用户名: 密码: 验证码:
硬态切削过程的有限元仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与磨削相比,硬态切削具有很好的工艺柔性、经济性和环保性能看,该工艺能精确地将硬度大于HRC50得毛坯直接加工成工件。因此,用硬态切削来代替磨削在当今的机械加工中得到了越来越广泛的?应用,并且在一定的条件下,硬态切削已经成为代替磨削的首选工艺。因此,深入研究硬态切削机理并对其进行工艺优化有重要的意义。在阐述国内外研究现状的基础上,本文通过理论分析与实验研究相结合,从金属切削原理入手,借助有限元仿真手段对PCBN刀具硬态切削淬硬钢GCr_(15)的过程进行了较为深入的研究。
     通过设置合理边界条件,结合网格自适应控制技术建立了二维完全热力耦合的有限元模型,研究了带状切屑的产生过程。借助有限元仿真结果文章本文研究了刀具几何参数和切削条件对对切削过程的影响。通过采用合理的材料本构模型和剪切失效模型本文建立了锯齿状切屑产生过程的有限元模型,并利用有限元结果分析了锋利刃口、倒圆刃口和倒棱刃口对切削过程的影响。结合了网格自适应技术和删除技术,采用质量放大技术,建立了硬态切削过程的三维有限元仿真模型。
     为了验证仿真结果的正确性与否,本文采用山特维克公司的PCBN刀具在CA6140车床上对淬硬轴承钢GCr_(15)进行了一系列切削力、切削温度实验。通过试验与仿真分析对比,有限元仿真切削力、切削温度和已加工表面残余应力有较好的精度。采用的模拟方法可以部分的取代实验研究,拓展了有限元理论的应用范围,促进了硬态切削机理的研究,为刀具几何参数和切削工艺的优化提供了有益的参考。
Compared with grinding, hard-state cutting process has a very good process flexibility, economy and environmental protection, in this process, the hardness of the rough higher than HRC50 can be processed directly into work piece accurately. Thus, instead of grinding, hard-state cutting in today's machining has been increasingly widely used, and under certain conditions, hard-state cutting has become the first choice to replace grinding process. Therefore, in-depth studying of the mechanism and process optimization of the hard-state cutting has important significance.
     Based on describing research status at home and abroad, through combining theoretical analysis and experimental study, this paper start with the principle of metal cutting, using finite element simulation to do a more in-depth study of the process of PCBN tool hard-state cutting hardened steel GCr_(15).By setting up reasonable boundary conditions, combining the grid adaptive control technology, two-dimensional finite element model of fully thermal coupled was established completely, cutting process of continuous chip was also studied. Using results in finite element simulation articles, the effects of cutter geometric parameters and cutting conditions take on cutting process was also researched in this paper. Under the use of reasonable material constitutive model and shear failure model, the finite element model of serrated chip formation process was set up in this paper, then using the finite element analysis consequence, influence of the cutting process caused by sharp edge and radius edge chamfering edge circle was analyzed.
     By combining with the technology of grid adaptive and delete, using the technology of quality amplification, three-dimensional finite element simulation model of hard cutting process was build.
     In order to verify the correctness of simulation results or not, this paper uses PCBN cutting tools of Sandvik for hardened bearing steel GCr_(15) to conduct a series of cutting force and cutting temperature experiments in CA6140 lathe. Analyzed and compared by experiment and simulation, finite element emulates cutting forces, cutting temperature and surface residual stress, which have better accuracy. Using the simulation method can replace part of the experimental research, expand the application of finite element theory, promote the research of hard-state cutting mechanism and provide a useful reference for cutting tool geometry optimization and process.
