用户名: 密码: 验证码:
基于小波有限元与一阶Tikhonov正则化的移动车载识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车桥一直是交通工程的重要部分。在长期的车桥系统监测过程中发现,当移动车辆通过时,桥面所承受的移动载荷不能视为静态的;另一方面,对大跨度公路或铁路桥梁的实时荷载识别及其安全状态评估变得越来越重要和迫切。因此,对车桥系统中的移动载荷进行识别具有至关重要的意义。
     本文对车桥系统中的车桥建模及移动载荷识别方法进行了研究,将文中提出的方法与传统的方法想比较,针对不同结构下的模型,分析在不同因素,例如噪声、测量参数、车桥系统参数的影响下,车桥模型及移动车载识别方法的可行性及准确性,为桥梁结构的安全评估及车辆超重监测,也为今后的桥梁设计等提供更为准确的依据。
     本文的主要研究内容和取得的成果有:
     (1)提出了一种新的车桥系统建模方法,即小波有限元法(WFEM)。该方法采用区间B样条小波尺度函数,通过转换矩阵使物理参数以小波系数的函数表达出来,从而将物理空间与小波空间关联,实现模型的小波参数化。利用该小波尺度函数的多尺度多分辨特性,模拟出模型的细节或框架特征,从而达到调节模型精度的目的。基于该模型的振动分析表明,与传统有限元方法(TFEM)相比,本文提出的车桥系统建模方法对单元数需求少且精度高,这对于提高大型或复杂结构模型的精度与分析效率具有重要意义。
     (2)提出了一阶Tikhonov正则化技术与动态规划法相结合的移动载荷识别方法。首先对状态空间下的车桥系统运动方程进行离散,通过微小时间步长内各参数间的关系建立起待识别移动载荷与测得动响应之间的联系。采用动态规划法,通过迭代运算建立系统参数与优化变量之间的关系,对优化变量进行逆序与正序的反复迭代运算,最终获得最优的移动载荷。由于识别过程中的病态问题,借助L-曲线法选取最优正则化参数,并采用一阶Tikhonov正则化消除识别结果中的两端振荡现象、平滑噪声的影响。数值仿真结果表明,本文提出的一阶Tikhonov正则化与动态规划法相结合的识别方法,不仅能够平滑噪声,而且能够消除移动载荷进入及移出桥面时的两端振荡现象。
     (3)对简支梁及连续梁桥模型上的移动车载进行识别。将本文提出的车桥系统建模方法与TFEM方法进行比较,说明本文建模方法的可行性及对大型结构的适用性。通过对比零阶Tikhonov正则化下的移动载荷识别结果说明一阶Tikhonov正则化与动态规划法识别移动载荷的优越性。同时,分析车桥模型中各种影响因素对移动载荷识别结果的影响。数值仿真结果表明采样频率、车速、测点数目及分布位置、车轴间距等对移动车载的识别结果都有一定程度的影响。
The vehicles and bridges are always one of the significant parts for traffic engineering. It iscrucial for vehicle-bridge system to identify the moving forces, not only because the interactionforces induced by vehicles couldn’t be simplified as static ones during the long time observation,but also because it is important and imperative to obtain the real-time moving forces on highwayand railway bridges for the safe estimation.
     This dissertation studies the modeling methods for vehicle-bridge system and identificdationmethods for moving forces on the system. The new methods for modeling and for moving forceidentification are compared with traditional methods to validate the properties of feasibility andcorrectness for different structures, with different influence factors, such as noise level,measurement parameters, vehicle-bridge system parameters, et al. According to the analysis, it iscapable of more accurate design for bridges and of more accurate monitoring for moving vehicle.
     The main contents of this dissertation are as follows:
     (1)In Chapter2, a modeling method called wavelet finite elemtent method (WFEM) forvehicle bridge system is studied. To parameterize the model, the B Spline Wavlet in theInterval (BSWI) is adopted to connect the physical and wavelet spaces throughtransformation matrix by expressing the physical parameters with wavelet functions. Theprecision of the model is controlled by the multi-scale and multi-resolution property ofWFEM, through which both the detail and coarse characteristics can be obtained. Thevibration analysis is applied to validate that fewer elements are needed for WFEMmodel and the precision is satisfied compared with traditional finite element method(TFEM), which is meaningful for the improvement of precision and efficient of large orcomplicated structure.
     (2)In Chapter3, a method for moving force identification based on the first order Tikhonov regularization and dynamic programming technique is studied. Fist, the relationshipbetween moving forces to be identified and the measured dynamic responses isestablished by the parameters in tiny time domain, which are discreted from the motionfunction in state space. Then, moving force is obtained using dynamic programmingtechnique by backward and forward iteration operation on optimal varialbes to gain theconnection of system parameters and optimal variables. The L-curve method isintroduced to find out the optimal parameter and the first order Tikhonov reguralizationis deduced for both smoothing the noise and avoiding the fluctuations when movingvehicles are moving in and out the bridge.
