用户名: 密码: 验证码:
新型外包钢—混凝土组合连续梁及梁柱节点的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外包钢-混凝土组合梁是在钢-混凝土组合梁的基础上发展起来的一种新型组合梁,具有用钢量省、稳定性好、刚度大、承载力高等优点,对其进行研究具有重要的理论意义和实用价值。本文通过模型试验和理论分析对外包钢-混凝土组合连续梁以及外包钢-混凝土组合梁与柱连接节点的受力性能进行了研究。完成的主要工作和取得的成果包括:
     (1)对两根外包钢-混凝土组合简支梁和两根外包钢-混凝土组合连续梁进行了静力试验研究。试验表明,外包钢-混凝土组合梁负弯矩区钢筋和外包钢梁通过抗剪连接措施能有效地共同工作;U形钢梁截面内混凝土的填充,使外包钢梁的整体和局部稳定性增强,在承载能力极限状态,负弯矩及正弯矩最大截面的塑性应变均充分发展,并形成比较理想的塑性铰。
     (2)对负弯矩作用下外包钢-混凝土组合梁的极限受弯承载力、极限受剪承载力、弯剪相关性以及组合梁混凝土翼板与腹板交界面处的纵向受剪切等性能进行了理论分析并提出了相应的计算方法,计算结果和试验结果吻合良好;对连续组合梁的内力重分布现象和中支座的弯矩调幅系数进行了探讨。
     (3)对负弯矩作用下外包钢-混凝土组合梁混凝土翼缘板的开裂弯矩、裂缝最大宽度和挠度进行了分析,提出的计算方法能较好地反映外包钢-混凝土连续组合梁在正常使用状态下的变形性能。
     (4)对四个外包钢-混凝土组合梁与钢筋混凝土柱的连接节点和四个外包钢-混凝土组合梁与型钢混凝土柱的连接节点进行了低周反复荷载试验研究。试验表明,通过合理的构造措施,外包钢-混凝土组合梁与钢筋混凝土柱、型钢混凝土柱的连接节点具有较强的受剪承载力、较好的延性和耗能能力,能够满足工程要求。
     (5)对节点的受力机理进行了探讨,提出了节点核心区受剪承载力的计算公式,并对节点的构造形式和构造措施给出了设计建议。
The outer-plated steel-concrete composite beam is a new type of composite beam, which evolved from the steel-concrete composite beam, and possesses favorable long-term potential by having the merits of steel-saving, good stability, large stiffness and high load-bearing capacity. The study on the outer-plated steel-concrete composite beam is therefore important in both theory and application. Based on the model test and theoretical analysis, this research investigates the load-bearing performance of both the outer-plated steel-concrete continuous composite beam and the joint connecting beam and column. The accomplished primary works and obtained achievements include:
     (1) The static load tests were conducted for two simply supported outer-plated steel-concrete composite beams and two outer-plated steel-concrete continuous composite beams. Test results indicate that effective cooperation can be achieved by the shear-resistant connection between the reinforcement in the negative moment area and the outer-plated steel beam. The concrete filling inside the cross section of U-shaped steel beam enhances the entire and local stability of the outer-plated steel beam. In the load-bearing limiting state, the plastic strain on sections of both the negative maximum moment and the positive one develops fully so that relatively ideal plastic hinges are formed.
     (2) Theoretical analyses are made and also the corresponding computation methods are proposed for the ultimate bending capacity, ultimate shearing capacity and correlation between bending and shearing of outer-plated steel-concrete composite beam, as well as the longitudinal shear-resistant performance on the interface between flange plate and web plate. The computational solutions correlate well with test results. The redistribution of internal force and the moment modulation factor of inner supports are studied for the continuous composite beam.
     (3) The cracking moment of concrete flange, the maximum crack width and deflection are analyzed for the outer-plated steel-concrete composite beam under the action of negative bending moment. The suggested method of calculation provides a good imitation of deformation performance for the outer-plated steel-concrete continuous composite beam in normal service state.
