Tropical Heating in a Baroclinic Atmosphere, J Atmos Sci, 52(3), 307-319.
    64. Ju, J. H., et al. (2005), Possible impacts of the Arctic oscillation on the interdecadal variation of summer monsoon rainfall in East Asia, Adv Atmos Sci, 22(1), 39-48.
    65. Kalnay, E., et al. (1996), The NCEP/NCAR 40-year reanalysis project, B Am Meteorol Soc, 77(3), 437-471.
    66. Kang, I. S., et al. (2002), Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs, Clim Dynam, 19(5-6), 383-395.
    67. Kawamura, R., M. Sugi, T. Kayahara, et al., 1998: Recent extraordinary cool and hot summers in East Asia simulated by an ensemble climate experiment. Journal of the Meteorological Society of Japan, 76, 597-617.
    68. Kiehl, J. F., J. J. Hack, G. B. Bonan, B. A. Boville, D.L. Williamson, and P. J. Pasch, 1998: The National Center for Atmospheric Research community climate model: CCM3. J. Climate, 11, 1131-1149.
    69. Klink, K., and C. J. Willmott, Notes on a global vegetation data set for use in GCMs. Dept. of Geography, Univ. of Delaware, Newark, Delaware. 1985.
    70. Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeor., 2, 558–570.
    71. Koster, R. D., P. A. Dirmeyer, Z. Guo, G. Bonan, E. Chan, P. Cox, and C. T. Gordon, et al., 2004: Regions of strong coupling between soil moisture and precipitation. Science, 305(5687), 1138~1140.
    72. Koster, R., and M. Suarez, 1995: Relative contributions of land and ocean processes to precipitation variability. J. Geophys. Res., 100 (D7), 13 775–13 790.
    73. Kuchler, A.W., World map of natural vegetation: Goode's World Atlas (16th edition), Rand McNally, 1983,p. 16-17.
    74. Lau K M, Kim M K and Kim K M. Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau, Climate Dynamics, 2006, 26 (7-8): 855~864
    75. Lau, K. M., and H. Y. Weng (2001), Coherent modes of global SST and summer rainfall over China: An assessment of the regional impacts of the 1997-98 El Nino, J Climate, 14(6), 1294-1308.
    76. Lau, K.-M., and S. Yang, 1997: Climatology and interannual vari-. ability of the southeast Asian summer monsoon. Adv. Atmos. Sci., 14, 141–162.
    77. Liang, Xiaoyun; Liu, Yimin; Wu, Guoxiong 2005: The role of land-sea distribution in the formation of the Asian summer monsoon Geophys. Res. Lett., Vol. 32, No. 3, L03708 10.1029/2004GL021587
    78. Lin, Y. M., J. C. L. Chan, J. Y. Mao, and G. X. Wu, 2002:The role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon. Mon.Wea. Rev., 130, 2731-2744.
    79. Liu H., Y.C. Zhao, G.X. Wu, 1994: Characteristics of a spectral climatemodel (R15L9) with reference atmospheric reduction, Abstract of PRC/USA 5th Workshop on Climate studies, Aug. 1-4, 1994, Beijing, pp.31.
    80. LIU Hui, JIN Xiang-ze, ZHANG Xue-hong, and Wu Guoxiong, A coupling experiment of an atmosphere and an ocean model with a monthly anomaly exchange scheme. Adv. Atmos. Sci., 1996, 13(2): 133-146.
    81. Liu, H. Q., et al. (2004a), A modeling study of the effects of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon, Adv Atmos Sci, 21(6), 964-975.
    82. Liu, H., G.X. Wu, 1997: Impacts of land surface on climate of July and onset of summer monsoon: A study with an AGCM plus SSiB. Advances of Atmos. Sci.,14: 289~308.
    83. Liu, X. D., and B. D. Chen (2000), Climatic warming in the Tibetan Plateau during recent decades, Int J Climatol, 20(14), 1729-1742.
    84. Liu, Y. M., and G. X. Wu (2004), Progress in the study on the formation of the summertime subtropical anticyclone, Adv Atmos Sci, 21(3), 322-342.
    85. Liu, Y. M., et al. (2001), Condensation heating of the Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere, Clim Dynam, 17(4), 327-338.