     (3)In Chapter4, identification of moving forces on simply supported and continuousbridges is studied. First to validate the feasibility and the commonatity of the newmodeling method compared with TFEM, then to certificate the advantage of firstTikhonov regularization by the comparision of the identified results of moving forceswith the results under zero order Tikhonov regularization. The effects of parameters onidentification accuracy are analyzed, and the numerical simulation gives the conclusionthat the influence parameters such as the sampling frequency, the vehicle speed, thenumber and the arrangement of the measurement sensors, the axle spacing of vehicles, etal affect the accuracy of identified results to some extent.
引文
[1] Cebon D. Assessment of the dynamic wheel forces generated by heavy vehicles.1987,Symposium on Heavy Vehicle Suspension and Characteristics, Australian RoadResearch Board.
    [2] Kriss M. Weigh in Motion Prediction Method, M.S. Thesis. Cleveland, Ohio: CaseWestern Reserve University,1979.
    [3] Timoshenko著,胡人礼译。工程中的振动问题.北京:中国铁道出版社,1978.
    [4] Timoshenko S.P. Forced vibration of prismatic bars. Izvestiya Kievskogo Politekh-nicheeskogo Institute,1908.
    [5]陈英俊.车辆荷载下桥梁振动基本理论的演进.桥梁建设,1975(2):21-36.
    [6] Broquet C., Bailey S. F., Fafard M. Dynamic Behavior of Deck Slabs of ConcreteRoad Bridges. Journal of Bridge Engineering, ASCE,2007:137-146.
    [7] Samaan M, Kennedy J B, Khaled Sennah. Impact Factors for Curved ContinuousComposite Multiple-Box Girder Bridges. Journal of Bridge Engineering, ASCE,2007:80-88.
    [8]陈榕峰.公路桥梁车桥耦合主要影响因素仿真分析方法研究,长安大学硕士学位论文.西安:长安大学,2005.
    [9]毛清华,项海帆.公路桥梁车辆振动的理论和试验研究.土木工程学报,1990,23(2):61-68.
    [10]王庆波,汪胜,许克斌,等.高速铁路连续梁桥动力响应分析.北方交通大学学报,1997,21(4):399-404.
    [11]林梅,肖盛燮.桥梁车辆振动分析理论评述.重庆交通学院学报,1998,17(3):1-9.
    [12]杨岳民,潘家英,程庆国.车桥耦合振动方程的分组迭代求解.中国铁道科学.1996,17(4):69-78.
    [13]单德山,李乔.车桥耦合振动分析的数值方法.重庆交通学院学报,1999,18(3):14-20.
    [14]张庆,史家钧,胡振东.高速车辆-桥梁结构耦合振动分析.振动与冲击,2003,22(2):49-52.
    [15] Salvo V D, Muscolino G, Palmeri A. A substructure approach tailored to the dynamicanalysis of multi-span continuous beams under moving loads. Journal of Sound andVibration,2010,329(15):3101-3120.
    [16] Chul Woo Kim, Mitsuo Kawatani, Ki Bong Kim. Three-dimensional dynamicanalysis for bridge-vehicle interaction with roadway roughness. Computers andStructures,2005,83(19-20):1627-1645.
    [17]宋一凡,陈榕峰.基于路面不平整度的车辆振动响应分析方法.交通运输工程学报,2007,7(4):39-43.
    [18]王元丰,许士杰.桥梁在车辆作用下空间动力响应的研究.中国公路学报,2000,13(4):37-41.
    [19]盛国刚,赵冰.移动振动系统作用下梁的动力分析.长沙交通学院学报,2002,18(2):17-22.
    [20] Dinh-Van Nguyen, Ki-Du Kim, Pennung Warnitchai. Simulation procedure forvehicle-substructure dynamic interactions and wheel movements using linearizedwheel-rail interfaces. Finite Elements in Analysis and Design,2009,45(5):341-356.
    [21] Zhang N, Xia H, Guo W W. Vehicle-bridge interaction analysis under high-speedtrains. Journal of Sound and Vibration,2008,309(3-5):407-425.
    [22] Zhang N, Xia H, Guo W W, et al. Vehicle-bridge interaction analysis of heavy loadrailway. Procedia Engineering,2010,4:347-354.
    [23] Yau J D. Vibration control of maglev vehicles traveling over a flexible guideway.Journal of Sound and Vibration,2009,321(1-2):184-200.
    [24] Lee J S, Kwon S D, Kim M Y, et al. A parametric study on the dynamics of urbantransit maglev vehicle running on flexible guideway bridges. Journal of Sound andVibration,2009,328(3):301-317.
    [25] Sieniawska R, niady P, ukowski S. Identification of the structure parametersapplying a moving load. Journal of Sound and Vibration,2009,319(1-2):355-365.
    [26] Jiang R J, Au F T K, Cheung Y K. Identification of masses moving on multi-spanbeams based on a genetic algorithm. Computers and Structures,2003,81(22-23):2137-2148.