     (4) The low-cycle repeated load tests were conducted for four joints connecting the outer-plated steel-concrete composite beam and reinforced concrete column, and another four joints connecting the outer-plated steel-concrete composite beam and shaped-steel concrete column. Tests indicate that significant shear-resistant capacity and satisfying ductility and energy dissipation ability can be obtained by appropriate constructional measure so as to satisfy the engineering requirement.
     (5) The force mechanism of joint is investigated and the formula for calculating the shear capacity of core area of joint is presented. Some design suggestions are also given for the constructional form and measure of joint.
引文
[1] 周起敬,姜维山,潘泰华.钢与混凝土组合结构设计施工手册[M].北京:中国建筑工业出版社,1991
    [2] 劳埃.扬.张培信译.钢-混凝土组合结构设计[M].上海:同济大学出版社,1991
    [3] 叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述[J].土木工程学报,2002,33(5):1-12
    [4] 蔡绍怀.我国钢管混凝土结构技术的最新进展[J].土木工程学报,1999,32(4):16-26
    [5] Morino S. Recent developments in hybrid structures in Japan – research, design and construction. Engineering structures,1998,20(4-6):336-346
    [6] Brozzetti J. Design development of steel-concrete composite bridges in France. J. constructional steel research,2000,55(1):229-243
    [7] 朱聘儒.钢-混凝土组合梁设计原理.北京:中国建筑工业出版社,1989
    [8] 聂建国,余志武. 钢-混凝土组合梁在我国的研究及应用[J].土木工程学报,1999,32(2):3-8
    [9] 赵鸿铁. 钢与混凝土组合结构[M]. 北京:科学出版社,2001
    [10] 聂建国,沈聚敏,袁彦声,等.钢-混凝土组合梁中剪力连接件实际承载力的研究[J].建筑结构学报,1996,17(2):21-28
    [11] 聂建国,王洪全.钢-混凝土组合梁纵向抗剪的试验研究[J]。建筑结构学报,1997,18(2):13-19
    [12] 聂建国,沈聚敏,袁彦声.钢-混凝土简支组合梁变形计算的一般公式[J].工程力学,1994,11(1):21-27
    [13] 聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995,28(6):11-17
    [14] 李勇,聂建国,陈宜言,等.深圳彩虹大桥设计与研究[J].土木工程学报,2002,35(10):52-56
    [15] 聂建国,王寒冰,任明星,等.钢-混凝土叠合板组合梁在苇沟桥改造加固中的应用[J].建筑结构,2001,31(12):24-26
    [16] JTJ025-86.公路桥涵钢结构及木结构设计规范[S].北京:人民交通出版社,1988
    [17] GB50017-2003.钢结构设计规范[S].北京:中国计划出版社,2003
    [18] DL/T 5085-1999.钢-混凝土组合结构设计规程[S].北京:中国电力出版社,1999
    [19] EC4.Eurocode No4:Design of composite steel and concrete structures. European committee for standardization[S], 3rd Draft, prEN 1994-1-1:2001
    [20] 胡夏闽.欧洲规范 4 钢-混凝土组合梁设计方法(1)-设计基础和材料性能[J].工业建筑,1995,25(9):53-57
    [21] 胡夏闽.欧洲规范 4 钢-混凝土组合梁设计方法(2)-组合梁的受力性能和计算理论[J].工业建筑,1995,25(10):47-52
    [22] 胡夏闽.欧洲规范 4 钢-混凝土组合梁设计方法(3)-组合梁的内力分析[J].工业建筑,1995,25(11):55-59
    [23] 胡夏闽.欧洲规范 4 钢-混凝土组合梁设计方法(4)-组合梁的受弯承载力[J].工业建筑,1995,25(12):42-49
    [24] 胡夏闽.欧洲规范 4 钢-混凝土组合梁设计方法(5)-组合梁的竖向受剪承载力和侧向扭转屈曲[J].工业建筑,1996,26(1):39-44
    [25] 胡夏闽 . 欧洲规范 4 钢-混凝土组合梁设计方 法 (6) - 剪 力 连接 件 [J]. 工业建筑,1996,26(2):50-55
    [26] 胡夏闽.欧洲规范 4 钢-混凝土组合梁设计方法(7)-梁中剪力连接设计[J].工业建筑,1996,26(3):46-51
    [27] 胡夏闽.欧洲规范 4 钢-混凝土组合梁设计方法(8)-组合梁混凝土板的纵向受剪承载力[J].工业建筑,1996,26(4):50-53
    [28] 胡夏闽.欧洲规范 4 钢-混凝土组合梁设计方法(9)-组合梁的挠度和裂缝控制[J].工业建筑,1996,26(5):47-50
    [29] Kemp A.R.,Dekker N.W. Available rotation capacity in steel and composite beams.The Structural engineer,1991,69(5):88-97