引文
[1]雷源忠,黎明.21世纪的制造科学.中国机械工程,1999,10(6):689-691
    [2]杨叔子,吴波.依托基金项目开展创新研究.中国机械工程,1999,10(9):987-990
    [3]郑力,刘大成,李志忠等.数字化加工过程:概念、结构及其应用.中国机械工程,1999,10(9):1060-1062
    [4]袁哲俊,王先逵.精密和超精密加工技术.北京:机械工业出版社,1999.8
    [5]袁巨龙.功能陶瓷的超精密加工技术.哈尔滨:哈尔滨工业大学出版社,2000.8
    [6]严隽琪,范秀敏,蒋祖华等.虚拟制造的理论与技术基础研究.中国机械工程,1999,10(9):1068-1071
    [7]韩荣第,于启勋.难加工材料的切削加工.北京:机械工业出版社,1996.11
    [8] H.K.T?nshoff, C.Arendt and R.Ben Amor. Cutting of Hardened Steel. Annals of the CIRP, 2000,49(2): 547~566
    [9] W.K?nig, A.Verktold and K.F.Koch. Turning Versus Grinding—A Comparison of Surface Integrity Aspects and Attainable Accuracy. Annals of the CIRP, 1993, 42(1): 39~44
    [10] M.Fleming, P.K.Bossom. PCBN—Performance Goals for the 21st Century. Industrial Diamond Review, 2000, (4): 259~268
    [11]文东辉,郑力,刘献礼,严复钢.精密硬态切削过程金属软化效应与表面塑性侧流的研究.金刚石与磨料磨具工程,2003,(4):9~12
    [12] J.C. Aurich, H. Bil. 3D Finite Element Modelling of Segmented Chip Formation [J].Annals of the CIRP. 2006,vol 47, pp29-32
    [13] Zienkiewicz O.C. Analysis of the mechanism of orthogonal machining by the finite element method. J. Japan Soc. Prec.Eng, 1971,37(7): 503~508
    [14] Maekawa K, Maeda M. Simulation analysis of three-dimensional continuous chip formation processes (lst. report)– FEM formulation and a few results. J. Japan Soc. Prec. Eng, 1993,59(11): 1827~1833
    [15] Maekawa K, Ohhata H, Kitagawa T. Simulation analysis of cutting performance of a three-dimensional cut-away tool. Usui E. ed. Advancement of Intelligent Production, Tokyo, Elsevier, 1994: 378~383
    [16] Strenkowski I S, Carrol III I T. A finite element model of orthogonal metal cutting. Trans ASME J. Eng. Ind, 1985,107: 49~354
    [17] Tugrul Ozel. The influence of friction models on finite element simulations of machining. International Journal of Machine Tools & Manufacture, 2005, pp1–13.
    [18] Y.B.Guo, Q. Wen, K. A. Woodbury. Dynamic Material Behavior Modeling Using Internal State Variable Plasticity and Its Application in Hard Machining Simulations [J]. Journal of Manufacturing Science and Engineering. 2006, vol 128, pp749-759.
    [19] Y. B. Guo, D. A. Dornfeld. Finite Element Modeling of Burr Formation Process in Drilling 304 Stainless Steel. Transactions of the ASME. 2000, Vol 122, pp612-619.
    [20] Y.B. Guo, C.R. Liu, 3D FEA modeling of hard turning, Journal of Manufacturing Science and Engineering , 2002, vol 124,pp 189-199.
    [21] E.Cerettia, M.Lucchia, T.Altanb. FEM simulation of orthogonal cutting serrated chip formation [J]. Journal of Materials Processing Technology, 1999, 95: 17~26.
    [22] Y. Ohbuchi, T. Obikawa. Finite Element Modeling of Chip Formation in the Domain of Negative Rake Angle Cutting [J]. Transactions of the ASME, 2003, 125: 324~332.
    [23] L.Chuzhoy, RE.DeVor, S.G.Kapoor. Machining Simulation of Ductile Iron and Its Constituents, Part 2: Numerical Simulation and Experimental Validation of Machining [J]. Transactions of the ASME, 2003, 125: 192~201.
    [24] Martin Baker, Joachim Rosler, Carsten Siemers. The influence of thermal conductivity on segmented chip formation [J]. Computational Materials Science, 2003, 26:175~182.