    [27] Law S S, Chan T H T, Wu D. Efficient numerical model for the damage detection oflarge scale. Engineering Structures,2001,23(5):436-451.
    [28] Law S S, Li J. Updating the reliability of a concrete bridge structure based oncondition assessment with uncertainties. Engineering Structures,2010,32(1):286-296.
    [29] Nasrellah H A, Manohar C S. A particle filtering approach for structural systemidentification in vehicle-structure interaction problems. Journal of Sound andVibration,2010,329(9):1289-1309.
    [30] Spiridonakos M D, Poulimenos A G, Fassois S D. Output-only identification anddynamic analysis of time-varying mechanical structures under random excitation: Acomparative assessment of parametric methods. Journal of Sound and Vibration,2010,329(7):768-785.
    [31]张方,朱德懋.基于广义正交域的一种动载荷识别方法研究.南京航空航天大学学报,1996,28(6):755-760.
    [32] Yu L. Accounting for Bridge Dynamic Loads Using Moving Force IdentificationSystem (MFIS), Ph.D Thesis. Hong Kong: the Hong Kong Polytechnic University,2002.
    [33] Yeung W T, Smith J W. Damage detection in bridges using neural networks forpattern recognition of vibration signatures. Engineering Structures,2005,27(5):685-698.
    [34] Yan Y J, Hao H N, Yam L H. Vibration-based construction and extraction of structuraldamage feature index. International Journal of Solids and Structures,2004,41(24-25):6661-6676.
    [35] Lu Z R, Law S S. Identification of prestress force from measured structural responses.Mechanical Systems and Signal Processing,2006.20(8):2186-2199.
    [36] Kim J. Identification of lateral tyre force dynamics using an extended Kalman filterfrom experimental road test data. Control Engineering Practice,2009,17(3):357-367.
    [37] Law S S, Bu J Q, Zhu X Q, et al. Vehicle Condition Surveillance on ContinuousBridges Based on Response Sensitivity. Journal of Engineering Mechanics, ASCE,2006,132(1):78-86.
    [38] Deng L, Cai C S. Identification of parameters of vehicles moving on bridges.Engineering Structures,2009,31(10):2474-2485.
    [39] O’Connor C, Chan T H T. Dynamic wheel loads from bridge strains. Journal ofStructural Engineering, ASCE,1988,114(8):1703-1723.
    [40] Liu F S, Li H J, Yu G M, et al. New Damage-locating Method for Bridges Subjectedto a Moving Load. Journal of Ocean University of China,2007,6(2):199-204.
    [41] Zhan J W, Xia H, Chen S Y, et al. Structural damage identification for railway bridgesbased on train-induced bridge responses and sensitivity analysis. Journal of Soundand Vibration,2011,330(4):757-770.
    [42] Lu Z R, Law S S. Dynamic condition assessment of a cracked beam with thecomposite element model. Mechanical Systems and Signal Processing,2009,23(2):415-431.
    [43] Nguyen K V, Tran H T. Multi-cracks detection of a beam-like structure based on theon-vehicle vibration signal and wavelet analysis. Journal of Sound and Vibration,2010,329(21):4455-4465.
    [44] Zhu X Q, Law S S. Damage Detection in Simply Supported Concrete BridgeStructure Under Moving Vehicular Loads. Journal of Vibration and Acoustics,2007,129(1):58-65.
    [45] Shi Z Y, Law S S, Zhang L M. Optimum sensor placement for structural damagedetection. Journal of Engineering Mechanics,2000,126(11):1173-1179.
    [46] Zhu X Q, Law S S. A concrete-steel interface element for damage detection ofreinforced concrete structures. Engineering Structures,2007,29(12):3515-3524.
    [47] Wu S Q, Law S S. Dynamic analysis of bridge-vehicle system with uncertaintiesbased on the finite element model. Probabilistic Engineering Mechanics,2010,25(4):425-432.
    [48] Law S S, Zhu X Q. Dynamic behavior of damaged concrete bridge structures undermoving vehicular loads [J]. Engineering Structures,2004,26(9):1279-1293.
    [49] Law S S, Lu Z R. Time domain responses of a prestressed beam and prestressidentification. Journal of Sound and Vibration,2005,288(4-5):1011-1025.
    [50] Bu J Q, Law S S, Zhu X Q. Innovative Bridge Condition Assessment from DynamicResponse of a Passing Vehicle. Journal of Engineering Mechanics, ASCE,2006,132(12):1372-1379.
    [51] Yau J D. Dynamic response analysis of suspended beams subjected to movingvehicles and multiple support excitations. Journal of Sound and Vibration,2009,325(4-5):907-922.
    [52] im ek M. Non-linear vibration analysis of a functionally graded Timoshenko beamunder action of a moving harmonic load. Composite Structures,2010,92(10):2532-2546.
    [53] Zhu X Q, Law S S. Moving forces identification on a multi-span continuous bridge.Journal of Sound and Vibration,1999,228(2):377-396.
