用户名: 密码: 验证码:
桥头高填路基沉降预测及台背土压力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高等级公路建设在山区的开展,不可避免地会遇到桥头高填路基问题。桥头高填路基集中了许多技术难点,包括了高填方工后沉降控制,桥头跳车问题及桥台台背土压力计算。所以桥头高填路基往往是整条高速公路修建的控制性工程。基于工程实际意义,本文主要从高填路基沉降预测和桥台台背土压力两方面,对桥台高填方路基展开了系统研究。
     首先,本文研究了高路堤沉降的变化规律,现有沉降预测方法都有各自的适应性,本文提出了高填方路堤沉降的非等时距皮尔曲线预测模型以及能考虑沉降、观测时间非等时距性、实测沉降数据的不断更新性和填土加载过程影响的高路堤灰色预测模型,并在衡枣、耒宜高速公路三个沉降观测断面进行了应用。由于沉降数据分析的工作量大,本文开发了高路堤沉降预测的可视化操作界面,并应用于工程实例检验预测的效果。本文在非线性Biot固结沉降有限元反分析程序基础上,对邓肯-张E-v和邓肯-张E-B两种非线性模型的计算参数进行了灵敏度分析,确定反演参数,然后以实际工程为例研究了参数反分析问题求解的方法。
     本文以耒宜与衡枣两条高速公路沉降观测资料和路面状况调查为依据,分析研究了不同土质、不同填方高度对高路堤沉降稳定时间、工后沉降及路面质量的影响,提出了刚性路面底基层、基层和面层施工的沉降控制取值标准。通过桥头搭板的受力分析,研究了板下脱空长度与台背工后沉降的关系,同时认为台背路基最大工后沉降允许值的取值标准为搭板最大挠曲变形量的2倍。
     台背为高填方的桥台其填料选择、施工控制和质量监测都不同于常规桥台,本文以一现场桥台土压力试验为依托,研究了桥台土压力的测试方法和试验细则,通过现场的长期测试,得到桥台台背土压力的实际大小和分布,对测试结果进行了系统分析,研究了台背土压力随填土高度的变化规律和随时间的变化规律。同时,本文针对了试验桥台及台后填土的特点建立了有限元模型,得出了桥台台背静止土压力分布和台背土压力随桥台位移的变化规律,有限元的计算结果与土压力试验结果相接近,进一步验证了试验结果的可靠性。
With the construction of highway developing in the mountains, high filling embankment behind abutment will be inevitably encountered. The construction of high filling embankment behind abutment has many difficulties in technology, which involve the control of workable settlement, the problem of bump at bridge-head and the calculation of earth pressure behind abutment. High filling embankment behind abutment is always a critical project to the construction of the whole freeway. Considering its practical meaning, from the aspects of settlement prediction and earth pressure behind abutment, high filling embankment behind abutment is systematically studied in the thesis.
    At first, the settlement variable rule of high filling embankment is studied. Existing settlement prediction methods have their own adaptability. Peal curve prediction model of unequal time span is established to predict settlement of high filling embankment. Beside this, grey prediction model is also put forward that can consider the unequal span of observing time, the continuous renew of the settlement data and the influence of the loading of filling. The two methods are both applied in the settlement prediction of three section of Hengyang-Zaomupu freeway and Leiyang-Yizhang freeway. Because settlement data analysis needs too much time, video operating interface for settlement prediction of high filling embankment is developed. The interface is applied in the settlement prediction of practical project to prove its reliability. Based on finite element back-analysis procedure of Biot nonlinearity consolidation settlement, the sensitivity of the calculation parameters of E-v model and E-B model is analyzed. The solution of the problem of back-analysis is studied through practical projects.
    Based on settlement observation data and pavement condition survey of Leiyang-Yizhang freeway and Hengyang-Zaomupu freeway, the influence of different soils and different fill height on settlement stability time, workable settlement and pavement quality of high embankment is analyzed. Furthermore value standard for settlement control of construction of rigid pavement sub-base, base course and surface course is proposed. Through the mechanic analysis of approach slab, the relation of the length of void beneath slab and workable settlement is studied. At the same time, it deduce that allowable value standard of workable settlement is two times of
引文
[1] 交通部第二公路勘察设计院.路基.第二版.北京:人民交通出版社,1996.
    [2] Chang B P. One Dimension Consolidation of Soft under Consolidation Loading. In: Proc of Int. Confon Soft Soil Engineering. Guangzhou: Science Press, 1993.