    86. Liu, Y. M., et al. (2004b), Relationship between the subtropical anticyclone and diabatic heating, J Climate, 17(4), 682-698.
    87. Liu, Y. M., J. C. L. Chan, J. Y. Mao, et al., 2002: The role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon. Monthly Weather Review, 130, 2731-2744.
    88. Luo H., Yanai M., The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: heat and moisture budgets. Mon. Weather Rev., 1984(112): 966- 989
    89. Manabe, S., and T. B. Terpstra, 1974: The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci., 31:3-42.
    90. Matthews, E., Atlas of archived vegetation, land-use and seasonal albedo data sets. NASA Technical Memorandum 86199, 1985,53 pp.
    91. Matthews, E., Vegetation, land-use and seasonal albedo data sets; documentation of archived data tape. NASA Technical Memorandum 86107, 1984,12 pp.
    92. Meehl G A, Arblaster J M, and Tebaldi C. Understanding future patterns of increased precipitation intensity in climate model simulations. Geophysical Research Letters, 2005, 32,doi: 10.1029/2005GL023680
    93. Meehl, G. A. (1994), Coupled Land-Ocean-Atmosphere Processes and South Asian Monsoon Variability, Science, 266(5183), 263-267.
    94. Meehl, G. A., and W. M. Washington (1993), South Asian Summer Monsoon Variability in a Model with Doubled Atmospheric Carbon-Dioxide Concentration, Science, 260(5111), 1101-1104.
    95. Meehl, G. A., et al. (2005b), How much more global warming and sea level rise?, Science, 307(5716), 1769-1772.
    96. Meehl, G. A., et al. (2007), Global Climate Projections. In: Climate Change 2007: The Physical Science Basis, in Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon, et al., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    97. Meehl, G. A., T.F. Stocker, W.D. Collins, et al., 2007: Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H. L. Miller, Eds., Cambridge University Press.
    98. Menon S, Hansen J, Nazarenko L, et al. Climate effects of black carbon aerosols in China and India. Science. 2002, 297:2250~2253
    99. Milly, PCD, and KA Dunne, 1994: Sensitivity of the global water cycle to the water-holding capacity of land. Journal of Climate 7(4), 506-526.
    100. Min, S. K., et al. (2004), Future projections of East Asian climate change from multi-AOGCM ensembles of IPCCSRES scenario simulations, J Meteorol Soc Jpn, 82(4), 1187-1211.
    101. Mintz, Y., The sensitivity of numerically simulated climate to land-surface boundary conditions, The Global Climate, Houghton, J.T., Ed., Cambridge University Press, 1984.79~105.
    102. Morcrette, J. J. (1991), Radiation and Cloud Radiative Properties in the European Center for Medium Range Weather Forecasts Forecasting System, J Geophys Res-Atmos, 96(D5), 9121-9132.
    103. Murakami, T., 1981: Orographic influence of the Tibetan Plateau. on the Asiatic winter monsoon circulation, Part 1. Large-scale. aspects. Journal of the Meteorological Society of Japan, 59: 66–84.
    104. Nitta T., Observational study of heat sources over the eastern Tibetan Plateau during the summer monsoon. J Meteorol Soc Japan, 1983(61): 590- 605
    105. Nitta, T., and Z. Z. Hu (1996), Summer climate variability in China and its association with 500 hPa height and tropical convection, J Meteorol Soc Jpn, 74(4), 425-445.
    106. Njoku, E.G. and Li, L. (1999), “Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz”, IEEE Trans. Geosci. Remote Sens., Vol. 37, No. 1, pp. 79-93.
    107. Njoku, E.G., Jackson, T. J., Lakshmi, V., Chan, T. K. and Nghiem, S. V. (2003), “Soil moisture retrieval from AMSR_E”, IEEE Trans. Geosci. Remote Sens., Vol. 41, No. 2, pp. 215-229.
    108. Nordeng T E. Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the Tropics. ECMWF Research Department Tech. Memo. , 1995, 206, 41 pp
    109. Oki T. 1999. The global water cycle. In Global Energy and Water Cycles, Browning KA, Gurney RJ (eds). Cambridge University Press: 10–29.
    110. Oleson, K., and G. B. Bonan, The effects of remotely-sensed plant functional type and leaf area index on simulations of boreal forest surface fluxes by the NCAR land surface model. Journal of Hydrometeorology, 2000, 1: 431~446.
