用户名: 密码: 验证码:
FOXO1转录因子在胰岛β细胞中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2型糖尿病(T2DM)是一种严重危害人类健康的代谢性疾病,胰岛素抵抗和胰岛β细胞功能受损是T2DM发病的中心环节[1]。胰岛β细胞是机体胰岛素的唯一内分泌细胞,其数量、体积及功能状态决定了胰岛素的分泌水平,对维持血糖恒定起重要作用[1]。胰岛β细胞数量的维持主要取决于β细胞新生、增殖、肥大及凋亡之间的动态平衡。T2DM患者,β细胞数量显著低于非糖尿病者,最终导致胰岛素分泌量不足,其机体能量代谢障碍,但其发生机制尚未完全阐明[2-5]。
     FOXO1是调节细胞氧化应激反应及增殖、凋亡的重要转录因子,广泛表达于糖、脂代谢的重要器官,如肝脏、脂肪和骨骼肌等[6-7]。最近研究显示FOXO1亦表达在成人胰岛中,Guerra等[8]从13例人的组织标本中报道,2型糖尿病人的胰岛中FOXO1的mRNA表达量显著高于非糖尿病对照组,提示高表达FOXO1可能造成β细胞功能损伤。然而,对FOXO1在成熟β细胞中的作用尚不清楚。为此,本研究采用免疫组化方法结合激光共聚焦技术观察FOXO1在胰岛的表达及细胞定位;通过病毒介导的基因转移技术和siRNA干预技术,在培养的大鼠胰腺癌β细胞系(INS-1E)中特异高表达组成性活性的FOXO1(FOXO1-AAA)或抑制其表达水平,观察FOXO1表达水平的改变对β细胞增殖、凋亡的影响;进一步采用基因芯片技术分析了INS-1E中受FOXO1调控的下游靶基因,并对其功能进行了初步的分析预测。具体的研究工作如下:
     1.首先观察了FOXO1在成年SD大鼠胰腺中的表达及分布:4-6月成年SD大鼠胰腺进行冰冻切片免疫组化分析,结果显示FOXO1特异性表达在胰腺的胰岛组织中。为了进一步确定FOXO1在胰岛组织中的细胞定位,采用免疫荧光标记观察不同荧光标记的FOXO1(绿色)和胰岛素(红色)在胰岛中的分布,激光共聚焦观察发现绝大多数FOXO1蛋白与胰岛素的定位一致(橙色),表明FOXO1在生理情况下主要高表达在分泌胰岛素的β细胞中。
     2.为了阐明FOXO1在成熟胰岛β细胞中的作用,我们首先构建了高表达FOXO1的腺病毒载体:利用基因同源重组原理,通过复制缺陷型pAdEasy腺病毒系统构建了磷酸化位点突变的具有组成活性的全长FOXO1(T24A\S256A\S319A)重组腺病毒,纯化后病毒滴度约为5×10~(12)U/ml。病毒感染肝癌细胞系HepG2,通过观察GFP荧光、Western blot等方法证明Ad-FOXO1-AAA重组腺病毒能有效的介导FOXO1蛋白的表达,经灰度扫描及定量分析发现使FOXO1蛋白表达水平升高9.8倍。
     3.为了比较内源性FOXO1蛋白表达水平降低对成熟β细胞功能的影响,我们构建了针对FOXO1的siRNA腺病毒载体:利用www.ambion.com网站在线设计,并辅助设计软件,选择了三个针对FOXO1的siRNA位点,分别为si-FOXO1-1、si-FOXO1-2和si-FOXO1-3;一个针对FOXO1和FOXO3同源序列的siRNA位点,命名为si-FOXO-pan;以及一个不针对任何基因的随机序列作为阴性对照。人工合成si-FOXO1s的cDNA序列,退火形成的双链cDNA克隆到腺病毒表达载体pAdTrack-CMV上,经PmeI线性化后与pAdEasy-1细胞内同源重组,最后在HEK293细胞中包装为重组腺病毒,分别命名为Ad-si-FOXO1-1、Ad-si-FOXO1-2、Ad-si-FOXO1-3、Ad-si-FOXO-pan和Ad-NC。扩增后测定病毒滴度均约为5×10~(12)U/ml。重组腺病毒感染肝癌细胞系HepG2,Western blot检测结果显示,重组腺病毒能有效的抑制FOXO1蛋白的表达,经灰度扫描及定量分析发现抑制效果达45-65%,其中si-FOXO1-3的抑制效果最显著,达到65%。
     4.为了确定FOXO1表达降低是否影响其转录功能,选取了FOXO1的靶基因磷酸烯醇式丙酮酸羧激酶(PEPCK),检测si-FOXO1s对其启动子转录活性的影响:提取HepG2基因组DNA,PCR扩增得到PEPCK基因长约592bp的5′侧翼区启动子序列,插入pGL3-Basic荧光素报告质粒中。加入Ad-si-FOXO1s重组腺病毒感染HepG2细胞后,检测si-FOXO1s对PEPCK启动子转录活性的影响,结果显示,与阴性对照si-NC相比,si-FOXO1s显著降低PEPCK启动子的荧光素酶活性,其中Ad-si-FOXO1-1降低40%,Ad-si-FOXO1-2降低55%,Ad-si-FOXO1-3降低67%,Ad-si-FOXO-pan降低68%,表明构建的Ad-si-FOXO1s能显著抑制FOXO1靶基因的表达,具有功能活性。si-FOXO1-3抑制蛋白表达最低,抑制后FOXO1的功能活性也最低,所以后续实验均选择si-FOXO1-3。
     5.为了观察FOXO1表达水平的改变对胰岛β细胞功能的影响,首先检测si-FOXO1和FOXO1-AAA重组腺病毒能否有效的下调或上调胰腺癌β细胞系中FOXO1表达水平:将Ad-si-NC、Ad-si-FOXO1-3和Ad-FOXO1-AAA腺病毒感染胰腺癌β细胞系INS-1E,发现有明显绿色荧光表达,进一步采用Western Blot分析各组细胞中FOXO1蛋白质的表达水平,经扫描及定量分析发现Ad-si-FOXO1对FOXO1的表达抑制达74%,FOXO1-AAA导入细胞内使FOXO1表达升高8.7倍。
     6.采用3H-TdR掺入实验观察FOXO1表达水平的改变对胰岛β细胞增殖的影响,结果显示,降低FOXO1的表达显著促进了β细胞的增殖,而高表达FOXO1则显著抑制了β细胞的增殖;与之相应,MTT检测结果显示,降低FOXO1的表达对β细胞存活有显著促进作用,高表达FOXO1对β细胞存活有显著抑制作用;进一步采用流式细胞仪检测细胞凋亡,结果显示降低FOXO1的表达使β细胞凋亡率降低,反之高表达FOXO1使β细胞凋亡率增加。采用放射免疫法检测感染重组腺病毒后INS-1E细胞胰岛素的分泌情况,实验结果显示,FOXO1表达水平的改变对胰腺癌β细胞系INS-1E的胰岛素分泌没有显著影响。
     7.为了深入揭示FOXO1在胰岛β细胞中的作用机制,我们进一步采用基因芯片技术研究受FOXO1调节的下游靶基因表达变化情况:提取Ad-si-NC和Ad-FOXO1-AAA重组腺病毒感染的胰腺癌β细胞系INS-1E的总RNA,纯化后制成cDNA探针,与Agilent大鼠全基因组芯片杂交,经过信号检测、微阵列图像分析、计算机软件数据处理,将所得的数据进行比较,筛选出差异表达基因。结果显示,INS-1E细胞中高表达FOXO1与对照组有显著差异(基因表达水平差异>2为显著升高,<0.5为显著降低)的基因254条,其中表达序列标签(expressed sequence taq,EST)有107条,全长基因有147个。表达上调的基因有135个,表达下调的基因有12个。分析其功能后,从差异表达基因中初步筛选出参与调节细胞增殖、凋亡的基因16个。
