用户名: 密码: 验证码:
含湿热的耦合粘弹性本构、断裂及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于高聚物及其复合物材料具有重量轻,强度高等优点,已经广泛应用于各个工程领域。在微电子元件制造中,高聚物及其复合物材料通常用来作为电子元件的封装材料。而在航空、航天工业中,因为它们具有良好的粘接性,又常被用作构件间的粘接剂。由此减低结构的应力集中,降低结构的重量。然而,高聚物材料的一个显著的弱点是其对环境的敏感性,尤其是对湿、热影响敏感。因此,在高温、高湿度的环境中,高聚物的强度明显下降,威胁到结构的安全。在电子元件高温焊接中,受到湿汽侵入的元件常发生“爆米花”式的脱层断裂,严重影响了产品的合格率。这两类问题都需要对湿分扩散,高聚物结构的力学反响进行研究。
     湿汽进入到高聚物材料之后,一方面导致其材料强度和耐久性下降。另一方面是纯粹的物理作用,湿汽产生膨胀变形,导致残余应力。有试验发现,高聚物中湿分、温度和应力是相互影响的。并且,高聚物通常具有粘性,其力学行为与时间相关。湿汽对材料性能的影响是可以通过试验测定的,而建立合理的模型描述含有湿、热影响的结构的耦合响应则是对由湿、热导致的破坏问题作出准确的分析和计算模拟的基础和关键。在一般的条件下,对于高聚物吸湿所引发的问题,需要考虑到热传导过程、湿分扩散过程,以及高聚物结构的力学反响。因此,需要发展耦合的本构模型对整个问题进行描述。此外,在含湿、热效应的高聚物材料中,传统的粘弹性或弹性材料的断裂判据不再适用,所以,对该问题进行研究也是十分必要的。
     本文由物质守恒,能量守恒以及动量、动量矩平衡原理,采用内变量描述材料的粘性,通过引入Helmholtz自由能和Gibbs自由能,分别导出松弛和蠕变两类湿、热和应力(应变)相互耦合的线性粘弹性本构方程以及普遍的耦合热传导、耦合湿分扩散方程。并针对各向同性材料,导出含湿、热的耦合线性粘弹性本构方程,以及相应的热传导方程和耦合湿分扩散方程。
     本文利用内禀断裂能的概念,定义了不含粘性耗散项的临界断裂阻力。由能量的平衡,可以推断出,剔除了粘性耗散的影响,裂纹克服材料内禀断裂能发生扩展所需要的能量完全来自于自由能。由此,作者发展了裂尖自由能释放率的概念及其积分表达式。并建立相应的断裂判据。其中,材料的断裂参数是
    
    第 11页 西南交通大学搏士研究生学位论文
    内禀断裂能。当退化到纯弹性的情形,粘性耗散消失,自由能释放率与经典的
    能量释放率等价。由此,本文给出含湿、热效应的裂尖能量释放率的积分表达
    式。并用简单算例验证了其路径无关性。同时,本文将自由能释放率扩展到有
    多个广延量场作用下的情况,导出统一的表达式。
     利用本文提出的断裂判据,通过合理简化,作者对吸湿电子元件在高温焊
    接过程中发生的“爆米花”式脱层断裂进行了研究分析。目前,电子元件趋于
    薄型化的发展趋势,由分析计算结果可知,为了避免过高估计裂纹缺陷中的内
    部压力,直接采用饱和蒸汽压力模型是不恰当的,需要采用本文发展的一般蒸
    发有限元计算模型进行分析。此外,计算结果还显示:影响“爆米花”式断裂
    的主要可控因素是扩散系数D。和蒸发系数F卜其中,蒸发系数F。对裂尖能量
    释放率的影响较大,因此,控制扩散系数DO和蒸发系数F。能有效地降低电子
    元件发生“爆米花”式脱层断裂的可能性,尤其是控制蒸发系数F。的大小
     作者还在 Roy等计算模型的基础上,修正了他们略去 Schpaery单积分粘弹
    性本构模型中的两个参数的研究工作。据此,作者开发的有限元程序中,保留
    了SChaPCry模型中的全部三个参数。利用该有限元程序,作者对长时间处于潮
    湿环境的高聚物粘接接头中,湿分的扩散进行了计算分析。
In recent years,polymer has been widely used in engineering applications,including plastic packages in producing micro electric packages,and adhesive joints in aerospace engineering etc. As the polymer is hydrophilic,it will absorb the moisture in high humid environment. The process accelerates as the temperature is rising. Recently,the failure caused by moisture and heat was often observed in package solder reflow and adhesive joints which absorbed moisture. As experiments reveals,the moisture diffusion,heat conduction and mechanical response in polymers are mutually affecting behaviors. A fact that stimulates the effort in developing a set of full coupling constitutive relations with which will have the problem modeled. For the polymer showing time-dependent character in many situations,the viscoelasticity should necessarily be taken into account in the general model. Further,as the conventional J integral is no longer valid for hydrothermal materials cases,investigations on new energy-type fracture criter
    ia are specifically needed.