    111. Palmer, et al., 1996: Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc., 112, 1001-1039.
    112. Palmer, et al., Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quarterly Journal of the Royal Meteorological Society, 1996,112, 1001~1039.
    113. Paniconi, C., Marrocu, M., Putti, M. et Verbunt, M. (2003). Newtonian nudging for a Richards equation-based distributed hydrological model. Adv. Water Resour. 26 (2): 161-178.
    114. Pitman, A.J., 2003, The evolution of, and revolution in, land surface schemes designed for climate models, Int. J. Climatol. , 23, 479~510.
    115. Qian, Y. F., et al. (2003), Responses of China's summer monsoon climate to snow anomaly over the Tibetan Plateau, Int J Climatol, 23(6), 593-613.
    116. Randal D. Koster, Max J. Suarez and Mark Heiser, Variance and Predictability of Precipitation at Seasonal-to-Interannual Timescales. Journal of Hydrometeorology, 2000, 1: 26~46.
    117. Robock, A. (1980), The Seasonal Cycle of Snow Cover, Sea Ice and Surface Albedo, Mon Weather Rev, 108(3), 267-285.
    118. Robock, Alan, C. Adam Schlosser, Konstantin Ya. Vinnikov, Nina A. Speranskaya, and Jared K. Entin, 1998: Evaluation of AMIP soil moisture simulations. Global and Planetary Change, 19, 181-208.
    119. Roeckner, E., et al. (1996), The atmospheric general circulation model ECHAM4: Model description and simulation of present-day climate, Max Planck Institut für Meteorologie, 90 pp, Max Planck Institut für Meteorologie, Hamburg, Germany.
    120. Rosnay, P. de, 2003: A GCM Experiment on Time Sampling for Remote Sensing of Near-Surface Soil Moisture. pages 448–459.
    121. Rossby, C-G (1939), Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action, J. Marine Research pp38-55
    122. Rudiger, C., E.R. Davidson, M. Hemakumara, J.P. Walker, J.D. Kalma, and P.R. Houser, 2003: Catchment Monitoring for Scaling and Assimilation of Soil Moisture and Streamflow, Proc. Int. Congress on Modelling and Simulation (MODSIM). Modelling and Simulation Society of Australia and New Zealand, Inc., D. Post, Eds., 1, Townsville, Australia, July 14-17 2003,396-391.
    123. Sellers PJ. Biophysical models of land surface processes. In Climate System Modelling, Trenberth KE(ed.). Cambridge University Press. 1992
    124. Shen, Y. P. (2004), An Overview of Glaciers,Retreating Glaciers and Their Impact in the Tibetan Plateau, 42.
    125. Shukla, J. and Y. Mintz, 1982: Influence of land surface evapotranspiration on the earth's climate. Science, 215, 1498-1501.
    126. Slater, A.G. Schlosser CA and Desborough CE et al., The representation of snow in land surface schemes: results from PILPS-2d, Journal of Hydrometeorology, 2001, 2: 7-25.
    127. Sverdrup, H. U. (1947), Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific, Proceedings of the National Academy of Sciences of the United States of America, 76, 3051-3055.
    128. Tanaka, M., 1992: Intraseasonal oscillation and the onset and retreat. dates of the summer monsoon over the east, southeast and west-. ern North Pacific region using GMS high cloud amount data. J. Meteor. Soc. Japan, 70, 613–629.
    129. Tanré, D., et al. (1983), First results of the introduction of an advanced aerosol-radiation interaction in the ECMWF low resolution model, 297 pp., A. Deepak Pub., Hampton, VA.
    130. Tao, S.Y., and L.X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60-92.
    131. Teixeira, J. and T. F. Hogan, 2002: Boundary layer clouds in a global atmospheric model: simple cloud cover parameterizations. J. Climate, 15, 1261-1276.
    132. Teixeira, J., 2000: Boundary Layer Clouds in Large Scale Atmospheric Models: Cloud Schemes and Numerical Aspects. ECMWF, 190 pp.
    133. Tiedtke, M. (1989), A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models, Mon Weather Rev, 117(8), 1779-1800.