    [30] Kemp A.R.,Nethercot D.A. Required and available rotation capacity in continuous composite beams with semi-rigid connections. J. constructional steel research, 2001, 57(4): 375-400
    [31] Barnard P.R.,Johnson R.P. Plastic behavior of continuous composite beams. Proc. Instn Civ. Engrs,part2,1965,32(10):180-197
    [32] 滕志明,朱金铨.混凝土结构及砌体结构[M].北京:中国建筑工业出版社,2003
    [33] Fabbrocino G., Manfredi G., Cosenza E. Ductility of composite beams under negative bending: An equivalence index for reinforcing steel classification. J. constructional steel research, 2001, 57(2):185-202
    [34] Hoffmeister B., Sedlacek G. Plastic hinge theory for composite floors and frames. Composite construction in steel and concrete Ⅲ,New York, ASCE,1996:887-897
    [35] Start J.W.B,Van Hove B.W.E.M, The midspan deflection of composite steel-concrete beams under static loading at serviceability state. TNO-report.BI-TO-33,1990
    [36] Plum D.R.,Horne M.R. The analysis of continuous composite beams with partial interaction. Proc.Instn Civ.Engrs.,part2,1975,59:625-643
    [37] Jasim N.A.,Atalla A. Deflections of partially composite continuous beams: A simple approach. J.constructional steel research,1999,49:291-301
    [38] Jasim N.A. Computation of deflections for continuous composite beams with partial interaction. Proc.Instn Civ.Engrs Structs&Bldgs,1997,122(8):347-354
    [39] Kristek V.,Studnicka J. Analysis of composite girders with deformable connectors. Proc. Instn Civ. Engrs,part2,1982,73:699-712
    [40] Girhammar U.A., Gopu V.K.A. Composite beam-columns with interlayer slip-exert analysis. J.Struct.Engrg.,ASCE,1993,119(4):1265-1282
    [41] Roberts T.M. Finite difference analysis of composite beams with partial interaction. Comp.And Struct.,1985,21(3):469-473
    [42] Wright H.D. The deformation of composite beams with discrete flexible connection.J.constructional steel research,1990,15:49-64
    [43] Johnson R.P., May I.M. Partial-interaction design of composite beams. The Journal of the Institution of Structural Engineers,1975,53(8):305-311
    [44] Hamada S., Longworth J. Ultimate strength of continuous composite beams. J.structural division,1976,102(7):1463-1478
    [45] Kemp A.R.,Dekker N.W., Trinchero P. Differences in inelastic properties of steel and composite beams. J.constructional steel research,1995,34(2-3):187-206
    [46] Mallick S.K., Chattopadhyay S.K. Ultimate strength of continuous composite beams. Building Science,1975,10(3):189-198
    [47] Dekker N.W., Kemp A.R., Trinchero P. Factors influencing the strength of continuous composite beams in negative bending. J.constructional steel research,1995,34(2-3):161-185
    [48] Hope-Gill M.C.,Johnson R.P. Tests on three three-span continuous composite beams. Proc. Instn Civ.Engrs,Part2,1976,61(6):367-381