    In the present thesis,the constitutive equations of the coupling problem involving heat and moisture effects (HME) were developed on continuum thermodynamics basis,in virtue of Helmholtz free energy. In the endeavor just mentioned,a group of internal variables was introduced to characterize the viscous behaviors of polymers. For isotropic cases,the specific coupling constitutive equations were degenerated from those for general cases thus obtained in the context. With the stress (strain) and coupling coefficient being ignored,the coupling heat conduction equation and the coupling moisture diffusion equation would degenerate to Fourier heat conduction model and Pick diffusion model respectively.
    In this thesis,the modified critical fracture resistance was defined by excluding the viscoelastic dissipation,which is related to the intrinsic fracture energy. According to the energy balance considerations,the fracture driving energy is uniquely provided by free energy. Hence,it was named free energy release rate in this thesis in tribute to the concept of strain energy release rate. The expression of free energy release rate was derived in this thesis as well. As revealed,it is a path -
    
    
    independent integral and was extended to the multi-field of extensive quantity. With the viscous dissipation being ignored,the free energy release rate would be equivalent to strain energy release rate. As such,the expression of elastic strain energy release rate,which involved the hydrothermal effects,was derived. And,it was employed for delamination analysis of electric packages in the subsequent context.
    The "popcorn" fracture analysis was studied by introducing reasonable simplifications and taking advantage of the strain energy release rate expression involving the hydrothermal effect. According to the result of analysis,it is advisable to invoke the general evaporation model should the avoidance of the overestimation on the strain energy release rate for very thin package cases be desired. Another important conclusion the present study reached is that the controlling of diffusion coefficient DO and evaporation coefficient F0 is efficient for the deduction of the possibility of the "popcorn" delaminations,in specific with controlling evaporation coefficient.
    In the appendix,the author of the present thesis included the three parameters of Schapery's viscoelastic model based on the work of Roy et al. In this aspect,FEM program was developed for implementation of the modified model. By use of this FEM program,analysis of the moisture diffusion in adhesive joint was also conducted.
引文
1. Crank, J. and G.S. Park, Diffusion in Polymers. 1968, New York: Academic Press.
    2.A.贝克,沈真等译,复合材料原理及其应用.1992,北京:科学出版社.
    3.林启昭,高分子复合材料及其应用.1988,北京:中国铁道出版社.
    4. Weitsman, Y., Interfacial Stresses in Viscoelastic Adhesive-Layers Due to Moisture Sorption. International Journal of Solids & Structures, 1979. 15(9): 701-713.
    5. Crank, J., The mathematics of diffusion. 2nd ed. Oxford science publications. 1979, Oxford, [Eng]: Clarendon Press. viii, 414.
    6. Weitsman, Y., Moisture in composites: Sorption and Damage., in Fatigue of Composite Materials. 1990.
    7. Liu, S. and J. Dai. On the popcorning mechanics of plastic packages, in InterPACK '99: Pacific RIM/ASME International Intersociety Electronics Photonic Packaging Conference 'Advances in Electronic Packaging 1999'. 1999. Maui, HI, USA: American Society of Mechanical Engineers, EEP. ASME, USA. 1999: 2023-2030.