     本研究显示在SD大鼠的胰岛中,FOXO1主要高表达在分泌胰岛素的胰岛β细胞中;在培养的胰腺癌β细胞中初步证实,FOXO1转录因子表达水平的变化对分化成熟的β细胞的增殖及凋亡具有调节作用,高表达FOXO1显著抑制了β细胞的增殖,同时使β细胞凋亡率增加,对胰岛β细胞分泌胰岛素的能力没有显著影响;通过基因芯片初步筛选出了受FOXO1调控的与细胞增殖和凋亡相关的基因。这些结果为深入揭示FOXO1调节β细胞的增殖及凋亡的分子机制奠定了基础,为揭示2型糖尿病发生发展中β细胞代偿性增生受损的发生机制提供了重要的线索。
Type 2 diabetes is characterized by a progressive decline inβ-cell function and chronic insulin resistance. Pancreaticβ-cells produce insulin and secrete it in response to elevations in circulating blood glucose and to other signaling molecules, providing a key contribution to glucose homeostasis and to the coordination of metabolism within the body. Defects ofβ-cell function in diabetes are complex and include reduced insulin secretion and alterations ofβ-cell mass. Regulation of theβ-cell mass involves a balance ofβ-cell replication and apoptosis, as well as development of new islets from exocrine pancreatic ducts. Disruption of any of these pathways ofβ-cell formation or increased rates ofβ-cell death could cause a decrease inβ-cell mass. Previous studies showed a reduction of islet and/or insulin-containing cell mass or volume in type 2 diabetes, indicating the importance of apoptosis as the cause of pancreaticβcell loss in the development of insulin deficiency and the onset and/or progression of the disease. However, the mechanisms regulatingβcell mass and their adaptations to inRsulin resistance are not complelely defined.
     FOXO transcription factors control several fundamental cellular processes, including metabolism, cell differentiation, cell cycle arrest, DNA repair, and cellular stress. FOXO1, one of the O subfamily members of FOXO factors, was identified in liver, adipose tissue andβ-cells. Quantitative PCR experiments of FOXO1 mRNA level were significantly higher in islets isolated from type 2 diabetic compared to the matched nondiabetic cadaveric organ donors, indicating that increased FOXO1 was associated withβcell dysfunction. However, the exact funtion of FOXO1 inβcells remains to be further characterized. In this study, the expression and cellular localization of FOXO1 were detected by immunohistochemistry and laser confocal microscopy. Adenoviral vectors expressing a constitutively active form of FOXO1 (FOXO1-AAA) and its small interfering RNA (siRNA) were prepared. The effects of FOXO1 onβcell proliferation and apoptosis were investigated with rat insulinoma cell line (INS-1E) by introducing either active FOXO1 or its siRNA. Furthermore, DNA arrays were carried to reveal the possible mechanisms mediated by the downstream target genes under the control of FOXO1. The major results are summarized below:
     1. To detect the distribution and subcellular localization of FOXO1 protein in adult rat pancreatic islets, SD rats aged 4-6 weeks were fed for one mouth, then sacrificed and their pancreatic islets were subjected for cryostat section. Distributions of FOXO1 protein in rat pancreatic islets were observed by immunohistochemical staining using anti-FOXO1 antibody. Subcellular localization of FOXO1 was further analyzed by double immunofluorescent staining with anti-FOXO1 and anti-insulin antibody under a laser confocal microscope. Results showed that FOXO1 proteins expressed in pancreatic islet and co-localized with insulin inβcells.