    [49] Johnson R.P.,Willmington R.T. Vertical shear in continuous composite beams. Proc.Instn Civ.Engrs,Part2,1972,53(9):189-205
    [50] Porter D.M., Cherif Z.E.A. Ultimate shear strength of thin webbed steel and concrete composite girders. Proceedings of the international conference on steel and aluminum structure,UK,1987:55-64
    [51] Oehlers D.J.,Nguyen N.T.,Ahmed M.,etc. Partial interaction in composite steel and concrete beams with full shear connection. J.constructional steel research,1997,41(2/3): 235-248
    [52] Manfredi G., Fabbrocino G.,Cosenza E. Modeling of steel-concrete composite beams under negative bending. J.engineering mechanics,1999,125(6):654-662
    [53] Fabbrocino G., Manfredi G.,Cosenza E. Analysis of continuous composite beams including partial interaction and bond. J.Struct.Enrg.,ASCE,2000,126(12):1288-1294
    [54] Fabbrocino G., Manfredi G.,Cosenza E. Ductility of composite beams under negative bending: an equivalence index for reinforcing steel classification. J.constructional steel research,2001,57:185-202
    [55] Bradford M.A. Inelastic buckling of I-beams with continuous elastic tension flange restraint. J.constructional steel research,1997,48:63-77
    [56] Wieland R., Stephan E. Behaviour and cracking of slabs as part of composite beams in regions with negative bending moments. Proceedings of the Engineering Foundation Conference.1996-1997(6):871-886
    [57] Johnson R.P.,Allison R.W. Cracking in concrete tension flanges of composite T-beams. Structural engineer,1983,61(3):9-16
    [58] 朱聘儒,高向东,吴振声.钢-砼连续组合梁塑性铰特性及内力重分布研究[J].建筑结构学报,1990,11(6):26-37
    [59] 樊健生,聂建国,叶清华,等.钢-压型钢板混凝土连续组合梁调幅系数的试验研究[J].建筑结构学报,2001,22(2):57-60
    [60] 聂建国.钢-混凝土组合梁长期变形的计算分析[J]. 建筑结构,1997,27(1):42-45
    [61] 樊健生,聂建国,王寒冰,等.压型钢板组合梁在负弯矩作用下的抗弯承载力分析[J].建筑结构,2001,31(7):27-30
    [62] 王 庆利 , 刘之洋 ,李 玉坤 ,等 . 连续 组合梁的 塑 性性能研究[J]. 沈阳 建筑工程学院 学报,1998,14(3):278-281
    [63] 吴振声,李勇,高向东.组合梁负弯矩区截面抗剪强度试验研究[J].哈尔滨建筑工程学院学报,1993,26(1):16-21
    [64] 国 超 明 , 吴振 声 , 朱聘儒 . 钢-混凝土组合梁在我国的研究与 应用 [J]. 工业建筑,1992,22(2):10-14
    [65] 回国臣,吴献.钢-混凝土组合梁抗剪承载力计算[J].有色矿冶,2001,17(4):36-38
    [66] GBJ17-88.钢结构设计规范[S].北京:中国计划出版社,1989
    [67] 聂建国,樊健生.组合梁在负弯矩作用下的刚度分析[J].工程力学,2002,19(4):33-36
    [68] 聂建国,等.以混凝土叠合板为翼缘的连续钢-混凝土组合梁[J].工业建筑,1992,22(2):10-14
    [69] 陈世鸣.钢-混凝土连续组合梁负弯矩区的局部失稳[J].建筑结构学报,1995,16(6):30-37
    [70] 陈世鸣.钢-混凝土连续组合梁的稳定[J].工业建筑,2002,32(9):1-4
    [71] 朱聘儒,等.钢-混凝土组合梁协调工作的分析与试验[J].建筑结构学报,1987,8(5).
    [72] 吴振声,陈洪水,高向东,等.钢-混凝土组合梁负弯矩区混凝土板裂缝试验研究[J].哈尔滨建筑工程学院学报,1993,26(1):58-62
    [73] 聂建国 , 张 眉河 . 钢-混凝土组合梁 负 弯 矩区 板 裂缝 的研究 [J]. 清 华大学学报,1997,37(6):95-99
    [74] 聂建国,樊健生,王挺.钢-压型钢板混凝土组合梁裂缝的试验研究[J].土木工程学报,2002,35(1):15-20
    [75] GB50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002
    [76] 王娴明. 建筑结构试验[M]. 北京:清华大学出版社,1988
    [77] 姚振钢,刘祖华.建筑结构试验[M].上海:同济大学出版社,1996
    [78] Charles G.Salman,John E.Johnson. Steel structures, design and behavior. Hopper & Row, Publishers, New York,1980.