    8. Fourier, J.B.J., Theorie analytique de la chaleur. 1822, Paris: F. Didot. 639.
    9. Fick, A., Ueber diffusion. Ann. Physik. Chemie, 1855.94: 59-91.
    10. Glicksman, M.E., Diffusion in solids : field theory, solid-state principles, applications. 2000, New York: Wiley. xxi, 472.
    11. Roy, A., E. Gontcharova-Benard, J.-L. Gacougnolle, and P. Davies, Hygrothermal effects on failure mechanisms of composite/steel bonded joints., in Time dependent and nonlinear effects in polymers and composites., R.A. Schapery and C.T. Sun, Editors. Americal society for testing and materials. 2000: 353-371.
    12. Browning, C.E., The mechanisms of elevated temperature property losses in high performance structural epoxy resin matrix materials after exposure to high humidity environments. Polymer Engineering & Science, 1978:18-24.
    
    
    13. Kerr, C., N.C. Macdonald, and S. Orman, Polymer, 1970.2(71).
    14. Noland, J.S., Adhesion science and technology, L.H. Lee, Editor. Plenum Press: New York. 1975: 413.
    15. Brewis, D.M., J. Comyn, B.C. Cope, and A.C. Moloney, Effect of carrier on the performance of aluminum alloy joints bonded with a structural film adhesive. Polymer Engineering & Science, 1981.21(12): 797-803.
    16. De'Neve, B. and M.E.R. Shanahan, Water absorption by an epoxy resin and its effect on the mechanical properties and infra-red spectra. Polymer, 1993. 34(24): 5099-5105.
    17. Tsotsis, T.K. and Y. Weitsman, Simple graphical method for determining diffusion parameters for two-stage sorption in composites. Journal of Materials Science Letters, 1994. 13(22): 1635-1636.
    18. Upadhyay, P.C. and A. Mishra, Parametric modeling of moisture assisted creep in polymeric composites. Journal of Reinforced Plastics & Composites, 1994. 13(12): 1056-1070.
    19. Newns, A.C., The sorption and desoprtion kinetics of water in a regenerated cellulose. Trans. Faraday Soc., 1956.52: 1533-1545.
    20. Biilovits, G.F. and C.J. Durning, Linear viscoelastic diffusion in the poly(styrene)/ethylbenzene system: Differential sorption experiments. Macromolecules, 1993.26(25): 6927-6936.
    21. Billovits, G.F. and C.J. Durning, Linear viscoelastic diffusion in the poly(styrene)-ethylbenzene system: Comparison between theory and experiment. Macromolecules, 1994.27(26): 7630-7644.
    22. Cai, L.W. and Y. Weitsman, Non-Fickian moisture diffusion in polymeric composites. Journal of Composite Materials, 1994.28(2): 130-154.
    23. Roy, S., W.X. Xu, S.J. Park, and K.M. Liechti, Anomalous moisture diffusion in viscoelastic polymers: modeling and testing. Journal of Applied Mechanics-Transactions of the ASME, 2000.67(2): 391-396.
    24. Roy, S., W.Q. Xu, S.J. Park, and K.M. Liechti, Anomalous diffusion of a penetrant in a viscoelastic polymer: Modelling and testing. Polymers & Polymer Composites, 2000.8(5): 295-305.
    25. Weitsman, Y., A Continuum Diffusion Model for Viscoelastic Materials. The Journal of Physical Chemistry, 1990.94(2): 961-968.
    
    
    26. Crank, J., A theoretical inverstigation of the influence of molecular relaxation and internal stress on diffusion in polymers. J. Polym. Sci., 1953. 11(2): 151-168.
    27. Rogers, C.E., Solubility and diffusivity, physics and chemistry of the organic solid state. Interscience, 1965: 510-635.