    134. U S National Research Council. GOALS ( Global Ocean - Atmo2sphere - Land System for) Predicting Seasonal - to – International Climate[M] . Washington D C: National Academy Press , 1994. 103.
    135. Ueda, H., and T. Yasunari (1998), Role of warming over the Tibetan Plateau in early onset of the summer monsoon over the Bay of Bengal and the South China Sea, J Meteorol Soc Jpn, 76(1), 1-12.
    136. User's Guide, Version 2.0 ed., Center for Climate System Research (CCSR), University of Tokyo, Tokyo.
    137. Vernekar AD, Zhou J, Shukla J. 1995. The effect of Eurasian snow cover on the Indian monsoon. Journal of Climate 1995, 8: 248–266.
    138. Viterbo, P., 1996: The representation of surface processes in general circulation models. Ph.D. thesis, University of Lisbon, 201 pp. [Availablefrom ECMWF, Shinfield Park, Reading, Berkshire RG2 9AX, United Kingdom.]
    139. Walker , JP, Houser, PR & Reichle, RH, New remote sensing technologies require advances in hydrologic data assimilation . EOS Transactions American Geophysical Union , 84 (49), 545,551.
    140. Walker, J. P., 1999. Estimating Soil Moisture Profile Dynamics From Near-Surface Soil Moisture Measurements and Standard Meteorological Data. PhD Thesis, Department of Civil, Surveying and Environmental Engineering, The University of Newcastle.
    141. Walker, J. P., Houser, P. R. and Reichle, R. H., 2003. New Remote Sensing Technologies Require Advances in Hydrologic Data Assimilation. EOS, Transactions American Geophysical Union, 84(49): 545,551.
    142. Walker, J., and PR Rowntree. 1977. "The effect of soil moisture on circulation and rainfall in a tropical model. " Quart. JR Met. Soc., 103: 29-46.
    143. Wallace, J. M., et al. (1992), Singular Value Decomposition of Wintertime Sea-Surface Temperature and 500-Mb Height Anomalies, J Climate, 5(6), 561-576.
    144. Wang B and Ding Q H, Changes in global monsoon precipitation over the past 56 years, Geophysical Research Letters, 2006, 33, L06711, doi:10.1029/2005GL025347.
    145. Wang Huijun. The weakening of the Asian monsoon circulation after the end of 1970s. Adv. Atmos. Sci. 2001, 18: 376~386.
    146. Wang, B. (2000), Comments on "Choice of south Asian summer monsoon indices" - Reply, B Am Meteorol Soc, 81(4), 822-824.
    147. Wang, B. (2006), The Asian monsoon, xlvii, 787 p. pp., Springer ; Published in association with Praxis Publishing, Berlin ; New York.
    148. Wang, B. and Z. Fan, 1999: Choice of south Asian summer monsoon indices. Bulletin of the American Meteorological Society, 80, 629-638.
    149. Wang, B., et al. (2004a), Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon, J Climate, 17(4), 699-710.
    150. Wang, B., et al. (2005), Fundamental challenge in simulation and prediction of summer monsoon rainfall, Geophys Res Lett, 32(15), -.
    151. Wang, B., LinHo, Y. Zhang, and M.-M. Lu, 2004: Definition of South China Sea monsoon onset and commencement of East Asia summer monsoon. J. Climate, 17, 699–710.
    152. Wang, B., Q. Ding, X. Fu, I.-S. Kang, K. Jin, J. Shukla, and F. Doblas-Reyes, 2005: Fundamental challenges in simulation and prediction of summer monsoon rainfall, Geophys. Res. Lett., Vol. 32, No. 15, L15711,doi: 10.1029/2005GL022734 12.
    153. Wang, B., Yang, J.,Zhou, T. J. and B. Wang, 2007: Interdecadal Changes in the Major Modes of Asian-Australian Monsoon Variability (1956–2004), J Climate (In press).
    154. Wang, Bin, and LinHo, 2002: Rainy Season of the Asian-Pacific Summer Monsoon. J. Climate, 15 (4), 386-398.
    155. Wang, Z. Z., et al. (2004b), Simulation of Asian monsoon seasonal variations with climate model R42L9/LASG, Adv Atmos Sci, 21(6), 879-889.
    156. Watanabe, M. and M. Kimoto, 2000: Atmosphere-ocean thermal coupling in the North Atlantic: A positive feedback. Quart.J.R.Met.Soc., 126, 3343-3369.