    [54] Ashebo D B, Chan T H T, Yu L. Evaluation of dynamic loads on a skew box girdercontinuous bridge Part Ⅰ: Field test and modal analysis. Engineering Structures,2007,29(6):1052-1063.
    [55]谭国辉.桥梁与车辆相互作用的系统模拟.土木工程学报,1996,29(3):34-42.
    [56] Wu D, Law S S. Crack Identification in Thin Plates With Anisotropic Damage Modeland Vibration Measurements. Journal of Applied Mechanics, ASME,2005,72(6):852-861.
    [57] Zhu X Q, Law S S. Dynamic Behavior of Orthotropic Rectangular Plates underMoving loads. Journal of Engineering Mechanics, ASCE,2003,129(1):79-87.
    [58] Wu D, Law S S. Anisotropic damage model for an inclined crack in thick plate andsensitivity study for its detection. International Journal of Solids and Structures,2004,41(16-17):4321-4336.
    [59] Cannarozzi A A, Custodi A. Two-field variational formulations for the problem of thebeam on a continuous elastic support. International Journal of Solids and Structures,1997,34(33-34):4339-4355.
    [60] Sato M, Kanie S, Mikami T. Mathematical analogy of a beam on elastic supports as abeam on elastic foundation. Applied Mathematical Modelling,2008,32(5):688-399.
    [61] Tosone C, Maceri A. Continuous Beams with Unilateral Elastic Supports. Journal ofMathematical Analysis and Applications,2001,259(1):302-318.
    [62] ztürk H, Sabuncu M. Stability analysis of a cantilever composite beam on elasticsupports. Composites Science and Technology,2005,65(13):1982-1995.
    [63] Hosking R J, Husain S A, Milinazzo F. Natural flexural vibrations of a continuousbeam on discrete elastic supports. Journal of Sound and Vibration,2004,272(1-2):169-185.
    [64] Liu X W, Wu C, Huang X C. Semi-analytical solution of vehicle-bridge interaction ontransient jump of wheel. Engineering Structures,2008,30(9):2401-2412.
    [65] Rezaiguia A, Laefer D F. Semi-analytical determination of natural frequencies andmode shapes of multi-span bridge decks. Journal of Sound and Vibration,2009,328(3):291-300.
    [66] Zhu X Q, Law S S. Precise time-step intergration for the dynamic response of acontinuous beam under moving loads. Journal of Sound and Vibration,2001,240(5):962-970.
    [67] Zhu X Q, Law S S. Dynamic load on continuous multi-lane bridge deck from movingvehicles. Journal of Sound and Vibration,2002,251(4):697-716.
    [68] Zhu X Q, Law S S. wavelet-based crack identification of bridge beam fromoperational deflection time history. International Journal of Solids and Structures,2006,43(7-8):2299-2317.
    [69] Law S S, Zhu X Q. Nonlinear Characteristics of Damaged Concrete Structures underVehicular Load. Journal of Structural Engineering, ASCE,2005,131(8):1277-1285.
    [70] Law S S, Lu Z R. Crack identification in beam from dynamic responses. Journal ofSound and Vibration,2005,285(4-5):967-987.
    [71] Bilello C, Paola M D, Salamone S. A correction method for the analysis of continuouslinear one-dimensional systems under moving loads. Journal of Sound and Vibration,2008,315(1-2):226-238.
    [72] Garinei A, Risitano G. Vibrations of railway bridges for high speed trains undermoving loads varying in time. Engineering Structures,2008,30(3):724-732.
    [73] im ek M, Kocatürk T. Free and forced vibration of a functionally graded beamsubjected to a concentrated moving harmonic load. Composite Structures,2009,90(4):465-473.
    [74] im ek M, Kocatürk T. Nonlinear dynamic analysis of an eccentrically prestresseddamped beam under a concentrated moving harmonic load. Journal of Sound andVibration,2009,320(1-2):235-253.
    [75] Turner M J, Clough R W, Martion H C et al. Stiffness and deflection analysis ofcomplex structures. Journal of the Aeronautical Sciences,1956,23(9):805-823.
    [76]李清海,谭笃光.车辆荷载作用下桥梁动力效应的有限元分析.振动与冲击,1994,13(1):15-22.
    [77]程保荣,周玉勋.车桥耦合系统动力分析的模态综合技术.清华大学学报(自然科学版),2002,42(8):1083-1086.
    [78] Cheng Y S, Au FTK, Cheung Y K. Vibration of railway bridges under a moving trainby using bridge-track-vehicle element. Engineering Structures,2001,23(12):1579-1606.
    [79] Law S S, Li X Y, Zhu X Q et al. Structural damage detection from wavelet packetsensitivity. Engineering Structures,2005,27(9):1339-1348.
    [80] Wu D, Law S S. Sensitivity of Uniform Load Surface Curvature for DamageIdentification in Plate Structures. Journal of Vibration and Acoustics,2005,127(1):84-92.
    [81]吴邵庆,史治宇.由有限元-Wavelet-Galerkin法识别桥面移动载荷.振动工程学报.2006,19(4):494-498.