    28. 李凌冰,徐明瑜,溶剂在玻璃状高分子材料中的非Fick扩散机理的研究.中国生物医学工程学报,1999.18(4):441-450.
    29. 徐建新,复合材料的边界吸湿模型.中国民航学院学报,1999.17(3):5-10.
    30. Fung, Y.C., Foundations of solid mechanics. Prentice-Hall international series in dynamics. 1965, Englewood Cliffs, N.J.: Prentice-Hall. xiv, 525.
    31. Sih, G.C., J.G. Michopoulos, and S.C. Chou, Hygrothermoelasticity. 1986, Dordrecht; Boston: M. Nijhoff: Distributors for the United States and Canada Kluwer Academic Publishers. xii, 260.
    32. 曾丹苓,工程非平衡热动力学.1991.7,北京:科学出版社.
    33. Vergnaud, J.M., Drying of polymeric and solid materials : modelling and industrial applications. 1992, London; Hong Kong: Springer-Verlag. xix, 336.
    34. 周光泉,刘孝敏,粘弹性理论.1996,合肥:中国科学技术大学出版社.
    35. 杨挺青,粘弹性力学.1990,武汉:华中理工大学出版社.
    36. 克里斯坦森,粘弹性力学引论.1990,北京:科学出版社.
    37. 魏培君,张双寅,吴永礼,粘弹性力学的对应性原理及其数值反演方法.力学进展,1999.29(3):317-330.
    38. Christensen, R.M., Theory of viscoelasticity : an introduction. 2nd ed. 1982, New York: Academic Press. xii, 364.
    39. Schapery, R.A. A theory of nonlinear thermoviscoelasticity based on irreversible thermodynamics, in Proc. 5th U.S. Natl. Cong. Appi. Mech. 1966. 1966:511-530.
    40. Schapery, R.A., Further development of a thermodynamic constitutive theoty stress formulation.: Purdue University. 1969.
    41. Boit, M.A., General solutions of equations of elasticity and consolidation of a porous material. J. Appl. Mech., 1956.23: 91-96.
    42. Lustig, S.R., R.M. Shay, and J.M. Caruthers, Thermodynamic constitutive equations for materials with memory on a material time scale. Journal of Rheology, 1996.40(1): 69-106.
    
    
    43. Coleman, B.D., Thermodynamics of matrerials with memory. Arch. Ration. Mech. Anal., 1964. 17: 1.
    44. Coleman, B.D. and V. Mizel, A general theory of dissipation in materials with memory. Arch. Ration. Mech. Anal., 1967.27: 255.
    45. 邓伟,杨挺青,基于内变量理论的一种广义粘弹性本构方程.固体力学学报,1997.18(1):11-16.
    46. 陈建康,黄筑平,白树林,含量类变量的一种非线性粘弹性本构模型.杨州大学学报,1999.2(2):60-63.
    47. Gillat, O. and L.J. Broutman, Effect of an external stress on moisture diffusion and degeneration in a graphite-reinforced expoxy laminate., in Advanced Composite Materials-Environmental Effects., J.R. Vinson, Editor. American Society for Testing and Materials. 1978: 61-83.
    48. Marom, G. and L.J. Broutman, Moisture penetration into composites under external stress. Polymer Composites, 1981.2(3): 132-136.
    49. Nicolais, L., A. Aplicella, and E. Drioli, Effect of applied stress, thermal environment and water in epoxy resins. 1980.
    50. Henson, M.C. and Y. Weitsman. Stress effects on moisture transport in an epoxy resin and its composite, in 3th Japan-U.S. Conference on Composites. 1986. Tokyo, Japan: Japan Society for Composite Materials, Business Center for Academic Societies Japan, Yamazaki Building, 2-40-14 Hongo, Bunkyo-ku, Tokyo 113, Japan. 1986: 775-783.
    51. Pecht, M., M. W. Johnson, and R.E. Rowlands, Constitutive Equations for the Creep of Paper. TAPPI Journal, 1984.67(5): 106-108.
    52. Schwarzl, F. and A.J. Staverman, Time-temperature dependence of linear viscoelastic behavior. J. Appl. Phys., 1952.23: 838.