    [79] 聂建国,王洪全.钢-混凝土组合梁纵向抗剪的试验研究[J].建筑结构学报,1997,18(2):13-19
    [80] 回国臣,吴献.钢-混凝土组合连续梁混凝土翼板纵向开裂问题的研究[J].建筑技术开发,2001,28(8):10-11
    [81] D.J.Oehlers. The splitting strength of concrete prism subjected to surface strip or path loads, Magazine of Concrete Research, Sept. 1981.
    [82] R. P. Johnson. Analysis and design for longitudinal shear in composite T-beam, Proc. I.C.E, part 2, Dec.1981.
    [83] JGJ99-98.高层民用建筑钢结构技术规程[S].北京: 中国建筑工业出版社,1998
    [84] 龙驭球,包世华.结构力学教程[M].北京:高等教育出版社,1988
    [85] JGJ138-2001.型钢混凝土组合结构技术规程[S].北京:中国建筑工业出版社,2002
    [86] 赵国藩,李树瑶,廖婉卿,等. 钢筋混凝土结构的裂缝控制[M].北京:海洋出版社,1991
    [87] 赵国藩,廖婉卿,王健. 部分预应力混凝土及钢筋混凝土构件的裂缝控制[J].土木工程学报,1982,15(4)
    [88] 王传志,藤志明.钢筋混凝土结构理论[M]. 北京:中国建筑工业出版社,1985
    [89] 钢筋混凝土板的裂缝和变形专题组.钢筋混凝土板的裂缝和变形性能[A].混凝土研究报告选集(3)[C].北京:中国建筑工业出版社,1994:102-112
    [90] JGJ101-96.建筑抗震试验方法规程[S]. 北京: 中国建筑工业出版社,1997
    [91] 唐九如. 钢筋混凝土框架节点抗震[M]. 南京:东南大学出版社.1989
    [92] 梁柱节点专题组.劲性钢筋混凝土梁柱节点性能及受剪承载力[A].混凝土研究报告选集(3)[C].北京:中国建筑工业出版社,1994:502-518
    [93] 徐云扉,胡庆昌,陈玉峰等.低周反复荷载下两跨三层钢筋混凝土框架受力性能的试验研究[J].建筑结构学报,1986,7(2):1-15
    [94]T.Paulay, R.Park, M.J.N.Priestley. Reinforced concrete beam-column joints under seismic actions. ACI Journal, Proceeding 1978,75(11):585-593
    [95]傅剑平,游渊,白绍良.钢筋混凝土抗震节点传力机构分析[J].重庆建筑大学学报,1996(6):43-52
    [96]框架顶层端节点专题组.钢筋混凝土框架顶层端节点的静力及抗震性能研究[J].混凝土研究报告选集(3)[M].北京:中国建筑工业出版社,1994:184-216
    [97] 吕西林 , 郭子雄 , 王 亚 勇 .RC 框架 梁 柱 组合 体 抗 震 性能 试验 研究 [J]. 建筑结构学报,2001,22(1):2-7
    [98]框架节点专题研究组.低周反复荷载作用下钢筋混凝土框架梁柱节点核心区抗剪强度的试验研究[J].建筑结构学报,1983,4(6):1-17
    [99]钟益村,任富栋,田家骅.二层二跨钢筋混凝土框架弹塑性性能试验研究[J].建筑结构学报,1981,2(3):34-41
    [100] T.鲍雷,M.J.N.普里斯特利著,戴瑞同等译. 钢筋混凝土和砌体结构的抗震设计[M]. 北京:中国建筑工业出版社,1999
    [101] Thomas Paulay. Equilibrium criteria for reinforced concrete beam-column joints. ACI Structural Journal,1989(11-12):635-643
    [102] 王连广,刘之洋. 型钢混凝土结构在国内外应用和研究的进展[J].东北大学学报,1995,16(3):238-242
    [103] 高立人. 钢梁-混凝土柱组合框架结构在国外的发展[J].建筑结构,2002,32(5):34-37
    [104] 申红侠,顾强.钢梁-钢筋混凝土柱节点的研究及应用现状[J].建筑钢结构进展,2004,6(2):33-36