    157. Watanabe, M. (2001), Linear Baroclinic Model (LBM) Package.
    158. Watanabe, M., and F. F. Jin (2003), A moist linear baroclinic model: Coupled dynamical-convective response to El Nino, J Climate, 16(8), 1121-1139.
    159. Watanabe, M., and M. Kimoto (2000), Atmosphere-ocean thermal coupling in the North Atlantic: A positive feedback, Q J Roy Meteor Soc, 126(570), 3343-3369.
    160. Webster, P.J., Magana V.O., Palmer, T.N., Shukla, J., Tomas, R.A., Yanai, M., and Yasunari, T. 1998: Monsoons: Processes, predictability,and the prospects for prediction J. Geophys. Res. vol. 103 no. c7 (TOGA special issue), June 29, 14451-14510.
    161. Weng, H. Y., et al. (1999), Multi-scale summer rainfall variability over China and its long-term link to global sea surface temperature variability, J Meteorol Soc Jpn, 77(4), 845-857.
    162. Wu Guoxiong, and Zhang Yongsheng, Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea, Mon. Wea. Rev. , 1997, 126, 917~927.
    163. Wu Guoxiong, LIU Hui, ZHAO Yu-cheng, and LI Wei-ping, A nine-layer atmospheric general circulation model and its performance. Adv. Atmos. Sci., 1996, 13(1): 1-18.
    164. Wu Guoxiong, Liu Hui, Zhao Yucheng, and Li Weiping, A nine-layer atmospheric general circulation model and its performance. Advances in Atmospheric Sciences, 1996, 13:1~18.
    165. Wu Guoxiong, Liu Yimin and Mao Jiangyu, et al. Adaptation of the atmospheric circulation to thermal forcing over the Tibetan Plateau. Obseervation, Theory and Modeling of the Atmospheric Variability. Selected Papers of Nanjing Institute of Meteorology Alumni in Commemoration of Professor Jijia Zhang, Edited by Xun Zhu etc. World Scientific, 2004, 92~114.
    166. Wu Tongwen, Liu Ping, Wang Zaizhi, et al., 2003: The performance of atmospheric component model R42L9 of GOALS/LASG.. Adv. in Atmos. Sci., 20, 726~742.
    167. Wu, T. W. and Z. A. Qian, 2003: The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation. Journal of Climate, 16, 2038-2051.
    168. Wu, T. W., and G. X. Wu (2004), An empirical formula to compute snow cover fraction in GCMs, Adv Atmos Sci, 21(4), 529-535.
    169. Wu, T. W., et al. (2004), An evaluation of the effects of cloud parameterization in the R42L9 GCM, Adv Atmos Sci, 21(2), 153-162.
    170. Xie, P. P., and P. A. Arkin (1997), Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs, B Am Meteorol Soc, 78(11), 2539-2558.
    171. Xie, P. P., et al. (2003), GPCP Pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates, J Climate, 16(13), 2197-2214.
    172. Xue, Y. K., S. F. Sun, K. M. Lau, et al., 2005: Multiscale variability of the river runoff system in China and its long-term link to precipitation and sea surface temperature. Journal of Hydrometeorology, 6, 550-570.
    173. Xue, Y.-K., P.J. Sellers, J.L. Kinter II, and J. Shukla, 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345~364.
    174. Xue, Y.K., Sellers, P.J., Kinter, J.L., et al., A simplified biosphere model for global climate studies. Journal of Climate, 1991, 4: 345~364.
    175. Yanai, M. H., et al. (1992), Seasonal Heating of the Tibetan Plateau and Its Effects on the Evolution of the Asian Summer Monsoon, J Meteorol Soc Jpn, 70(1B), 319-351.
    176. Yanai, M., and G.-X. Wu (2006), Effects of the Tibetan Plateau, in The Asian Monsoon, edited, pp. 513-549.
    177. Yanai, M., and T. Tomita (1998), Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP-NCAR reanalysis, J Climate, 11(3), 463-482.
    178. Yang, F. L. and K. M. Lau, 2004: Trend and variability of China precipitation in spring and summer: Linkage to sea-surface temperatures. International Journal of Climatology, 24, 1625-1644.