    53. Pecht, M.G. and M.W. Johnson, Jr., Strain Response of Paper under Various Constant Regain States. TAPPI Journal, 1985.68(1): 90-93.
    54. Pecht, M. and H.W. Haslach, Jr., Viscoelastic constitutive model for constant rate loading at different relative humidities. Mechanics of Materials, 1991. 11(4): 337-345.
    55. Roy, S. and J.N. Reddy, A finite element analysis of adhesively bonded composites joints with moisture diffusion and delayed failure. Comput. & Struct., 1988.29: 1011-1031.
    
    
    56. Roy, S. and J.N. Reddy, Finite-element models of viscoelasticity and diffusion in adhersively bonded joints. Int. J. Numer. Nethods Eng., 1988. 26: 2531-2546.
    57. Schapery, R.A., On the characterization of nonlinear viscoelastic materials. Polymer Engineering and Science., 1969.9(4): 294-310.
    58. Lefevre, D,R., T.C. Ward, D.A. Dillard, and H.F. Brinson, A nonlinear constitutive behabior for diffusion in polymers. Virginia Polytechnic Institue and State University.: Blacksburg, VA. 1987.
    59.郭兆璞,陈浩然,孙茁,轴对称壳体胶连接头粘弹性应力分析.大连理工大学学报,1998.38(2):135-140.
    60. Weitsman, Y., Stress Assisted Diffusion in Elastic and Viscoelastic Materials. Journal of the Mechanics & Physics of Solids, 1987.35(1): 73-93.
    61. Cognard, J., Influence of Water on the Cleavage of Adhesive Joints. International Journal of Adhesion & Adhesives, 1988.8(2): 93-99.
    62. Wiederhorn, S.M., S.W. Freiman, E.R. Fuller, Jr., and C.J. Simmons, Effects of Water and Other Dielectrics on Crack Growth. Journal of Materials Science, 1982. 17(12): 3460-3478.
    63. Griffith, A.A. The theory of rupture, in Proc. 1st Int. Congress Appl. Mech. 1924. 1924: 55-63.
    64. Irwin, G.R., Fracture Dynamics. Fracturing of Metals., 1948: 147-166.
    65. Orowan, E., Fracture and Strength of Solids. Reports on Progress in Physics., 1948. 12: 185-232.
    66. Rice, J.R., A path independent integral and the approximate analysis of strain concentrations by notches and cracks. J. of Appl. Mech., 1968.35: 379-386.
    67. Nishioka, T. and S.N. Atluri, Numerical Study of the Use of Path Independent Integrals in Elasto-Dynamic Crack Propagation. Engineering Fracture Mechanics, 1983. 18(1): 23-33.
    68. Nishioka, T. and S.N. Atluri, Path-Independent Integrals, Energy Release Rates, and General Solutions of near-Tip Fields in Mixed-Mode Dynamic Fracture Mechanics. Engineering Fracture Mechanics, 1983. 18(1): 1-22.
    69. Atluri, S.N., T. Nishioka, and M. Nakagaki, Incremental Path-Independent Integrals in Inelastic and Dynamic Fracture Mechanics. Engineering Fracture Mechanics, 1984.20(2): 209-244.
    
    
    70. Nishioka, T. and S.N. Atluri, Path-Independent Integral and Moving Isoparametric Elements for Dynamic Crack Propagation. AIAA Journal, 1984. 22(3): 409-414.
    71. Nishioka, T., T. Fujimoto, and S.N. Atluri, On the path independent T~* integral in nonlinear and dynamic fracture mechanics. Nuclear Engineering & Design, 1989. 111(1): 109-121.
    72. Wilson W. k. and Yu I-W, The use of the J-integral in thermal stress crack problems. International Journal of Fracture., 1979. 15(4): 377-387.
    73. Park, Y.B. and J. Yu. A fracture mechanics analysis of the popcorn cracking in the plastic IC packages, in Proceedings of the 1997 21st IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium. 1997. Austin, TX, USA: IEEE, Piscataway, NJ, USA,97CH36068.. 1997: 12-19.