    [82] Wu S Q, Law S S. Moving force identification based on stochastic finite elementmodel. Engineering Structures,2010(32):1016-1027.
    [83] Kwasniewski L, Li H Y, Wekezer J et al. Finite element analysis of vehicle-bridgeinteraction. Finite Elements in Analysis and Design,2006,42(11):950-959.
    [84] Liu K, Reynders E, Roeck G D et al. Experimental and numerical analysis of acomposite bridge for high-speed trains. Journal of Sound and Vibration,2009,320(1-2):201-220
    [85] Deng L, Cai C S. Development of dynamic impact factor for performance evaluationof existing multi-girder concrete bridges. Engineering Structures,2010,32(1):21-31.
    [86] Ghimire J P, Matsumoto Y, Yamaguchi H et al. Numerical investigation of noisegeneration and radiation from an existing modular expansion joint betweenprestressed concrete bridges. Journal of Sound and Vibration,2009,328(1-2):129-147.
    [87] Stykel T. Balanced truncation model reduction for semidiscretized Stokes equation.Linear Algebra and its Applications,2006,415(2-3):262-289.
    [88] Dolgin Y, Zeheb E. Model reduction of uncertain systems retaining the uncertaintystructure. Systems&Control Letters,2005,54(8):771-779.
    [89] Gugercin S. An iterative SVD-Krylov based method for model reduction oflarge-scale dynamical systems. Linear Algebra and its Applications,2008,428(8-9):1964-1986.
    [90] Binion D, Chen X L. A Krylov enhanced proper orthogonal decomposition methodfor efficient nonlinear model reduction. Finite Elements in Analysis and Design,2011,In Press.
    [91] Law S S, Wu D, Shi Z Y. Model updating of semirigid jointed structure using genericparameters. Journal of Engineering Mechanics.2001,127(11):1174-1183.
    [92] Garvey S D, Penny J E T. Model reduction using dynamic and iterated IRS techniques.Journal of Sound and Vibration,1995,186(2):311-323.
    [93] Koutsovasilis P, Beitelschmidt M. Comparison of model reduction techniques forlarge mechanical systems. Multibody System Dynamics,2008,20(2):111-128.
    [94] Xu H G, Li W L. Dynamic behavior of multi-span bridges under moving loads withfocusing on the effect of the coupling conditions between spans. Journal of Sound andVibration,2008,312(4-5):736-753.
    [95] Olsson M.. On the fundamental moving load problem. Journal of Sound and Vibration,1991,145(2):299-307.
    [96] im ek M. Vibration analysis of a functionally graded beam under a moving mass byusing different beam theories. Composite Structures,2010,92(4):904-917.
    [97]张青霞,段忠东, Jankowski L.基于虚拟变形法的移动质量识别方法研究.振动工程学报,2010,23(5):494-501.
    [98] Stani ié M M, Lafayette W. On a new theory of the dynamic behavior of thestructures carrying moving masses. Archive of Applied Mechanics,1985,55(3):176-185.
    [99] Yang Y B, Chang K C. Extraction of bridge frequencies from the dynamic response ofa passing vehicle enhanced by the EMD technique. Journal of Sound and Vibration,2009,322(4-5):718-739.
    [100]林梅,肖盛燮.汽车荷载作用下梁式桥的动态分析.重庆交通学院学报,2000,19(1):1-5.
    [101] Liu K, Roeck D G, Lombaert G. The effect of dynamic train-bridge interaction on thebridge response during a train passage. Journal of Sound and Vibration,2009,325(1-2):240-251.
    [102]李国豪,范立础,项海帆等.桥梁结构稳定与振动.北京:中国铁道出版社,1992.
    [103] Wu S Q, Law S S. Dynamic analysis of bridge with non-Gaussian uncertainties undera moving vehicle. Engineering Mechanics,2011,26(2):281-293.
    [104] Morses F. Weigh-in Motion System Using Instrumented Bridge. TransportationEngineering Journal,1979,105(3):233-249.
    [105] Peters R J. An Unmanned and Undetectable Highway Speed Vehicle WeighingSystem. Proceedings of the13thARRB and5thREAAA Combined Conference, Part6,70-83,1986.
    [106] Tritt B, Richards B. Determination of Vehicle Axle Mass Description andDemonstration of the ARRB System, Proceeding of Axle Mass DeterminationWorkshop, ARRB,1978.
    [107] Briggs J C, Tse M K. Impact force identification using extracted modal parametersand pattern matching. International Journal of Impact Engineering,1992,12(3):361-372.
    [108] Rowley C W, Obrien E J, Gonzalez A, et al. Experimental Testing of a Moving ForceIdentification Bridge Weigh-in-Motion Algorithm. Experimental Mechanics,2009,49(5):743-746.
    [109] Stevens K K. Force identification problems—an overview. Proceedings of SEMSpring Conference on Experimental Mechanics, FL, USA,1987:838-844.