     2. To evalue overexpression of FOXO1 onβcell function, a constitutively active mutant FOXO1 (FOXO1-AAA) with single-amino-acid-substitution on the three main phosphorylation sites, Thr24/Ala, Ser256/Ala, and Ser319/Ala corresponding to human FOXO1 was used. FOXO1-AAA was subcloned into the pAd-Track vector coexpressing GFP. Adenoviruses carrying the FOXO1-AAA constructs were produced using the pAdeasy adenovirus-packaging system. Expression of FOXO1 on the recombinatant adenovirus can thus be easily detected by fluorescent microscope. The titer of recombinant adenovirus was assayed (about 5×1012U/ml). To test the expression capabilities of recombinant adenoviruses, HepG2 cells were infected with adenovirus carring FOXO1 and the cell lysates were assayed by Western blot, results demonstrated that the FOXO1 remarkablely overexpressed to 9.8 times.
     3. To investigate down regulation of FOXO1 onβcell function, four siRNA sites specifically targeting FOXO1, named si-FOXO1-1, si-FOXO1-2, si-FOXO1-3 and si-FOXO-pan, were designed using an online software (www.ambion.com). The corresponding double strands of oligodeoxynucleotides sequences for si-FOXO1s and a negative control, a stretch of scrambled sequence not targeting any gene, were synthesized by automatic DNA synthesis machine. After annealing and disgesting with restriction enzymes, the four si-FOXO1s DNA sequences were inserted into the shuttle vector pAd-Track-CMV carrying green fluorescent protein (GFP). Recombinant adenovirus encoding si-FOXO1s were generated after linearisation of pAd-Track-CMV-si-FOXO1s and cotransformed with the adenoviral plasmid pAd-easy-1 in E. coli BJ5183. Kanamycin was used for selection. After linearisation by restriction enzyme PacI, the recombinant plasmids were transfected into HEK 293-cells and amplified to give large quantities of infectious recombinant adenovirus carrying the sequences of si-FOXO1s, designated Ad-si-FOXO1-1, Ad-si-FOXO1-2, Ad-si-FOXO1-3, Ad-si-FOXO-pan and Ad-NC, respectively. The titers as potency of infection were determined in HEK 293 cells (about 5×1012pfu/ml). The efficiency of si-FOXO1s to downregulate the endogenous FOXO1 gene expression were detected by Western blotting in HepG2 cells. Results demonstrated that endogenouse FOXO1 was efficiently suppressed by 45-65% with Ad-si-FOXO1s and 65% with Ad-si-FOXO1-3.
     4. To test downregulation of FOXO1 on its transcriptional activity, an established FOXO1 target gene, phosphoenolpyruvate carboxykinase (PEPCK), was tested. The 592bp 5′flanking region of PEPCK promoter was amplified with genome DNA of HepG2 by PCR and the segment was cloned into the eukaryotic expression vector pGL3-Basic. HepG2 cells were transfected with plasmid PGL3-PEPCK, followed by infection with Ad-si-NC and Ad-si-FOXO1s recombinant adenoviruses. Effects of si-FOXO1s on the transcriptional activity of PEPCK promoter were analyzed by measuring luciferase activity. The expression level of PEPCK was decreased to 40% by Ad-si-FOXO1-1, 55% by Ad-si-FOXO1-2, 67% by Ad-si-FOXO1-3 and 68% by Ad-si-FOXO-pan.
     5. To test the expression activities of Ad-si-FOXO1 and Ad-FOXO1-AAA inβcells function, INS-1E cells, a rat insulinoma cell line, were infected with Ad-si-NC, Ad-si-FOXO1-3 or Ad-FOXO1-AAA recombinant adenoviruses for 24h. Endogenous FOXO1 expression levels were determined with Western blotting. Results demonstrated that FOXO1 decreased by 74% with si-FOXO1-3, no statistical change with Ad-si-NC and increased about 8.7 times with Ad- FOXO1-AAA.
     6. To test effects of up- or down-regulation of FOXO1 onβcell proliferation or its apoptosis, INS-1E was assessed. By infection of the cells with Ad-FOXO1-AAA or Ad-si-FOXO1, 3H-TdR incorporation experiment was performed as a test for cell growth. Results showed that decreased expression of FOXO1 significantly promotes INS-1E growth, whereas increased expression of FOXO1 significantly inhibits cell growth. MTT experiment showed the same effects of FOXO1 expression levels on the survival of INS-1E cells. Furthermore, the effect of FOXO1 on INS-1E apoptosis was assessed by fluorescence activated cell sorter (FACS) and results showed an increased apoptosis with higher levels of FOXO1 expression and decreased apoptosis with lower levels of FOXO1. Insulin secretion of INS-1E cells by radioimmunoassay did not signaficantly change with infection of Ad-si-NC, Ad-si-FOXO1-3 or Ad-FOXO1-AAA.
     7. To further understand the molecular mechanisms mediating FOXO1 effects onβcell functions, gene array studies were carried out. INS-1E cells were infected with Ad-si-NC or Ad-FOXO1-AAA, and total RNAs were isolated. The cRNA probes prepared from total RNA were hybridized with Agilent rat gene array. After signal detection, image comparison and data analysis, the differentially expressed genes were screened. 254 significantly differentially expressed (with the fold differences of >2, or <0.5) genes were detected by genechips, 107 of them were ESTs (Expressed Sequenee Tag) and the others were genes with complete sequences. 135 showed higher expressions and 33 showed lower expressions. Of them, 16 target genes with a potential role in cell proliferation or apoptosis were discussed.
     These data demonstrates that FOXO1 proteins expressed in pancreatic islet and co-localized with insulin inβcells. Increased expression of FOXO1 significantly inhibits INS-1E cell growth and survival, but increases cell apoptosis. Sixteen target genes with a potential role in cell proliferation or apoptosis were detected by genechips. Taken together, these data demonstrates that FOXO1 involves in the regulation of survival, proliferation and apoptosis of pancreaticβcells. Dysregulation of FOXO1 expression may thus conttributes to pathogenesis of type 2 diabetes which is closely linked to decreasedβcell mass.
引文
1. Maedler K. Beta cells in type 2 diabetes—a crucial contribution to pathogenesis. Diabetes Obes Metab.2008, 10(5): 408-420.