    74. Shih, C.F., B. Moran, and T. Nakamura, Energy Release Rate Along a Three-Dimensional Crack Front in a Thermally Stressed Body. International Journal of Fracture, 1986.30(2): 79-102.
    75. Atluri, S.N,, Structural integrity & durability. 1997, Forsyth, Ga.: Tech Science Press. xiv, 865.
    76. Nakamura, T., C.F. Shih, and L.B. Freund, Computational Methods Based on an Energy Integral in Dynamic Fracture. International Journal of Fracture, 1985.27(3-4): 229-243.
    77. Moran, B. and C.F. Shih, General Treatment of Crack Tip Contour Integrals. International Journal of Fracture, 1987.35(4): 295-310.
    78. Lin, T.Y. and A.A.O. Tay. A J-integral criteria for delamination of Bi-material interfaces incorporating hydrothermal stresses, in ASME EEP, Advances in Electronic Packaging. 1997. 1997: 1421-1428.
    79. Lim, J.H., K.W. Lee, S.S. Park, and Y.Y. Earmme. Vapor pressure analysis of popcorn cracking in plastic IC packages by fracture mechanics, in Proceedings of the 1998 IEEE/CPMT 2nd Electronics Packaging Technology Conference (EPTC'98). 1998. Singapore. 1998: 36-42.
    80. Bradley, W., W.J. Cantwell, and H.H. Kausch, Viscoelastic creep crack growth: a review of fracture mechanical analyses. Mechanics of Time-Dependent Materials, 1997. 1(3): 241-268.
    81. 杨挺青,含裂纹体蠕变断裂理论及其应用研究.力学进展,1999.29(2):178-186.
    
    
    82. Schapery, R.A., A theory of crack initiation and growth in viscoelastic media Ⅰ. Theoretical development. International Journal of Fracture, 1975. 11(1): 141-59.
    83. Schapery, R.A., A theory of crack initiation and growth in viscoelastic media Ⅱ. Approximate methods of analysis. International Journal of Fracture., 1975. 11(3): 369-388.
    84. Schapery, R.A., A theory of crack initiation and growth in viscoelastic media Ⅲ. Analysis of continuous growth. Int. J. Fracture, 1975. 11: 549-562.
    85. Christensen, R.M., A rate-dependent criterion for crack growth. International Journal of Fracture, 1979. 15(1): 3-21.
    86. McCartney, L.N., On the energy balance approach to fracture in creeping materials. International Journal of Fracture., 1982. 19(2): 99-113.
    87. 王晓明,沈亚鹏,热动力学理论在粘弹性断裂力学中的应用.固体力学学报,1994.15(1):58-64.
    88. Kienzler, R. and T. Hollstein, Theoretical, experimental and numerical inverstigations of creep crack growth., in Creep in Structures., M. Zyczkowski, Editor. Springer-Verlag. 1991: 339-346.
    89. Schapery, R.A., Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media. International Journal of Fracture., 1984.25(3): 195-223.
    90. Lam, D.C.C., I.T. Chong, and P. Tong, Parametric analysis of steam driven delamination in electronics packages. IEEE Transactions on Electronics Packaging Manufacturing, 2000.23(3): 208-213.
    91. Tay, A.A.O. and T.Y. Lin. Moisture diffusion and heat transfer in plastic IC packages, in Thermal Phenomena in Electronic Systems -Proceedings of the Intersociety Conference 1996. IEEE, Piscataway, NJ, USA,96CB35940. 1996. 1996: 67-73.
    92. Tay, A.A.O. and T.Y. Lin. Moisture-induced interfacial delamination growth in plastic IC packages during solder reflow, in Proceedings - Electronic Components and Technology Conference 1998. IEEE, Piscataway, NJ, USA,98CB36206. 1998. 1998: 371-378.
    93. Tay, A.A.O., G.L. Tan, and T.B. Lim, Predicting delamination in plastic IC packages and determining suitable mold compound properties. IEEE Transactions on Components Packaging & Manufacturing Technology Part B-Advanced Packaging, 1994. 17(2): 201-208.