    [110]魏星原,宋斌,郑效忠.载荷识别的逆系统方法.振动、测试与诊断,1995,15(3):35-43.
    [111] Chan T H T, Yung T H. A theoretical study of force identification using prestressedconcrete bridges. Engineering Structures,2000,22(11):1529-1537.
    [112] Chan T H T, Yu L, Law S S. Moving force identification studies, Ⅰ: Theory. Journalof Sound and Vibration,2001,247(1):59-76.
    [113] Yu L, Chan T H T. Recent research on identification of moving loads on bridges.Journal of Sound and Vibration,2007,305(1-2):3-21.
    [114] Chan T H T, Yu L, Law S S. Comparative studies on moving force identification frombridge strains in laboratory. Journal of Sound and Vibration,2000,235(1):87-104.
    [115] Chan T H T, Law S S, Yung T H. An interpretive method for moving forceidentification. Journal of Sound and Vibration,1999,219(3):503-524.
    [116] Law S S, Zhu X Q. Study on different beam models in moving force identification.Journal of Sound and Vibration,2000,234(4):661-679.
    [117] Zhu X Q, Law S S. Identification of vehicle axle loads from bridge dynamicresponses. Journal of Sound and Vibration,2000,236(4):705-724.
    [118] Zhu X Q, Law S S. Identification of Moving Loads on an Orthotropic Plate. ASME,2001,123(2):238-244.
    [119] Zhu X Q, Law S S. Identification of moving interaction forces with incompletevelocity information. Mechanical Systems and Signal Processing,2003,17(6):1349-1366.
    [120] Bakht B, Jaeger L G. Bridge analysis simplified. New York: McGraw-Hill,1985.
    [121] Desanghere G, Snoeys R. Indirect identification of excitation forces by modalcoordinate transformation. Proceedings of the3rdMAC, Florida, USA,1985:685-690.
    [122] Ory H, Glaser H, Holzdeppe D. The reconstruction of forcing function based onacroclasticity and structural dynamics. Proceedings of2ndInternational Symposia onAeroelasticity and Structural Dynamics. A schen, FRG,1985.
    [123]唐秀近.动态力识别的时域方法.大连工学院学报,1987,26(4):21-28.
    [124] Law S S, Chan T H T. Moving force identification: a time domain method. Journal ofSound and Vibration,1997,201(1):1-22.
    [125] Chan T H T, Law S S, Yung T H. Moving force identification using an existingprestressed concrete bridge. Engineering Structures,2000,22(10):1261-1270.
    [126]尧云涛.由响应识别桥上的移动荷载,硕士论文.成都:西南交通大学,2004.
    [127] Chan T H T, Ashebo D B. Theoretical study of moving force identification oncontinuous bridges. Journal of Sound and Vibration.2006,295(3-5):870-883.
    [128] Zhu X Q, Law S S. Moving Loads Identification Through Regularization. Journal ofEngineering Mechanics.2002,128(9):989-1000.
    [129]朱军华,余岭,陈敏中,等.移动荷载识别的一种快速算法.长江科学院院报.2006,23(2):46-49.
    [130]朱军华,余岭,陈敏中等.移动荷载识别的适用性研究.工程力学,2007,24(8):32-48.
    [131]余岭,朱军华,陈敏中等.基于矩量法的桥梁移动车载识别试验研究.振动与冲击,2007,26(1):16-20.
    [132]余岭,陈震.桥梁移动荷载识别的不适定性及其试验研究.振动与冲击,2007,26(12):6-9.
    [133]朱军华,余岭.桥梁移动荷载识别的几个问题.中山大学学报,2008,47(S2):29-33.
    [134] Law S S, Chan T H T, Zeng Q H. Moving force identification: A frequency and timedomains analysis. Journal of Dynamic System, Measurement and Control ASME,121(3):394-401.
    [135] Yu L, Chan T H T. Moving force identification based on the frequency-time domainmethod. Journal of Sound and Vibration,2003,261(2):329-349.
    [136] Yu L, Chan T H T. Identification of Multi-Axle Vehicle Loads on Bridges. Journal ofVibration and Acoustics,2004,126(1):17-26.
    [137]高宝成,刘红霞,杨叔子.神经网咯用于结构动荷载识别的研究.郑州工学院学报,1996,17(2):91-94.
    [138]张方,朱德懋.基于神经网咯模型的动载荷识别.振动工程学报,1997,10(2):156-162.
    [139]王红丽.基于BP神经网咯的移动荷载识别方法研究,硕士学位论文.杭州:浙江大学,2007.
    [140]满洪高,卜建清,袁向荣.基于广义正交域理论识别桥上移动载荷的方法研究.石家庄铁道学院学报,1999,12(4):40-43.
    [141]满洪高,卜建清,袁向荣.基于广义正交域理论识别桥上移动载荷的方法研究.石家庄铁道学院学报,1999,12(4):40-43.
    [142] Law S S, Bu J Q, Zhu X Q, et al. Vehicle axle loads identification using finite elementmethod. Engineering Structures,2004,26(8):1143-1153.