    2. Matveyenko AV, Butler PC. Relationship between beta-cell mass and diabetes onset. Diabetes Obes Metab. 2008, 10 Suppl 4: 23-31.
    3. Matveyenko AV, Butler PC. Beta-cell deficit due to increased apoptosis in the human islet amyloid polypeptide transgenic (HIP) rat recapitulates the metabolic defects present in type 2 diabetes. Diabetes. 2006, 55(7):2106-2114.
    4. Butler AE, Janson J, Bonner-Weir S, et al.β-cell deficit and increasedβ-cell apoptosis in humans with type 2 dabetes. Diabetes. 2003, 52(1):102-110.
    5. Sakuraba H, Mizukami H, Yagihashi N, et al. Reducedβ-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type 2 diabetes patients. Diabetologia. 2002, 45(1):85-96.
    6. Barthel A, Schmoll D, Unterman TG. FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab. 2005, 16(4):183-189.
    7.甘立霞. FoxO转录因子在代谢调节及肿瘤抑制中的作用.第三军医大学学报. 2006, 28(12):1347-1350.
    8. Del Guerra S, Lupi R, Marselli L, et al. Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes. 2005, 54(3):727-735.
    9. Iwasaki N. [Diabetes mellitus]. Rinsho Byori . 2001, 49(2): 161-164.
    10. Ordovas JM. Genetic links between diabetes mellitus and coronary atherosclerosis. Curr Atheroscler Rep. 2007, 9(3): 204-210.
    11. Okada T, Liew CW, Hu J, et al. Insulin receptors in beta-cells are critical for islet compensatory growth response to insulin resistance. Proc Natl Acad Sci. 2007, 104(21):8977-8982.
    12. Rhodes CJ. Type 2 diabetes--a matter ofβcell life and death? Science. 2005, 21:380-384.
    13. Ackermann AM, Gannon M. Molecular regulation of pancreatic b-cell mass development, maintenance, and expansion. Journal of Molecular Endocrinology. 2007, 38(1-2):193–206.
    14.李学斌,谢庄,石放雄. FOXO蛋白的修饰与细胞凋亡和癌变.生物化学与生物物理进展. 2005, 32(7): 600-606.
    15. Medema RH, Kops GJ, Bos JL, et al. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000, 404(6779): 782-787.
    16. Nakae J , Kitamura T, Kitamura Y, et al. The forkhead transcrip tion factor Foxo1 regulates adipocyte differentiation. Dev Cell. 2003, 4(1):119-129.
    17. Hribal ML, Nakae J, Kitamura T, et al. Regulation of insulin-like growth factor -dependent myoblast differentiation by Foxo forkhead transcription factors. J Cell Biol. 2003, 162(4):535-541.
    18. Nakae J, Biggs III WH, Kitamura T, et al. Regulation of insulin action and pancreatic beta-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet. 2002, 32 (2):245–253.
    19. Robertson RP, Harmon J, Tran PO, et al.βcell glucose toxicity, lipotoxicity and chronic oxidative stress in type 2 diabets. Diabetes. 2004, 53:s119-124.
    20. Prado CL, Pugh-Bernard AE, Elghazi L, et al. Ghrelin cells replace insulin- producing beta cells in two mouse models of pancreas development. Proc Natl Acad Sci. 2004, 101 (9): 2924-2929.
    21. Gross DN, van den Heuvel AP, Birnbaum MJ. The role of FoxO in the regulation of metabolism. Oncogene. 2008, 27(16):2320-2336.
    22. G?ncz E, Strowski MZ, Gr?tzinger C, et al. Orexin-A Inhibits Glucagon Secretion and Gene Expression through a Foxo1-Dependent Pathway. Endocrinology. 2008, 149(4): 1618 - 1626.
    23. McKinnon CM, Ravier MA, Rutter GA. FoxO1 is required for the regulation of preproglucagon gene expression by insulin in pancreatic alphaTC1-9 cells. J Biol Chem. 2006, 281(51):39358-39369.
    24. Jake A. Kushner, Jing Ye, et a1. Pdx1 restoresβcell function in Irs2 knockout mice. J Clin Invest. 2002, 109(9): 1193-1201.
    25. Speck P, Kline KA, Cheresh P, et al. Epstein-Barr virus lacking latent membrane protein 2 immortalizes B cells with efficiency indistinguish-able from that of wild-type virus. J Gen Virol. 1999, 80(8):2193-2203.
    26. Zeng M, Smith SK, Siegel F, et al. AdEasy system made easier by selecting the viralbackbone plasmid preceding homologous recombination. Biotechniques. 2001, 31(2): 260-262.
    27. Wang YQ, Peng YZ, Wang Q, et al. Influence of adenovirus transfection on the maturation characteristics of human immature dendritic cells. Zhonghua Shaoshang Zazhi. 2006, 22(6):458-461.
    28. Ding L, Lu S, Batchu R, et al. Bone marrow stromal cells as a vehicle for gene transfer. Gene Ther. 1999, 6(9):1611-1616.
    29. Fortier LA, Nixon AJ, Williams J, et al. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am-J-Vet-Res. 1998, 59(9): 1182-1187.
    30. Robbins PD, Tahara H, Ghivizzani SC. Viral vector for gene therapy. Trends Biotechnol. 1998, 16:35-45.
    31. Mizuguchi H, Kay MA. Efficient construction of a recombinant adenovirus vector by an improved in vitro ligation method. Hum Gene Ther. 1998, 9(17):2577-2583.
    32. Waterhouse PM, Graham MV, W ang MB. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci. l998, 95:l3959-l3964.
    33. Caplen Nj, Fleenor J, Fire A, et a1. DsRNA-mediated gene silencing in cultured Drosophila cells. Gene. 2000, 252:95-105.
    34. Elbashir SM, Harborth J, Lendeckel W, et aI. Duplexes of 2l-nucleotide RNAs mediate RNA interference in culturedmammalian cells.Nature. 200l, 4ll (6836) :494-498.