    
    
    94. Liu, S., J.S. Zhu, J.M. Hu, and Y.-H. Pao, Investigation of crack propagation in ceramic/conductive epoxy/glass systems. IEEE Transactions on Components Packaging & Manufacturing Technology Part A, 1995. 18(3): 627-633.
    95. Adachi, M., S. Ohuchi, and N. Totsuka, New mode crack of LSI package in the solder reflow process. IEEE Transactions on Components Hybrids & Manufacturing Technology, 1993. 16(5): 550-553.
    96. Ahn, S.-H. and Y.-S. Kwon, Popcorn phenomena in a ball grid array package. IEEE Transactions on Components Packaging & Manufacturing Technology Part B-Advanced Packaging, 1995. 18(3): 491-495.
    97. Amagai, M., Effect of adhesive surface chemistry and morphology on package cracking in tapeless lead-on-chip (LOC) packages. IEEE Transactions on Components Packaging & Manufacturing Technology Part B-Advanced Packaging, 1996. 19(2): 301-309.
    98. Chai, T.C., K.C. Chan, E.H. Wong, X.J. Fan, and T.B. Lim. Achieving crack free package through elimination of type Ⅱ failure, in 49th Electronic Components and Technology Conference (ECTC). 1999. San Diego, CA, USA. 1999: 702-707.
    99. Chart, K.C., T.C. Chai, E.H. Wong, and T.B. Lim. Impact of die attach material on Type Ⅱ popcorn cracking, in Proceedings of the 1998 IEEE/CPMT 2nd Electronics Packaging Technology Conference (EPTC'98). 1998. Singapore. 1998: 331-337.
    100. Chong, I.-T., D.C.C. Lam, and P. Tong. Effect of solder reflow temperature profile on popcorning, in InterPACK '99: Pacific RIM/ASME International Intersociety Electronics Photonic Packaging Conference 'Advances in Electronic Packaging 1999'. 1999. Maui, HI, USA: American Society of Mechanical Engineers. 1999: 1053-1058.
    101. Gallo, A.A. and T.R. Tubbs, High solder-reflow crack resistant molding compound. IEEE Transactions on Components Packaging & Manufacturing Technology Part A, 1995. 18(3): 646-649.
    102. Galloway, J.E. and B.M. Miles, Moisture absorption and desorption predictions for plastic ball grid array packages. IEEE Transactions on Components Packaging & Manufacturing Technology Part A, 1997. 20(3): 274-279.
    
    
    103. Kuo, A.Y., W.T. Chen, L.T. Nguyen, K.L. Chen, and G. Slenski. Popcorning - a fracture mechanics approach, in Proceedings - Electronic Components Conference. 1996. 1996: 869-874.
    104. Lam, D.C.C., I.T. Chong, M.F.F. Yuen, and P. Tong. Influence of defect size on popcorning, in International Conference on Solid-State & Integrated Circuit Technology Proceedings. 1998. Beijing, China. 1998: 550-553.
    105. Lee, H. and Y.Y. Earmme, Fracture mechanics analysis of the effects of material properties and geometries of components on various types of package cracks. IEEE Transactions on Components Packaging & Manufacturing Technology Part A, 1996. 19(2): 168-178.
    106. Lee, K.W. and Y.Y. Earmme, Effect of geometric parameters on popcorn cracking in plastic packages during VPS process. Finite Elements in Analysis & Design, 1998.30(1/2): 81-96.
    107. Lin, T.Y. and A.A.O. Tay. Mechanics of interracial delamination under hygrothermal stresses during reflow soldering, in Proceedings of the 1997 1st Electronic Packaging Technology Conference, EPTC. 1997. Singapore: IEEE, Piscataway, NJ, USA,97TH8307.. 1997: 163-169.
    108. Liu, S. and Y. Mei, Behavior of delaminated plastic IC packages subjected to encapsulation cooling, moisture absorption, and wave soldering. IEEE Transactions on Components Packaging & Manufacturing Technology Part A, 1995. 18(3): 634-645.