    [3] Berry P L, Wilkinson W B. The Radial Consolidation of Clay Soil. Geotechnique,1969, 19(2): 253~284.
    [4] Mesri G, Choi Y K. Settlement Analysis of Embankments on Soft Clays. Journal of Geotechnical Engineering, 1985, 111(4): 441~464.
    [5] Brand E W, Brenner R P. Soft Clay Engineering. Amsterdam: Elsevier Scientific Publishing Company, 1981.
    [6] Skempton A W, Bjerum L. A Contribution to the Settlement Analysis of Foundations on Clay. Geotechnique, 1957, 7(4): 168.
    [7] Lamble T W. Stress Path Method. In: Proc ofASCE, SM6, 1967.
    [8] Yalcin B A, Mehmet T. T. FEM Analysis of Elastic Stress Distributions in Embankments. Journal of Geotechnical Engineering, 1988, 114(6): 711~717.
    [9] Loganathan N. Deformation Analysis of Embankments. Journal of Geotechnical Engineering, 1993, 119(6): 1185~1206.
    [10] Walter R B. Nonlinear Finite Element Analysis of Heavily Loaded Airfield Pavement System. In: Applications of The Element Method in Geotechnical Engineering. New York: Elsevier, 1972.
    [11] 王剑平.软土路基固结变形的有限元分析.高速公路软基处理.北京:中国建筑工业出版社,1997.
    [12] Schiffman R L, Cargill K W. Finite Consolidation of Sediment Clay Deposits. In: Proc of 10th Int Conf on Soil Mechanics and Foundation Engineering, 1981.
    [13] 蒋明镜,沈珠江.饱和软土的弹塑性大变形有限元平面固结分析.河海大学学报,1998, 26(1):73~77.
    [14] Rowe R K, Gnanendran C T, Landva A O. et al. Calculated and Observed Behaviors of a Reinforced Embankment Over Soft Compressible Soil. Canadian Geotechnical Journal, 1996, 32(2): 324~338.
    [15] 张卫东,徐学燕,张有闻.变荷载下多层地基—维固结沉降.计算低温建筑技术,2001, (4):46~48.
    [16] Barden L, Berry P L. Consolidation of Normally Consolidated Clay. Journal of The Soil Mechanics and Foundation Derision. ASCE, 1965, 91(SM5): 15~35.
    [17] Mesri G, Rokhsar A. Theory of Consolidation for Clays. Journal of The Soil Mechanics and Foundation Division. ASCE, 1974, GT8: 889~903.
    [18] 徐跃.利用沉降观测值推求最终沉降量和固结系数的方法.公路,1994,2:23~27.
    [19] Narasimha R, Kodandaramaswamy K. Method to Predict Ultimate Compression in Clays. Journal of Geotechnical Engineering, 1982, 108 (GT2).
    [20] 宰金珉,梅国雄.全过程的沉降量预测方法研究.岩土力学,2000,21(4): 322~325.
    [21] 吴世明.大型地基基础工程技术.杭州:浙江大学出版社,1997.
    [22] 张仪萍,张土乔,龚晓南.沉降的灰色预测.工业建筑,1999,29(4):45~48,57.
    [23] 付宏渊.高路堤沉降稳定的影响因素及取值标准研究.公路交通科技,2003,11:20~22.
    [24] 付宏渊.桥头台背路基工后沉降取值标准的研究.湖南交通科技,2003,29(4):76~78.
    [25] Dennes T B, Casan L S, Balasubramaniam A S. Inverse Analysis of Geotechnical Parameters on Improved Soft Bangkok Clay. Journal of Geotechnical Engineering, 1992, 118(7): 1012~1029.
    [26] Arai K, Ohta H, Kojima K, et al. Application of Back-Analysis to Several Test Embankments on Soft Clay Deposits. Soil and Foundation, 1986, 26(2): 60~72.
    [27] 李德春.生长曲线在土坝沉陷分析中的应用.大坝观测与土工测试,1991,15(2):28~30.
    [28] 傅立.灰色系统理论及应用.北京:科学技术文献出版社,1992.
    [29] 程卫国,冯峰,王雪梅等.MATLAB5.3精要、编程及高级应用.北京:机械工业出版社, 2000.
    [30] 岩土工程勘察规范(GB50021—2001).北京:中国建筑工业出版社,2002.2
    [31] 曾国熙.砂井地基沉陷分析.浙江大学学报,1959,(1):58~59.
    [32] 曾国熙.地基处理手册.北京:中国建筑工业出版社,1998.