    35. Tuschl T, Zamore PD, Lehmann R, et a1. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 1999, 13:3l9l-3l97.
    36. Matsuzaki H, Daitoku H, Hatta M, et a1. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci. 2003, 100(20): 11285-11290.
    37. Zhao X, Gan L, Pan H, et al. Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms. Biochem J. 2004, 378(Pt3):839-849.
    38. Zhang H, Ackermann AM, Gusarova GA, et al. The FoxM1 transcription factor is required to maintain pancreatic beta-cell mass. Molecular Endocrinology. 2006, 20(8):1853–1866.
    39. Kushner JA, Ciemerych MA, Sicinska E, et al. Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Molecular and Cellular Biology. 2005, 25(9): 3752–3762.
    40. Rane SG, Dubus P, Mettus RV, et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nature Genetics. 1999, 22(1): 44–52.
    41. Asghar Z, Yau D, Chan F, et al. Insulin resistance causes increased beta-cell mass but defective glucose-stimulated insulin secretion in a murine model of type 2 diabetes. Diabetologia. 2006, 49(1):90-99.
    42. Kitamura T, Nakae J, Kitamura Y, et al. The forkhead transcription factor FOXO1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest. 2002, 110:1839–1847.
    43. Nakae J, Kitamura T, Silver DL, et al. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest. 2001, 108 (9):1359-1367.
    44. Khan J, Bittner ML, Chen Y , et al. DNA microarray technology: the anticipated impact on the study of human disease. Biochim Biophys Acta. 1999, 1423(2):M17-28.
    45. Narayanan A, Keedwell EC, Olsson B. Artificial intelligence techniques for bioinformatics. Appl Bioinformatics. 2002, 1:191-222.
    46. Auer H, Newsom DL, Kornacker K. Expression Profiling Using Affymetrix GeneChip Microarrays. Methods Mol Biol. 2009, 509:35-46.
    47.梅铭惠,陈谦,廖维甲,等.应用基因芯片技术筛选肝细胞癌相关基因.华夏医学. 2008, 6(21):1043-1046.
    48.王利,王宪,孔炜.新型金属蛋白酶ADAMTS家族的研究进展.生理科学进展. 2008, 39(1):49-52
    49. Botter SM, Glasson SS, Hopkins B, et al. ADAMTS5-/- mice have less subchondral bone changes after induction of osteoarthritis through surgical instability: implications for a link between cartilage and subchondral bone changes. Osteoarthritis Cartilage. 2008.[Epub ahead of print].
    50. Sharghi-Namini S, Fan H, Sulochana KN, et al. The first but not the secondthrombospondin type 1 repeat of ADAMTS5 functions as an angiogenesis inhibitor. Biochem Biophys Res Commun. 2008, 371(2):215-219.
    51. Held-Feindt J, Paredes EB, Bl?mer U , et al. Matrix-degrading proteases ADAMTS4 and ADAMTS5 (disintegrins and metalloproteinases with thrombospondin motifs 4 and 5) are expressed in human glioblastomas. Int J Cancer. 2006, 118(1):55-61.
    52. McCulloch DR, Goff CL, Bhatt S, et al. Adamts5, the gene encoding a proteoglycan-degrading metalloprotease, is expressed by specific cell lineages during mouse embryonic development and in adult tissues. Gene Expr Patterns. 2009.[Epub ahead of print].
    53.高尚进,唐琼兰,文彬,等. NOV基因的研究进展.川北医学院学报. 2008, 23(2):112-115.
    54. Bleau AM, Planque N, Lazar N, et al. Antiproliferative activity of CCN3: involvement of the C-terminal module and post-translational regulation. J Cell Biochem. 2007, 101(6): 1475-1491.
    55. Katsuki Y, Sakamoto K, Minamizato T, et al. Inhibitory effect of CT domain of CCN3/NOV on proliferation and differentiation of osteogenic mesenchymal stem cells, Kusa-A1. Biochem Biophys Res Commun. 2008, 368(3):808-814.
    56. Chen CC, Lau LF. Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol. 2009, 41(4):771-783.
    57. Eckardt K, Sell H, Taube A, et al. Cannabinoid type 1 receptors in human skeletal muscle cells participate in the negative crosstalk between fat and muscle. Diabetologia. 2009, 52(4):664-674.
    58.闫晓洁,秦贵军,马晓君,等.肥胖大鼠胰腺组织中内源性大麻素受体1蛋白和mRNA的表达及定位.郑州大学学报(医学版). 2008, 43(4):695-698.
    59. Sarnataro D, Pisanti S, Santoro A, et al. The cannabinoid CB1 receptor antagonist rimonabant (SR141716) inhibits human breast cancer cell proliferation through a lipid raft-mediated mechanism. Mol Pharmacol. 2006, 70(4):1298-1306.
    60. Rajesh M, Mukhopadhyay P, HaskóG, et al. Cannabinoid CB1 receptor inhibition decreases vascular smooth muscle migration and proliferation. Biochem Biophys Res Commun. 2008, 377(4):1248-1252.
    61.孔博. HEY基因家族对心血管发育影响的研究进展.中国分子心脏病学杂志. 2008,8(2):114-117.
    62. Johansson T, Lejonklou MH, Ekeblad S, et al. Lack of nuclear expression of hairy and enhancer of split-1 (HES1) in pancreatic endocrine tumors. Horm Metab Res. 2008, 40(5):354-359.
    63. Hulleman E, Quarto M, Vernell R, et al. A role for the transcription factor HEY1 in glioblastoma. J Cell Mol Med. 2009, 13(1):136-146.
    64. Wang XD, Leow CC, Zha J, et al. Notch signaling is required for normal prostatic epithelial cell proliferation and differentiation. Dev Biol. 2006, 290(1):66-80.
    65.张翠艳. Ras鸟苷酸结合蛋白超家族新成员RhoE/Rnd3.医学分子生物学杂志. 2006, 3(3):209-211.