    [105]T.M.Shiekh, G.G.Deierlein, J.A.Yura,etal.Beam-column moment connection for composite frames:Part 1. Journal of Structural Engineering,1989,115(11):2858-2876
    [106] G.G.Deierlein,T.M.Shiekh, J.A.Yura,etal.Beam-column moment connection for composite frames:Part 2. Journal of Structural Engineering,1989,115(11):2877-2896
    [107]ASCE Guidelines. Guidelines for design of joints between steel beams and reinforced concrete columns. Journal of Structural Engineering,1994,120(8):2330-2357
    [108] G.J.Parra-Montesinos,J.K.Weight. Seismic response of exterior RC column-to-steel beam connections. Journal of Structural Engineering,2000,126(10):1113-1121
    [109]G.J. Parra-Montesinos,J.K.Weight. Modeling shear behavior of hybrid RCS beam-column connections. Journal of Structural Engineering,2001,127(1)
    [110] G.J. Parra-Montesinos,X.Liang,J.K.Weight.Towards deformation-based capacity design of RCS beam-column connection. Engineering Structures,2003,25:681-690
    [111] 杨建江,郝志军. 钢梁-钢筋混凝土柱节点在低周反复荷载作用下受力性能的试验研究[J]. 建筑结构,2001,31(7):35-42
    [112] 陈忠汉.钢-混凝土组合结构的试验研究[J]. 苏州城建环保学院学报,1995,8(1):1-10
    [113] 唐九如 , 陈 雪 红 . 劲 性混凝土梁 柱节点 受力性能与 抗剪 强 度 [J]. 建筑结构学报,1990,11(4):28-36
    [114] 赵鸿铁,潘泰华,姜维山,等.型钢混凝土构件的强度计算[J].建筑结构学报,1991,12(5):12-25
    [115] 张誉,李向民,等. 钢骨高强混凝土梁柱十字节点抗剪性能的研究[J]. 建筑结构,1999,29(7)
    [116] 胡庆昌,等.低周反复荷载钢筋混凝土框架梁柱节点核心区的受力性能[J]. 建筑结构,1982,12(4)
    [117] 姜维山,等. 型钢混凝土框架内节点性能分析[J].西安冶金建筑学院学报,1986(12)
    [118] 陈雪红.劲性钢筋混凝土框架边节点性能的研究[D].硕士学位论文,东南大学,1989
    [119] 陈林. 钢-混凝土组合梁与钢筋混凝土柱节点设计方法的试验研究[D].硕士学位论文,东南大学,2003
    [120] JGJ138-2001.型钢混凝土组合结构技术规程[S].北京:中国建筑工业出版社,2002
    [121] 日本建筑学会编. 冯乃谦,叶列平译. 钢骨钢筋混凝土结构设计规范及其说明[M].北京:能源出版社,1997
    [122] YB9082-97. 钢骨混凝土结构设计规程[S]. 北京:冶金工业出版社,1998
    [123] 陈丽华,李爱群,赵玲. 型钢混凝土梁柱节点的研究现状[J]. 工业建筑,2005,35(1):56-58
    [124] 钱冬江,蒋永生,梁书亭,等.正交钢骨混凝土节点抗震性能的试验研究[J].江苏建筑,2002(1):10-12
    [125] 钱冬江.钢骨混凝土节点抗震性能的试验研究[D].硕士学位论文,东南大学,2003
    [126] 程文瀼,高仲学,苏毅,等. 钢骨混凝土柱框架节点的试验研究[J].建筑结构学报,2002,23(2)
    [127] 林拥军. 配有圆钢管的钢骨混凝土柱试验研究[D].博士学位论文,东南大学,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700