    [33] 中华人民共和国行业标准.建筑地基处理技术规范(JGJ79-91).北京:中国计划出版社, 1998.
    [34] 王志仁.京珠高速公路广珠段工程组织管理、道桥工程、软基处理.北京:人民交通出版社,2000.
    [35] Tan T S & Lee S L. Hyperbolic Method for Consolidation Analysis of Geotechnical Engineering, ASCE, 117(11): 1723~1737.
    [36] TAN S A. Validation of Hyperbolic Method for Settlement in Clays with Vertical Drain. Soil and Foundation.1995, 35(1): 101~113.
    [37] 魏汝龙.从实测沉降推算固结系数.岩土工程学报,1993(2):15~21.
    [38] 杨光华.基础非线性沉降变形计算的双曲线模型法.地基处理,1997, 8(1).
    [39] 王茂和.用二次多项式拟合曲线推算最终沉降量.华东公路,1999,6:46~49.
    [40] 冯文凯,刘汉超.双曲线法在路基沉降变形初期阶段的应用探讨.地质灾害与环境保护, 2001,012(003):60~63.
    [41] 邵光辉.复合双曲线法推算公路沉降探讨.林业建设,2001(6):30~33.
    [42] Hong-Yuan Fu. A Method of Traffic Variable Estimation Based on Neuro-Fuzzy on Urban Road. Proceedings of 2003 International Conference on Machine Learning and Cybernetics. Volume 1 of 5: 530~534.
    [43] 宰金珉,梅国雄.泊松曲线的特征及其在沉降推算中的应用.重庆建筑大学学报,2001, 23(1):30~35.
    [44] Asaoka.A Observational Procedure of Settlement of Predication.Soils and Foundations, 1978,18(4):87~101.
    [45] 宰金珉,梅国雄.成长曲线在地基沉降预测中应用.南京建筑工程学院学报,2000(2): 8~13.
    [46] 许永明,徐泽中.一种推算路基上后沉降量的方法.河海大学学报,2000,28(5):111~113.
    [47] 谢春庆,刘汉超,甘厚义.高填方块碎石夯实地基变形的研究.岩土工程学报,2000,24(1): 38~41.
    [48] 邓聚龙.灰色控制系统.武汉:华中理工大学出版社,1988:343~347.
    [49] 朱华吉,马少娟.非等时空距GM(1,1)模型在建筑沉降预测中的应用.测绘工程,2001, 10(4):39-41.
    [50] 李宏建.隧道变形推算的灰色Verhulst模型.石家庄铁道学院学报,2000,4:35~38.
    [51] 郭广猛.用GM(1,1)模型和Verhulst模型进行建筑物沉降推算岩土工二程界,2000,10: 71~74.
    [52] 徐新跃,方德胜.灰色Verhulst模型推算软土地基建筑物的沉降.地下空间, 2001,01: 18~23.
    [53] 罗战友,龚晓南,杨晓军.全过程沉降量的灰色verhulst推算方法.水利学报,2003,03: 32~36.
    [54] 陈尚勇.利用R.usher模型估算软土地基最终沉降量.公路交通科技,2003,10:56~58.
    [55] 张仪萍等.沉降推算中的灰色模型理论与Asaoka法.系统工程理论与实践.2002,(9):18~24
    [56] McCulloch. W. S, Pitts. W. A Logical Calculus of The Ideas Immanent in Nervous Activity. Bull Math. Biophysics, 1943, Vol.5: 115~133.
    [57] Hebb. D. O. The Organization of Behavior. Wiley, 1949.
    [58] R. Hecht-Nielsen. Counter Propagation Networks. Applied Options, 1987, (26): 4979~4984.
    [59] 张玉祥.岩土工程时间序列预报问题初探.岩土力学与工程学报,1998,17(5):522~558.
    [60] 张慧梅,李云鹏等.人工神经网络在软土路基沉降推算中的应用.长安大学学报,2002, (4):20~23.
    [61] 许永明,徐泽中.一种推算路基工后沉降量的方法.河海大学学报,2000,28(5):111~113.
    [62] Holland. L.H, Adaptation in Natural and Artificial System. Ann Arbor, MI: University of Michigan Press, 1975.
    [63] Karanagh K, Clough R W. Finite Element Application in The Characterization of Elastic Solids. Int. J. Solids Structures, 1971, 7: 11~13.
    [64] Sakurai S. Determination of Initial and Mechanical Properties of Viscoelastic Underground Medium. Proc, 3rd ISRM Cong, Denver 1-13 1974: 1169~1174.