    66. Bektic J, Pfeil K, Berger AP, et al. Small G-protein RhoE is underexpressed in prostate cancer and induces cell cycle arrest and apoptosis. Prostate. 2005, 64(4):332-340.
    67. Villalonga P, Guasch RM, Riento K, et al. RhoE inhibits cell cycle progression and Ras-induced transformation. Mol Cell Biol. 2004, 24(18):7829-7840.
    68. Ushio-Fukai M, Nakamura Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett. 2008, 266(1):37-52.
    69. Chen K, Kirber MT, Xiao H, et al. Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol. 2008, 181(7):1129-1139.
    70. Mittal M, Roth M, K?nig P, et al. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res. 2007, 101(3):258-267.
    71. Uchizono Y, Takeya R, Iwase M, et al. Expression of isoforms of NADPH oxidase components in rat pancreatic islets. Life Sci. 2006, 80(2):133-139.
    72. Rowland BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol. 2005, 7(11):1074-1082.
    73. Shie JL, Chen ZY, Fu M, et al. Gut-enriched Krüppel-like factor represses cyclin D1 promoter activity through Sp1 motif. Nucleic Acids Res. 2000, 28(15):2969-2976.
    74. Wei D, Kanai M, Jia Z, et al. Kruppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res. 2008, 68(12):4631-4639.
    75. Yusuf I, Kharas MG, Chen J, et al. KLF4 is a FOXO target gene that suppresses B cell proliferation. Int Immunol. 2008, 20(5):671-681.
    76.张健,高福禄,刘芝华. Ets转录因子家族在发育和肿瘤发生中作用的研究进展.世界华人消化杂志. 2003, 11(10):1624-1627.
    77. Hashiya N, Jo N, Aoki M, et al. In vivo evidence of angiogenesis induced by transcription factor Ets-1: Ets-1 is located upstream of angiogenesis cascade. Circulation. 2004, 109(24):3035-3041.
    78. Xu FL, Li YL, Wang ZD, et al. Expression and significance about VEGF, KDR, MMP-1, and transcription factor Ets-1 in human cervical carcinoma. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2003, 25(4):396-400
    79. Lefter LP, Dima S, Sunamura M, et al.Transcriptional silencing of ETS-1 efficiently suppresses angiogenesis of pancreatic cancer. Cancer Gene Ther. 2009, 16(2):137-148.
    80. Zhang X, Zhang J, Yang X, Han X. Several transcription factors regulate COX-2 gene expression in pancreatic beta-cells. Mol Biol Rep. 2007, 34(3):199-206.
    81. Tillet E, Vittet D, Féraud O, et al. N-cadherin deficiency impairs pericyte recruitment, and not endothelial differentiation or sprouting, in embryonic stem cell-derived angiogenesis. Exp Cell Res. 2005, 310(2):392-400.
    82. Luther MJ, Davies E, Muller D, et al. Cell-to-cell contact influences proliferative marker expression and apoptosis in MIN6 cells grown in islet-like structures. Am J Physiol Endocrinol Metab. 2005, 288(3):E502-509.
    83.杨世峰,尹爱萍. C反应蛋白与糖尿病肾病的研究进展.医学综述. 2008, 2(14):432-433.
    84. Verma S, Kuliszewski MA, Li SH , et al. C-reactive protein attenuates endothelial progenitor cell survival, differentiation, and function: further evidence of a mechanistic link between C-reactive protein and cardiovascular disease. Circulation. 2004, 109(17): 2058-2067.
    85. Zee RY, Germer S, Thomas A, et al. C-reactive protein gene variation and type 2 diabetes mellitus: a case-control study. Atherosclerosis. 2008, 197(2):931-936.
    86.王新军,赵忠伟,寿纪新,等.髓母细胞瘤组织bcl-XL mRNA和蛋白表达及临床意义.实用儿科临床杂志. 2006, 21(23):1615-1616.
    87. Miyamoto Y, Hosotani R, Wada M , et al. Immunohistochemical analysis of Bcl-2, Bax,Bcl-X, and Mcl-1 expression in pancreatic cancers. Oncology. 1999, 56(1):73-82.
    88. Clarke MF, Apel IJ, Benedict MA, et al. A recombinant bcl-x s adenovirus selectively induces apoptosis in cancer cells but not in normal bone marrow cells. Proc Natl Acad Sci . 1995, 92(24):11024-11028.
    89.粟幼嵩,仇剑崟,张怀惠,等.硫氧还原蛋白结合蛋白基因多态性与精神分裂症的关联分析.上海精神医学. 2008, 20(3):146-148.
    90. Chen J, Couto FM, Minn AH, Shalev A. Exenatide inhibits beta-cell apoptosis by decreasing thioredoxin-interacting protein. Biochem Biophys Res Commun. 2006, 346(3): 1067-1074.
    91. Minn AH, Pise-Masison CA, Radonovich M, et al. Gene expression profiling in INS-1 cells overexpressing thioredoxin-interacting protein. Biochem Biophys Res Commun. 2005, 336(3):770-778.
    92. Shaked M, Ketzinel-Gilad M, Ariav Y, et al. Insulin counteracts glucotoxic effects by suppressing thioredoxin-interacting protein production in INS-1E beta cells and in Psammomys obesus pancreatic islets. Diabetologia. 2009, 52(4):636-644.
    93.李宝金,张超,宁长青,等. KDR启动子介导胸苷激酶体外靶向杀伤血管内皮细胞中国普通外科杂志. 2007, 16(2):141-144.
    94. Zeng H, Zhao D, Mukhopadhyay D. Flt-1-mediated down-regulation of endothelial cell proliferation through pertussis toxin-sensitive G proteins, beta gamma subunits, small GTPase CDC42, and partly by Rac-1. J Biol Chem. 2002, 277(6): 4003-4009.