    [143]陈锋,袁向荣,李明.移动载荷识别的B-样条函数逼近法.石家庄铁道学院学报,2003,16(1):11-14.
    [144]李忠献,王波,陈锋.桥梁移动荷载的识别与参数分析.福州大学学报(自然科学版),2005,33(S1):56-61.
    [145]孙艳茹.基于函数逼近法的桥梁移动盒子啊识别方法研究.硕士论文.武汉:武汉理工大学,2006.
    [146]张渔勇,瞿伟廉,陈波.基于样条函数的桥梁列车多轴移动荷载识别.武汉理工大学学报,2007,29(6):104-106,117.
    [147]袁向荣,卜建清,满洪高,等.移动荷载识别的函数逼近法.振动与冲击,2000,19(1):58-60,70.
    [148]黄林,袁向荣.桥上移动荷载识别的幂级数曲线拟合法.铁道学报,1998,20(A04):79-83.
    [149] Law S S, Fang Y L. Moving force identification: optimal state estimation approach.Journal of Sound and Vibration,2001,239(2):233-254.
    [150] Zhu X Q, Law S S, Bu J Q. A State Space Formulation for Moving loadsIdentification. Journal of Vibration and Acoustics, ASME,2006,128(4):509-520.
    [151] Law S S, Bu J Q, Zhu X Q, Chan S L. Moving load identification on a simplysupported orthotropic plate. International Journal of Mechanical Sciences.2007,49(11):1262-1275.
    [152]杨萍,李鹤岐,李有堂.动态载荷识别的小波正交算子变换法.甘肃工业大学学报.2001,27(2):102-105.
    [153] Beylkin G, Coifman R, Rokhlin V. Fast wavelet transforms and numerical algorithmsⅠ. Communications on Pure andApplied Mathematics,1991,44(2):141-183.
    [154] Berrone S, Dmmel L. Towards a realization of a wavelet Galerkin method onnon-trivial domains. Journal of Scientific Computing,2002,17(1-4):307-317.
    [155] Chen Z, Micchelli C A. Discrete wavelet Petrov-Galerkin methods. Advances inCompu-tational Mathematics,2002,16(1):1-28.
    [156] Ghanem R, Romeo F. A wavelet-based approach for the identification of lineartime-varying dynamic systems. Journal of Sound and Vibration,2000,234(4):555-576.
    [157] Pernot S, Lamarque C H. A wavelet-Galerkin procedure to investigate time-periodicsystems: transienet vibration and stability analysis. Journal of Sound and Vibration,2001,245(5):845-875.
    [158] Law S S, Wu S Q, Shi Z Y. Moving Load and Prestress Identification UsingWavelet-Based Method. Journal of Applied Mechanics,2008,75(2):021014.
    [159] Inoue H, Kishimoto K, Shibuga T, et al. Estimation of impact load by inverse analysis.JSME Int J Series1,1991,35(4):420-427.
    [160]傅志方,饶柱石,周海亭.一种动态载荷的识别方法.上海交通大学学报,1997,31(3):5-7.
    [161]瞿伟廉,王锦文.振动结构动态荷载识别综述.华中科技大学学报,2004,21(4):1-4,8.
    [162] Lu Z R, Law S S. Identification of system parameters and input force from outputonly. Mechanical Systems and Singal Processing,2007,21(5):2099-2111.
    [163] Lu Z R, Liu J K. Identification of both structural damages in bridge deck andvehicular parameters using measured dynamic responses. Computers and Structures.2011,89(13-14):1397-1405.
    [164] Wu S Q, Law S S. Vehicle axle load identification on bridge deck with irregular roadsurface profile. Engineering Structures.2011,33(22):591-601.
    [165] Wu S Q. Modeling of uncertainty in bridge-vehicle system and the interaction forceidentification, Doctor thesis. Hong Kong: The Hong Kong Polytechnic University,2011.
    [166] Jiang X Q, Hu H Y. Reconstruction of distributed dynamic loads on an Euler beam viamode-selection and consistent spatial expression. Journal of Sound and Vibration.2008,316(1-5):122-136.
    [167] Jiang X Q, Hu H Y. Reconstruction of distributed dynamic loads on a thin plate viamode-selection and consistent spatial expression. Journal of Sound and Vibration.2009,323(3-5):626-644.
    [168] Jiang R J, Au F T K, Cheung Y K. Identification of vehicles moving on continuousbridges with rough surface. Journal of Sound and Vibration,2004,274(3-5):1045-1063.
    [169] Elliott M T, Ma X, Brett P N. Tracking the position of an unknown moving load alonga plate using the distributive sensing method. Sensors and Actuators.2007,138(1):28-36.
    [170] Deng L, Cai C S. Identificaiton of parameters of vehicles moving on bridges.Engineering Structures.2009,31(10):2474-2485.
    [171] Lu Z R, Law S S. System Identification Including the Load Environment. Journal ofApplied Mechanics, ASME,2004,71(5):739-741.