    179. Yang, K., et al. (2007), Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget, J Meteorol Soc Jpn, 85A, 229-242.
    180. Yang, M. X., et al. (2003), The soil moisture distribution, thawing-freezing processes and their effects on the seasonal transition on the Qinghai-Xizang (Tibetan) plateau, J Asian Earth Sci, 21(5), 457-465.
    181. Yang, Z.L., A.J. Pitman, B. McAvaney, and A. Henderson-Sellers, 1995: The impact of implementing the bare essentials of surface transfer land surface scheme into the BMRC GCM. Climate Dynamics, 11, 279-297.
    182. Yaoming Ma, Zhongbo Su, Toshio Koike, Tandong Yao, Hirohiko Ishikawa, Ken’ichi Ueno and Massimo Menenti,2003,On measuring and remote sensing surface energy partitioning over the Tibetan Plateau––from GAME/Tibet to CAMP/Tibet,Physics and Chemistry of the Earth, Parts A/B/C Volume 28, Issues 1-3 , 2003, Pages 63-74 Applications of Quantitative Remote Sensing to Hydrology.
    183. Ye, D. Z., and G. X. Wu (1998), The role of the heat source of the Tibetan Plateau in the general circulation, Meteorol Atmos Phys, 67(1-4), 181-198.
    184. Yeh T. C., Tao S. Y., Li M. C., (1959): The Abrupt Change of Circulation over the Northern Hemisphere during June and October. New York: The Atmospheric and the Sea in Motion, 249~267.
    185. Yu R, Wang B, and Zhou T. Tropospheric cooling and summer monsoon weakening trend over East Asia, Geophys. Res. Lett., 2004, 31, L22212, doi:10.1029/2004GL021270.
    186. Zhang Qiong, Wu Guoxiong and Qian Yongfu. The bimodality of the 100 hPa South Asia High and its relationship to the climate anomaly over East Asia in summer. J. Meteor. Soc. Japan, 2002, 80(4), 733~744.
    187. Zhang, J., and X. Zhu (2004), Observation, theory and modeling of atmospheric variability : selected papers of Nanjing Institute of Meteorology Alumni in commemoration of Professor Jijia Zhang, xxi, 612 p. pp., World Scientific, River Edge, N.J.
    188. Zhang, X.H., G.Y. Shi, H. Liu, and Y.Q. Yu. 2000: IAP Global Ocean-Atmosphere-Land Ssystem Model. Science Press, Beijing, New York, 252pp.
    189. Zhang, Y. S., et al. (2004), Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon, J Climate, 17(14), 2780-2793.
    190. Zhao, P., and L. X. Chen (2001), Interannual variability of atmospheric heat source/sink over the Qinghai-Xizang (Tibetan) Plateau and its relation to circulation, Adv Atmos Sci, 18(1), 106-116.
    191. Zhou, S. W., and R. H. Zhang (2005), Decadal variations of temperature and geopotential height over the Tibetan Plateau and their relations with Tibet ozone depletion, Geophys Res Lett, 32(18), 18705-18705.
    192. Zhou, W., et al. (2006), The interdecadal variations of the summer monsoon rainfall over South China, Meteorol Atmos Phys, 93(3-4), 165-175.
    193. Zwiers, F. W., 1993: Simulation of the Asian Summer Monsoon with the Ccc Gcm-1. Journal of Climate, 6, 470-486.
    194. 包庆,刘屹岷,周天军, 等。LASG/IAP 大气环流谱模式对陆面过程的敏感性试验,大气科学,2006, 30: 1077~1090
    195. 包庆等,边界层参数化,见周天军、宇如聪、王在志、吴统文编著,亚洲季风区海陆气相互作用对我国气候变化的影响(第四卷),大气环流模式 SAMIL 及其耦合模式 FGOALS-s,北京:气象出版社, 2005:40pp
    196. 陈德霖和徐夏囡,北旱南涝。 气象,1980(10):36-38
    197. 戴福山,2003,中科院大气所博士学位论文,东太平洋低云对海气耦合模式中“双幅合带”的影响—基于 LASG FGCM-0 的分析研究.102-118
    198. 高荣, et al. (2003), 20 世纪后期青藏高原积雪和冻土变化及其与气候变化的关系, 高原气象(SN 1000-0534).