    95. Welsh M, Annerén C, Lindholm C, et al. Role of tyrosine kinase signaling for beta-cell replication and survival. Ups J Med Sci. 2000, 105(2):7-15.
    96.邵先安,徐薇,李宝华,等. CCL20对HBV基因疫苗的免疫增强作用.现代免疫学. 2006, 26(6):441-447.
    97. Bonnotte B, Crittenden M, Larmonier N, et al. MIP-3alpha transfection into a rodent tumor cell line increases intratumoral dendritic cell infiltration but enhances (facilitates) tumor growth and decreases immunogenicity. J Immunol. 2004, 173(8):4929-35
    98. Rubie C, Frick VO, Wagner M, et al. Enhanced expression and clinical significance of CC-chemokine MIP-3 alpha in hepatocellular carcinoma. Scand J Immunol. 2006, 63(6):468-77
    99. Lisignoli G, Piacentini A, Cristino S, et al. CCL20 chemokine induces both osteoblastproliferation and osteoclast differentiation: Increased levels of CCL20 are expressed in subchondral bone tissue of rheumatoid arthritis patients. J Cell Physiol. 2007, 210(3):798-806.
    100.Martin AP, Alexander-Brett JM, Canasto-Chibuque C, et al. The chemokine binding protein M3 prevents diabetes induced by multiple low doses of streptozotocin. J Immunol. 2007, 178(7):4623-4631.
    101.刘涛,邓存良,陈枫.肾上腺髓质素对大鼠肝星状细胞凋亡的影响.齐鲁医学杂志. 2008, 23 (2):141-142.
    102.Chini EN, Chini CC, Bolliger C, et al. Cytoprotective effects of adrenomedullin in glomerular cell injury: central role of cAMP signaling pathway. Kidney Int. 1997, 52(4):917-925.
    103.Keleg S, Kayed H, Jiang X, et al. Adrenomedullin is induced by hypoxia and enhances pancreatic cancer cell invasion. Int J Cancer. 2007, 121(1):21-32.
    104.Ramachandran V, Arumugam T, Hwang RF, et al. Adrenomedullin is expressed in pancreatic cancer and stimulates cell proliferation and invasion in an autocrine manner via the adrenomedullin receptor. ADMR. Cancer Res. 2007, 67(6):2666-2675.
    105.Talmadge JE. Follistatin as an inhibitor of experimental metastasis. Clin Cancer Res. 2008, 14(3):624-626.
    106.Casagrandi D, Bearfield C, Geary J, et al. Inhibin, activin, follistatin, activin receptors and beta-glycan gene expression in the placental tissue of patients with pre-eclampsia. Mol Hum Reprod. 2003, 9(4):199-203.
    107.Patella S, Phillips DJ, Tchongue J, et al. Follistatin attenuates early liver fibrosis: effects on hepatic stellate cell activation and hepatocyte apoptosis. Am J Physiol Gastrointest Liver Physiol. 2006, 290(1):G137-144.
    1.甘立霞. FoxO转录因子在代谢调节及肿瘤抑制中的作用.第三军医大学学报. 2006, 28(12):1347-1350.
    2. Kaestner KH, Knochel W, Martinez DE. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 2000, 14 (2):142-146.
    3. Birkenkamp KU, Coffer PJ. FOXO transcription factors as regulators of immune homeostasis: molecules to die for? J Immunol. 2003, 17l(4):1623-1629.
    4. Martin A Junger, Felix Rintelen, Stocker H, et a1. The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol. 2003, 2(3):20.
    5. Jacobs FM, van der Heide LP, Wijche1s PJ, et a1. FoxO6,a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem. 2003, 278(38):35959-35967.
    6. Peter Carlsson, Margit Mahlapuu. Forkhead transcription factors: Key players in development and metabolism. Dev Biol. 2002, 250(1):1-23.
    7. Puig O, Marr MT, Ruhf ML, Tjian R. Control of cell number by drosophila FOXO: downstream and feed back regulation of the insulin receptor pathway. Genes Dev. 2003, 17(16):2006-2020.
    8. Anderson MJ, Viars CS, Czekay S, et a1. Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics. 1998, 47 (2):187-199.
    9. Furuyama T, Nakazawa T, Nakano I, et al. Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J. 2000, 349(2):629-634.
    10. Burgering BM, Kops GJ. Cellcycle and death control: long live Forkheads. Trends Biochem Sci. 2002, 27(7):352-360.
    11. Burgering BM, Medema RH. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol. 2003, 73 (6):689-701.
    12. Essers MA, Weijzen S, de Vries-Smits AM, et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J. 2004, 23(24):4802-4812.
    13. Brunet A, Park J, Tran H, et al. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1(FOXO3a). Mol Cell Biol. 2001, 21(3):952-965.
    14. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004, 116 (4):551-563.
    15. van der Horst A, Tertoolen LG, de Vries-Smits LM, et al. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem. 2004, 279(28):28873-28879.
    16. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 eacetylase. Science. 2004, 303(5666): 2011-2015.
    17. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003, 425(6954):191-196.
    18. Accili D, Arden KC. FoxOs at the Crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004, 117(4):421-426.
    19. Zhao X, Gan L, Pan H, et al. Multiple elements regulate nuclear/cytoplasmic shuttling of FOXO1: characterization of phosphorylation- and 14-3-3-dependent and -independent mechanisms. Biochem J. 2004, 378(3):839-849.
    20. Rena G, Woods YL, Prescott AR, et al. Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J. 2002, 21(9):2263-2271.
    21. Medema RH, Kops GJ, Bos JL, et al. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000, 404(6779):782-787.
    22. Kops GJ, Medema RH, Glassford J, et al. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol Cell Biol. 2002, 22(7):2025-2036.
    23. Schmidt M, Fernandez de Mattos S, van der Horst A, et al. Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol. 2002, 22 (22):7842-7852.
    24. Nakae J, Kitamura T, Kitamura Y, et al. The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell. 2003, 4(1):119-129.