    [25] Eu-Gene Nga, David K.Aspinwall. Modelling of hard part machining [J].Journal of Materials Processing Technology, 2002, 127: 222~229.
    [26] T.D. Marusich, M. Ortiz. Modelling and simulation of high speed machining, Int. J. Numer. Meth. Eng, 1995, (38): 3675~3694
    [27] Maekawa K, Maeda M. Simulation analysis of three-dimensional continuous chip formation processes (lst. report)– FEM formulation and a few results. J. Japan Soc. Prec. Eng, 1993,59(11): 1827~1833
    [28] O. Pantale, JL.Bacaria, O. Dalverny, R. Rakotomalala and S. Caperaa. 2D and 3D numerical models of metal cutting with damage effects [J]. Computer. Methods Appl. Mech. Engrg.2004, vol 193,pp 4383-4399.
    [29] Jing Shi,C. Richard Liu. The Influence of Material Models on Finite Element Simulation of Machining. Journal of Manufacturing Science and Engineering. 2004, Vol. 126, pp849-857
    [30] J.C. Aurich, H. Bil. 3D Finite Element Modelling of Segmented Chip Formation [J].Annals of the CIRP. 2006,vol 47, pp29-32.
    [31] Jeffrey D.Thiele, Shreyes N. Melkote. Effect of Cutting-Edge Geometry and Workpiece Hardness on Surface Residual Stresses in Finish Hard Turning of AISI 52100 Steel. Transactions of the ASME, 2000,122: 642~649
    [32] Yung-Chang Yen, J?rg S?hner, Blaine Lilly and Taylan Altan. Estimation of tool wear in orthogonal cutting using the finite element analysis. Machining Science and Technology, Vol. 6 (2002), pp. 467-486.
    [33] L. J. Xie, J. Schmidt, C. Schmidt and F. Biesinger. 2D FEM estimate of tool wear in turning operation.Wear Vol. 258 (2005), pp. 1479-1490.
    [34] ALTAN T.Status of FEM in Modeling High Speed Cutting[J].Annals of the CIRP, 2006, pp583-589.
    [35] [35] ALTAN T.Process Modeling of High Speed Cutting using 2D-FEM [C]. Proceedings of the NIST-Machining Conference,Washington, 2007,pp599-602.
    [36]王洪祥,孟庆鑫,宗文俊等.金刚石刀具前角对超精密切削过程影响的有限元分析.哈尔滨工业大学学报,2004,136(19):54~58
    [37] X.L. Liu, H.M.Pen, T. Chen. Effect of different edge preparation on high speed turning hardened steel process. Proceedings of the 12th International Conference on IMCC, Xi’an, China. Materials Science Forum, 2006,532-533: 412~415
    [38] Guo, Yuebin. Finite element analysis of superfinish hard turning. PhD, PURDUE UNIVERSITY,2000.
    [39] Y.ALtintas. Manufacturing automation-metal cutting mechanics, machine toolvibration, and CNC design.Canbridge university press.
    [40] Partchapol Sartkulvanich, DETERMINATION OF MATERIAL PROPERTIES FOR USE IN FEM SIMULATIONS OF MACHINING AND ROLLER BURNISHING, PhD, School of The Ohio State University, 2007.
    [41] Umbrello D, Ambrogio G, Flice L, Shivpuri R. A hybrid finite element method-artificial neural network approach for predicting residual stresses and the optimal cutting conditions during hard turning of AISI 52100 bearing steal[J].Materials and Design,2008,29:873-883.
    [42] Y. B. Guo, Q. Wen, and K. A. Woodbury. Dynamic Material Behavior Modeling Using Internal State Variable Plasticity and Its Application in Hard Machining Simulations, Journal of Manufacturing Science and Engineering, 2006, Volume 128, 749-759.