    199. 韩桂军,2004,中科院大气所博士后研究工作报告,海洋数据同化方法应用研究.10-19.
    200. 李伟平,吴国雄,刘辉,地表反照率的改变影响夏季北非副高的数值模拟. 气象学报,1999, 57(6):1-9.
    201. 林元弼,1987:南京大学大气科学系大气环流实验(单行本)。南京大学大气科学系。
    202. 刘平、吴国雄:1998 年夏季长江流域降水异常研究-热带环流 II:数值试验。严重旱涝与低温的诊断分析和预报方法研究,气象出版社,孙安健、吴国雄、李永康主编,2000, 72-77。
    203. 刘晓东,罗四维,钱永甫,1989:青藏高原地表热状况对夏季东亚大气环流影响的数值试验.高原气象,18(3),189-194
    204. 刘新,吴国雄,李伟平.夏季青藏高原加热和大尺度流场的热力适应.自然科学进展,2001,11(1):33~391
    205. 刘屹岷,吴国雄,刘辉,等。空间非均匀加热对副热带高压带形成和变异的影响. III. 凝结潜热加热与南亚高压及西太平洋副高。气象学报,1999, 57 (5): 525~538.
    206. 刘屹岷、刘辉、刘平、吴国雄,空间非均匀加热对副热带高压带形成和变异的影响. II. 陆面感热加热与东太平洋北美副高。气象学报,1999,57 (4): 385~396.
    207. 刘屹岷:非绝热加热与副热带高压,高等教育出版社,2003.1
    208. 吕达仁,王普才,邱金桓等.大气遥感与卫星气象学研究的进展与回顾.大气科学,2003,27(4):552~565
    209. 马柱国,符淙斌,谢力等 2001: 土壤湿度和气候变化关系研究中的某些问题。 地球科学进展, 16(4),563-568
    210. 毛江玉,吴国雄,刘屹岷. 季节转换期间副热带高压带形态变异及其机制的研究Ⅱ: 亚洲季风区季节转换指数. 气象学报,2002 ,60(4) : 409~420
    211. 毛江玉. 季节转换期间副高形态变异和季风爆发机制的研究. 中科院大气所博士学位论文,2001, 1-139
    212. 牛涛, et al. (2005), 青藏高原气候由暖干到暖湿时期的年代际变化特征研究, 应用气象学报(SN 1001-7313).
    213. 钱永甫,2000: 包络地形和重力波拖曳对气候模拟效果的影响。应用气象学报, 11,13-20。
    214. 邵慧,钱永甫,王谦谦,1998:太阳辐射日变化对 R15L9 气候模拟效果的影响。高原气象,17,158-168。
    215. 宋晓良,2005,中科院大气所博士学位论文,两种质量通量型积云参数化方案在气候模拟中的评估分析研究。
    216. 孙岚,吴国雄,孙菽芬, 陆面过程对气候影响的数值模拟:SSiB 与IAP/LASG L9R15 AGCM 耦合及其模式性能,气象学报,2000,58(2):179~193.
    217. 陶诗言,方宗义等.气象卫星资料在中国天气分析和预报上的应用.大气科学,1979,3(3):239~246
    218. 王标,1996: 气候模拟中的辐射传输模式,中国科学院大气物理研究所博士论文, pp92.
    219. 王鹏飞,黄刚。数值模式预报时效对计算精度和时间步长的依赖关系。气候与环境研究,2006, 11: 395~403
    220. 王在志:青藏高原天气气候效应的数值模拟研究,中科院大气物理所,博士论文,2005,7
    221. 王在志等,2005,全球海-陆-气耦合模式大气模式分量的发展及其气候模拟性能Ⅰ--水平分辨率的影响,热带气象学报, 21,225-237。
    222. 王在志等,2005,全球海-陆-气耦合模式大气模式分量的发展及其气候模拟性能Ⅱ--垂直分辨率的提高及其影响,热带气象学报, 21,238-247。
    223. 王在志,宇如聪,包庆,周天军,刘屹敏,王鹏飞,吴国雄,2007,大气环流模式(SAMIL)海气耦合前后性能的比较,大气科学,31(2),202-213。
    224. 韦志刚, 等. (2003), 青藏高原气温和降水的年际和年代际变化, 大气科学(SN 1006-9895).