    [65] Sakurai S.A.A Design Approach to Dimensioning Underground Openings.3rd International Conference in 1979, Numerical Methods in Geomechancis, Aachen, 649~661.
    [66] 龚晓南.确定地基固结过程中材料参数的反分析法.应用力学学报,1991(6):131~133.
    [67] 黄宏伟.岩土工程中位移量测的随机逆反分析.岩土工程学报,1995(3):36~41.
    [68] 钱家欢,殷宗泽.土工原理与计算.第二版.北京:中国水利水电出版社,1996.
    [69] 陈国荣,姜弘道,高谦.高速公路路基性态反分析及沉降预报.工程地质学报,1998,6(4): 340~343.
    [70] 章光等.参数敏感性分析与试验方案优化.岩土力学,1993,14(1):51~57.
    [71] 郭志川,余登飞.地基沉降的随机有限元法和可靠度计算.土木工程学报,2001,034(005): 62~67.
    [72] 陈宝林.最优化原理与算法.北京:清华大学出版社,1989.
    [73] 顾念慈.挡土墙土压力计算手册.北京:中国建材工业出版社,2005.
    [74] 陈页开.挡土墙上土压力的试验研究与数值分析。浙江大学博士论文.2001.6
    [75] 公路桥涵设计通用规范(JTG D60-2004) 北京:人民交通出版社,2004.6
    [76] 付宏渊.基于ANSYS的桥台土压力有限元分析.中外公路,2003,3:55~58.
    [77] 杨雪墙等.地震作用下挡土墙上的主动土压力.湖北工学院学报,1998(9):47~48.
    [78] 冷伍明,魏丽敏,华祖焜.无粘结预应力筏板基础地基反力测试研究.岩土工程学报,2000, 22(4):456~460.
    [79] Seed H B, Lysmer J, Hwang R. Soil-Structure Interaction Analyses for Seismic Response. ASCE, 1975, 101 (GT5): 439~457.
    [80] Desai C S, Zaman M M. Thin-Layer Element for Interfaces and Joints, International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8(1): 19~25.
    [81] 龚晓南.高等土力学.杭州:浙江大学出版社,1996:150~235.
    [82] 夏才初等.地下工程测试理论与监测技术.上海:同济大学出版社,2002.
    [83] 蒋纯秋.挡土墙土压力非线性分布解.土木工程学报,1964,(1):56~65.
    [84] 张启岳,熊国文.鲁布革坝的原型观测(一).水利水运科学研究,1994,9.
    [85] 张启岳,熊国文.鲁布革坝的原型观测(二).水利水运科学研究,1994,12.
    [86] 刘宝有.土压力传感器的标定方法.传感器技术,1990,3:46~49.
    [87] 王元战,王海龙,张文忠.挡土墙土压力分布.中国港湾建设,2000,8:17~21.
    [88] 任重.ANSYS实用分析教程.北京:北京大学出版社,2003.
    [89] 王渭漳,吴亚忠.墙背土压力分布计算的新理论公式及试验验证.湖南交通科技,1995,6: 35~40.
    [90] 罗克奇.土压力传感器埋设净距问题的探讨.长沙铁道学院学报.1996,6:48~51.
    [91] 罗鑫,王桂尧.高路堤沉降分析的灰色预测.长沙交通学院学报,2002,18(4):77~79.
    [92] 严履,郑培成.软基上修建高速公路的施工动态控制.大坝观测与土工测试,1998,22(2): 26~28.
    [93] JTJ017-96,公路软土地基路堤设计与施工技术规范.北京:人民交通出版社,2004.
    [94] 王淑波,赖国麟.斜交桥头搭板受力分析.中国公路学报,1996,9(3):47~61.
    [95] Vesic A S. Expansion of Cavities in Infinite Soil Mass. Proc. Soil Mechanics and Found, ASCE, 1972, 98: 265~267.
    [96] Mogi K. Failure and Flow of Rocks under High Triaxial Compression. J. Geophys Res, 1971, 76: 1255~1269.
    [97] 周小平,黄煜镔.考虑中间主应力的太沙基地基承载力计算公式.岩土力学与工程学报(岩土工程学报),2002,21(10):1554~1556.
    [98] 杨敏.基于变形控制原则的减少沉降基础研究.岩土工程学报,2000,22(4):481~486.
    [99] 杨雪强,何世秀,庄心善.用极限分析法研究饱和地基承载力三维问题.岩土力学,1999, 3:41~45.
    [100] 肖世国.膨胀士堑坡稳定性分析.岩土力学,2001,2:152~155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700