    [172] Liu X W, Xie J, Wu C, et al. Semi-analytical solution of vehicle-bridge interaction ontransient jump of wheel. Engineering Structures,2008,30(9):2401-2412.
    [173] Ding L, Hao H, Zhu X Q. Evaluation of dynamic vehicle axle loads on bridges withdifferent surface conditions. Journal of Sound and Vibration,2009,323(3-5):826-848.
    [174] Hansen P C. Analysis of Discrete Ill-Posed Problems by Means of the L-Curve. SIAMReview,1992,34(4):561-580.
    [175] Tikhonov A N. On the solution of ill-posed problems and the method of regularization.Soviet Mathematics,1963,4:1035-1038.
    [176] Trujillo D M. Application of dynamic programming to the general inverse problem.International Journal of Numerical Methods in Engineering,1978,12:613-624.
    [177] Golub G H, Heath M, Wahaba G. Generalized Cross-Validation as a Method forChoosing a Good Ridge Parameter. Technometrics,1979,21(2):215-223.
    [178] Busby H R, Trujillo D M. Solution of an inverse dynamic problem using aneigenvalue reduction technique. Computers and Structures,1987,25(1):109-117.
    [179] Mao Y M, Guo X L, Zhao Y. A state space force identification method based onMarkov parameters precise computation and regularization technique. Journal ofSound and Vibration,2010,329(15):3008-3019.
    [180] Kim H G, Lee K W. A study on the influence of measurement location andregularization on the evaluation of boundary tractions by inverse finite elementmethod. Finite Element in Analysis and Design,2009,45(8-9):569-582.
    [181] Pinkaew T. Identification of vehicle axle loads from bridge responses using updatedstatic component technique. Engineering Structures,2006,28(11):1599-1608.
    [182] Pinkaew T, Asnachinda P. Experimental study on the identification of dynamic axleloads of moving vehicles from the bending moments of bridges. EngineeringStructures,2007,29(9):2282-2293.
    [183] Asnachinda P, Pinkaew T, Laman J A. Multiple vehicle axle load identification fromcontinuous bridge bending moment response. Engineering Structures,2008,30(10):2800-2817.
    [184]龙驭球.广义协调元.土木工程学报,1987,20(1):1-14.
    [185]曾攀.计算力学中的高精度数值分析新方法.中国科学(E辑),2000,30(1):39-46.
    [186]石钟慈.样条有限元.计算数学,1979,(1):50-72.
    [187] Shi G H.数值流形方法与非连续变形分析(裴觉民译).北京:清华大学出版社,1987.
    [188]刘天祥,刘更,朱均等.无网格法的研究进展.机械工程学报,2002,38(5):7-12.
    [189] Ko J, Kurdila A J, Pilant M S. A class of finite element methods based on orthonormal,compactly supported wavelets. Computational Mechanics,1995,16(4):235-244.
    [190] Bertoluzza S. An adaptive collocation method based on interpolating wavelets. In:Dahmen W. Multiscale Wavelet Methods for PDEs. New York: Academic Press,1997.
    [191] Chen Z, Xu Y. The Petrov-Galerkin and iterated Petrov-Galerkin methods for secondkind integral equations. SIAM, Journal on Numerical Analysis,1998,35(1):406-434.
    [192]何正嘉,陈雪峰,李兵,等.小波有限元理论及其工程应用.北京:科学出版社,2006:145-148.
    [193] Charles K C, Quak E.Wavelets on a bounded interval. Conference on NumericalMethods in Approximation Theory. Numerical Methods of Approximation Theory,1992,9(105):53-75.
    [194] Quak E,Weyrich N. Decomposition and reconstruction algorithms for alpine waveletson a bounded interval. Applied and Computational Harmonic Analysis,1994,1(3):217-231.
    [195]关履泰.在有限区间带边界条件的小波插值与分解.工程数学学报,1995,12(3):1-9.
    [196]沈鹏程,何沛祥.计算力学中的样条有限元法的进展.力学进展,2000,30(2):191-199.
    [197] Calvetti D, Morigi S, Reichel L, et al. Tikhonov regularization and the L-curve forlarge discrete ill-posed problems. Journal of Computational and Applied Mathematics,2000,123(1-2):423-446.
    [198] Law S S, Chan T H T, Zhu X Q, et al. Regularization in Moving Force Identification.Journal of Engineering Mechanics,2001,127(2):136-148.
    [199] Busby H R, Trujillo D M. Optimal regularization of an inverse dynamic problem.Computers&Structures,1997,63(2):243-248.
    [200] Busby H R, Trujillo D M. Inverse problems in Engineering: Theory and Practice.ASME Press, USA,1993,155-161.
    [201] Santantamarina J C, Fratta D. Introduction to Discrete Signals and Inverse Problemsin Civil Engineering. ASCE Press, USA,1998,200-238.
    [202] Bellman R. Introduction to the Mathematical Theory of Control Processes. New York:Academic Press,1967.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700