    [43] A.M.Abr?o, D.K.Aspinwall. The surface integrity of turned and ground hardened bearing steel.Wear, 1996, 196: 279~284
    [44] Y.B. Guo, David W. Yen. A FEM study on mechanisms of discontinuous chip formation in hard machining. Journal of Materials Processing Technology. Vol 155.2004.1350–1356.
    [45] Eu-Gene Nga, David K. Aspinwallb. Modelling of hard part machining. Journal of Materials Processing Technology. Vol 127, 2002, 222–229
    [46] Parag Konde. Finite Element Analysis of Shear localization in High Speed Machining of AISI4340 Steel. University of Pune. 2000
    [47] Yen Y C , Sohner J , Weule H , Schmidt J , Altan T. Estimation of tool wear of carbide tool in orthogonal cutting using FEM simulation[J]. Proceedings of the 5th CIRP International Workshop on Modeling of Machining Operations , West Lafayette , USA ,2002 : 149~160.
    [48] Altan T. Process Modeling of High Speed Cutting Using 2D-FEM[C]. Proceedings of the NIST-Machining Conference,Washington,2007,599-602.
    [49] Yen Y C ,Jain A, Altan T. A finite element analysis of orthogonal machining using different tool edge geometries[J]. Journal of materials processing technology, 2004,145:72-81.
    [50] Ceretti E, Lucchi M, Altan T. FEM simulation of orthogonal cutting: serrated chip formation[J]. Journal of materials processing technology, 1999,95:17-26.
    [51] A.M.Abr?o, D.K.Aspinwall. The surface integrity of turned and groundhardened bearing steel.Wear, 1996,196: 279~284
    [52] Ibrahim A. Finite Element Modeling of Hard Turning.The Ohio State University. 2007
    [53] Oxley P L B. Mechanics of Machining[M].Chicester: Ellis Horwood,1989.
    [54] Tugrul Ozel, Taylan Altan. Process simulation using finite element method—prediction of cutting forces, tool stresses and temperatures in highspeed flat end milling. International Journal of Machine Tools & Manufacture, vol 40, 2000, 713–738
    [55] L. Filice, D. Umbrello, F. Micari and L. Settineri. On the Finite Element Simulation of ThermalPhenomena in Machining Processes. On the Finite Element Simulation of Thermal Phenomena in Machining Processes. [M]2007. 263-278
    [56] Guo Y B, Liu C R. Mechanical properties of hardened AISI 52100 steel in hard machining process[J]. J Manuf Sci Eng ,2002,124(1):1-9.
    [57] X.L. Liu, H.M.Pen, T. Chen. Effect of different edge preparation on high speed turning hardened steel process. Proceedings of the 12th International Conference on IMCC, Xi’an, China. Materials Science Forum, 2006,532-533: 412~415
    [58] E.G.Ng, D.K.Aspinwall, D.Brazil, J.Monaghan. Modelling of Temperature and Forces When Orthogonally Machining Hardened Steel. International Journal of Machine Tools & Manufacture, 1999, 39: 885~903
    [59] D.Marusich and E.Askari. Modeling Residual Stress and Workpiece Quality in Machined Surfaces. Third Wave Systems Inc Minneapolis, MN USA and Boeing Seattle, WA USA
    [60] C.R.Liu, M.M.Barash. The mechanical state of the sub-layer of a surface generated by chip-removal process, part1&part2. Journal of Engineering for Industry, 1976: 1192~1208
    [61] C.R.Liu, S.Mittal. Single-step superfinish hard machining: feasibility and feasible cutting conditions. Robotics & Computer-Integrated Manufacturing, 1996,12(1): 15~27
    [62] Tugrul Ozel. Modeling of hard part machining: effect of insert edge preparation in CBN cutting tools. Journal of Materials Processing Technology 141, 2003, 284–293