    225. 韦志刚、黄荣辉、陈文等,青藏高原地面站积雪的空间分布和年代际变化特征.大气科学,2002,26496~508.
    226. 吴国雄 (2001), 全型涡度方程和经典涡度方程比较, 气象学报(SN 0577-6619).
    227. 吴国雄, 刘辉,陈飞,赵宇澄,卢莹,时变涡动输送和阻塞高压的形成- 1980年夏季我国的南涝北旱. 气象学报,1994, 52:308-320.
    228. 吴国雄, 张学洪, 刘辉等,1997:LASG 全球海洋-大气-陆面系统模式(GOALS/LASG)及其模拟研究。应用气象学报(增刊), 8, 15-28.
    229. 吴国雄,李伟平,郭华,等。 青藏高原感热气泵和亚洲夏季风。 叶笃正主编, 赵九章记念文集。 北京:科学出版社, 1997, 116~126
    230. 吴国雄,刘还珠 (1999), 全型垂直涡度倾向方程和倾斜涡度发展, 气象学报(SN 0577-6619).
    231. 吴国雄,刘新,张琼等,2002: 青藏高原抬升加热气候效应研究的新进展. 气候与环境研究,7, 184-201。
    232. 吴国雄,刘屹岷、刘平,空间非均匀加热对副热带高压带形成和变异的影响. I. 尺度分析。气象学报,1999,57 (3): 257~263.
    233. 吴国雄,刘屹岷。 热力适应、过流、频散和副高:I. 热力适应和过流和“过流”现象。大气科学, 2000,24: 433~446
    234. 吴国雄,毛江玉,段安民,张琼,2004: 青藏高原影响亚洲夏季气候研究的最新进展. 气象学报,Vol.62: 28-540。
    235. 吴国雄,张永生.青藏高原的热力和机械强迫作用以及亚洲季风的爆发I:爆发地点.大气科学,1999,22(6):825~8382
    236. 吴国雄,张永生.青藏高原的热力和机械强迫作用以及亚洲季风的爆发II:爆发时间.大气科学,1999,23(1):51~61
    237. 吴国雄、刘平、刘屹岷等,印度洋海温异常对西太平洋副热带高压的影响-大气中的两级热力适应, 气象学报,2000,58 (5): 513~521.
    238. 吴国雄 . 我国青藏高原气候动力学研究的近期进展 . 第四纪研究,2004,24(1):1~9
    239. 杨梅学,姚檀栋,勾晓华,青藏公路沿线土壤的冻融过程及水热分布特征,自然科学进展,2000,10(5):443-450
    240. 杨伟愚,叶笃正,吴国雄. 夏季青藏高原热力场和环流场的诊断分析Ⅱ: 环流场的主要特征及其大型垂直环流场. 大气科学,1992 , 16(3) : 287~301
    241. 杨修群 谢倩 朱益民等.华北降水年代际变化特征及相关的海气异常型.地球物理学报,2005,48(4):789-797.
    242. 叶笃正, 黄荣辉等. 长江黄河流域旱涝规律和成因研究. 济南:山东科技出版社, 1996, 387pp
    243. 叶笃正,高由禧.青藏高原气象学.北京:科学出版社, 1979 年,279pp
    244. 叶笃正,罗四维,朱抱真.西藏高原及其附近的流场结构和对流层大气的热量平衡.气象学报,1957,28:108~121
    245. 张顺利,陶诗言.青藏高原积雪对亚洲夏季风影响的诊断及数值研究.大气科学,2001,25:372~390
    246. 张镱锂,李炳元,郑度.论青藏高原范围与面积.地理研究,2002,21(1):1~10.
    247. 中国气象局国家气候中心,’98 中国大洪水与气候异常,北京:气象出版社,1998。139pp
    248. 周天军,俞永强,宇如聪等,气候系统模式发展中的耦合器研制问题,大气科学,2004, 28,993~1008.
    249. 周天军等,亚洲季风区海陆气相互作用对我国气候变化的影响(第四卷),大气环流模式 SAMIL 及其耦合模式 FGOALS-s,北京:气象出版社, 2005
    250. 周亚军,陈葆德,孙国武,陆面过程研究综述,地球科学进展,1994, 9(5): 26~31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700