    25. Armoni M, Harel C, Karni S, et al. FOXO1 represses peroxisome proliferator-activated receptor-gamma1 and -gamma2 gene promoters in primary adipocytes. A novel paradigmto increase insulin sensitivity. J Biol Chem. 2006, 281(29):19881-19891.
    26. Allen DL, Unterman TG. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am J Physiol Cell Physiol. 2007, 292(1): C188-199.
    27. Mcfarlane C, Plummer E, ThomasM, et al. Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol. 2006, 209(2):501-514.
    28. Hribal ML, Nakae J, Kitamura T, et al. Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J Cell Biol. 2003, 162(4):535-541.
    29. Bois PR, Izeradjene K, Houghton PJ, et al. FOXO1a acts as a selective tumor suppressor in alveolar rhabdomyosarcoma. J Cell Biol. 2005, 170(6):903-912.
    30. Kamei Y, Miura S, Suzuki M, et al. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem. 2004, 279(39):41114-41123.
    31. Rokudai S, Fujita N, Kitahara O, et al. Involvement of FKHR-dependent TRADD expression in chemotherapeutic drug-induced apoptosis. Mol Cell Biol. 2002, 22(24): 8695-8708.
    32. Giannakou ME, Partridge L. The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol. 2004, 14(8):408-412.
    33. Birkenkamp KU, Coffer PJ. Regulation of cell survival and proliferation by the FOXO(Forkhead box, class O)subfamily of Forkhead transcription factors. Biochem Soc Trans. 2003, 31(1):292-297.
    34. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003, 425 (6954):191-196.
    1. Kahn, Steven. The importance ofβCell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab. 2001, 86(9):4047.
    2. Cozar-Castellano I, Takane KK, Bottino R, et al. Induction of beta-cell proliferation and retinoblastoma protein phosphorylation in rat and human islets using adenovirus-mediated transfer of cyclin-dependent kinase-4 and cyclin D1. Diabetes. 2004, 53(1):149-159.
    3. Heit JJ, Apelqvist AA, Gu X, et a1. Calcineurin/NFAT signalling regulates pancreatic beta-cel growth an d function. Nature. 2006, 443(7109): 345-349.
    4. Hogan PG, Chen L, Nardone J, et a1. Transcriptional regulation by calcium, caleineurin, and NFAT. Genes Dev. 2003, 17(18):2205-2232.
    5. O'Rahilly S, Barroso I, Wareham NJ. Genetic factors in type 2 diabetes:the end of the beginning? Science. 2005, 307(5708):370-373.
    6. Georgia S, Bhushan A. Beta cell replication is the primary mechanism for maintaining postnatal beta cell mass. J Clin Invest. 2004, 114(7):963-968.
    7. Lawrence MC, Bhatt HS, Easom RA. NFAT regu lates insulin gene promoter activity in response to synergistic pathways induced by glucose and giucagon-like peptide-1. Diabetes. 2002, 51(3):691-698.
    8. Rhodes CJ. Type 2 diabetes– a matter of beta-cell life and death? Science. 2005, 307(5708):380–384.
    9. Bock T, Pakkenberg B, Buschard K. Increased islet volume but unchanged islet number in ob/ob mice. Diabetes. 2003, 52(7):1716-1722.
    10. Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res. 1997, 29(6):301-307.
    11. Kahn SE. The importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab. 2001, 86(9):4047-4058.
    12. Haber EP, Procópio J, Carvalho CR, et al. New insights into fatty acid modulation of pancreatic beta-cell function. Int Rev Cytol. 2006, 248:1-41.
    13. Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003, 52(1):102-1014.
    14. Rane SG, Dubus P, Mettus RV, et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nature Genetics. 1999, 22(1): 44–52.
    15. Martin J, Hunt SL, Dubus P, et al. Genetic rescue of Cdk4 null mice restores pancreatic beta-cell proliferation but not homeostatic cell number. Oncogene. 2003, 22(34): 5261–5269.
    16. Kushner JA, Ciemerych MA, Sicinska E,et al. Cyclins D2 and D1 are essential for postnatal pancreatic beta-cell growth. Molecular and Cellular Biology. 2005, 25(9): 3752–3762.
    17. Uchida T, Nakamura T, Hashimoto N, et al. Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nature Medicine. 2005, 11(2):175–182.
    18. Georgia S, Bhushan A. p27 Regulates the transition of beta-cells from quiescence to proliferation. Diabetes. 2006, 55(11): 2950–2956.
    19. Kassem SA, Ariel I, Thornton PS, et al. p57(KIP2) expression in normal islet cells and in hyperinsulinism of infancy. Diabetes. 2001, 50(12):2763–2769.
    20. Zhang H, Ackermann AM, Gusarova GA, et al. The FoxM1 transcription factor is required to maintain pancreatic beta-cell mass. Molecular Endocrinology. 2006, 20(8): 1853–1866.
    21. Crabtree JS, Scacheri PC, Ward JM, et al. Of mice and MEN1:insulinomas in a conditional mouse knockout. Molecular and Cellular Biology. 2003, 23(17): 6075–6085.
    22. Karnik SK, Hughes CM, Gu X, et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. PNAS. 2005, 102(41):14659–14664.
    23. Kubota N, Terauchi Y, Tobe K, et al. Insulin receptor substrate 2 plays a crucial role in beta cells and the hypothalamus. Journal of Clinical Investigation. 2004, 114(7): 917–927.
    24. Ackermann AM, Gannon M. Molecular regulation of pancreatic b-cell mass development,maintenance, and expansion. Journal of Molecular Endocrinology. 2007, 38(1-2): 193–206.
    25. Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. Beta-cellspecific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes and Development. 1998, 12(12):1763–1768.
    26. Kitamura T, Nakae J, Kitamura Y, et al. The forkhead transcription factor FOXO1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J Clin Invest. 2002, 110(12):1839–1847.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700