    [63] Partchapol Sartkulvanich, Ibrahim Al-Zkeri, Yung-Chang Yen, and Taylan Altan. Investigation of the Effect of Tool Edge Geometry upon Cutting Variables, Tool Wear and Burr Formation Using Finite Element Simulation—A Progress Report. MATERIALS PROCESSING AND DESIGN: Modeling, Simulation and Applications. Vol 712, 2004. pp1347-1352
    [64] Y.-C. Yen; J. S?hner; H. Weule; J. Schmidt; T. Altan. Estimation of Tool Wear of Carbide tool in orthogonal cutting using FEM Simulation. Machining Science and Technology, Volume 6, 2002, 467 - 486
    [65] L.J. Xie, J. Schmidt, C. Schmidt, F. Biesinger. 2D FEM estimate of tool wear in turning operation. Wear. Vol258,2005.1479–1490
    [66] Reginaldo T. Coelho, Eu-Gene Ng, M. A. Elbestawib. A study of wear on coated PCBN tools when turning hardened AISI 4340 using FEM simulation. INDUSTRIAL DIAMOND REVIEW vol 4,2006, 60-67
    [67]黄志刚,柯映林,王立涛.基于正交切削模拟的零件铣削加工变形预测研究[J].机械工程学报.2004,11(40):117-122
    [68] Shinozuka J,Obikawa T,Shirakashi T. Chip breaking analysis from the viewpoint of the optimum cutting tool geometry design. Journal of Materials Processing Technology, 1996(62):345-351
    [69]郭玉琴,姜虹,王小椿.板料冲压加工数值模拟接触问题的研究[J].机械工程学报.2004,11(40):174-177
    [70] [70]方刚,雷丽萍,曾攀.金属塑塑性成型过程延性断裂的准则及其数值模拟[J].机械工程学报.2002,增刊(38):21-25
    [71] Iwata K,Osakada K,Terasaka T.Process modeling of orthogonal cutting by the rigid plastic finite element method ASME J Eng Mater Technol.1984,106:l32-138
    [72] C.Shet,X.Deng,Finite element analysis of the orthogonal metal cutting process,J Mater.Process.Technol,2000,105:95–109
    [73] Pantale, JL.Bacaria. 2D and 3D numerical models of metal cutting with damage effects [J]. Computer. Methods Appl. Mech. Engrg, 2004:4383~4399.
    [74] Kishawy HA, Elbestawi MA .Tool wear and surface integrity during high-speed turning of hardened steel with polycrystalline cubic boron nitride tools Proceedings of Institute Mechanical Engineers 215 (Part B)[C],2001:755~767
    [75] E.Cerettia, M.Lucchia, T.Altanb. FEM simulation of orthogonal cutting serratedchip formation [J]. Journal of Materials Processing Technology, 1999, 95: 17~26.
    [76] Y. Ohbuchi, T. Obikawa. Finite Element Modeling of Chip Formation in the Domain of Negative Rake Angle Cutting [J]. Transactions of the ASME, 2003, 125: 324~332.
    [77] L.Chuzhoy, RE.DeVor, S.G.Kapoor. Machining Simulation of Ductile Iron and Its Constituents, Part 2: Numerical Simulation and Experimental Validation of Machining [J]. Transactions of the ASME, 2003, 125: 192~201.
    [78] Martin Baker, Joachim Rosler, Carsten Siemers. The influence of thermal conductivity on segmented chip formation [J]. Computational Materials Science, 2003, 26:175~182.
    [79] Eu-Gene Nga, David K.Aspinwall. Modelling of hard part machining [J].Journal of Materials Processing Technology, 2002, 127: 222~229.
    [80]庄茁,ABAQUS/EXPLICITE有限元软件入门指南,北京,清华大学出版社,1998:33~37
    [81] Y.B. Guo.Dynamic Material Behavior Modeling Using Internal State Variable Plasticity and Its Application in Hard Machining Simulations. Journal of Manufacturing Science and Engineering.P749-759
    [82] PARAG KONDE. Finite Element Analysis of Shear-localization in High-speed Machining of AISI4340 Steel. University of Pune Maharashtra, India, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700