    109. Liu, S. and Y.H. Mei. Hygro-thermo-mechanical behavior of delaminated plastic IC packages with interface moisture evaporation, in 50 Years of Progress in Materials and Science Technology International SAMPE Technical Conference. 1994. Covina, CA, USA: SAMPE. 1994: 326-340.
    110. Margaritis, G. and F.J. McGarry, Method to predict cracking in IC plastic packages. IEEE Transactions on Components Packaging & Manufacturing Technology Part B-Advanced Packaging, 1994. 17(2): 209-216.
    111. Nguyen, L.T., S.A. Gee, and W.F.v.d. Bogert, Effects of configuration on plastic package stresses. Journal of Electronic Packaging, 1991. 113(4): 397-404.
    
    
    112. Park, Y.B. and J. Yu. Combined analysis of moisture diffusion with interface fracture mechanics on the interface delamination in the plastic IC packages during reflow soldering, in Proceedings of the 1998 MRS Spring Symposium. 1998. San Francisco, CA, USA: MRS, Warrendale, PA, USA. 1998: 31-36.
    113. Suhir, E. Predicted failure criterion (von-Mises stress) for moisture-sensitive plastic packages. in Electronic Components and Technology Conference. 1995. Piscataway, NJ, USA. 1995: 266-284.
    114. Tay, A.A.O., K.H. Lee, and K.M. Lim. Analysis of delamination in IC packages using a new variable-order singular boundary element, in Proceedings of the 1998 48th Electronic Components & Technology Conference. 1998. Seattle, WA, USA: Proceedings - Electronic Components and Technology Conference 1998. IEEE, Piscataway, NJ, USA,98CB36206.. 1998: 936-943.
    115. Tay, A.A.O. and T.Y. Lin, Impact of moisture diffusion during solder reflow on package reliability. Proceedings - Electronic Components Conference, 1998: 830-836.
    116. Tay, A.A.O., G.L. Tan, and T.B. Lim. Criterion for predicting delamination in plastic IC packages, in Annual Proceedings - Reliability Physics (Symposium). 1993. Piscataway, NJ, USA: IEEE. 1993: 236-243.
    117. Teo, Y.C., E.H. Wong, and T.B. Lim. Enhancing moisture resistance of PBGA. in Proceedings of the 1998 48th Electronic Components & Technology Conference. 1998. Seattle, WA, USA: Proceedings - Electronic Components and Technology Conference 1998. IEEE, Piscataway, NJ, USA,98CB36206.. 1998: 930-935.
    118. Tubbs, T.R. and A.A. Gallo, Accelerated popcorn testing of high solder-reflow crack resistant molding compounds. Microelectronics & Reliability, 1998. 38(4): 665-669.
    119. Yi, S., J.S. Goh, and J.C. Yang, Residual stresses in plastic IC packages during surface mounting process preceded by moisture soaking test. IEEE Transactions on Components Packaging & Manufacturing Technology Part B-Advanced Packaging, 1997.20(3): 247-255.
    
    
    120. Sung, Y. and K.Y. Sze, Finite element analysis of moisture distribution and hygrothermal stresses in TSOP IC packages. Finite Elements in Analysis and Design., 1998.30: 65-79.
    121. Gannamani, R. and M. Pecht, Experimental study of popcorning in plastic encapsulated microcircuits. IEEE Transactions on Components Packaging & Manufacturing Technology Part A, 1996. 19(2): 194-201.
    122. Lam, D.C.C., F. Yang, and P. Tong, Chemical kinetic model of interfacial degradation of adhesive joints. IEEE Transactions on Components & Packaging Technologies, 1999.22(2): 215-220.
    123. Munamarty, R., P. McCluskey, M. Pecht, and L. Yip, Popcorning in fully populated and perimeter plastic ball grid array packages. Soldering & Surface Mount Technology, 1996(22): 46-50.
    124. Desai, C.S. and R. Whitenack, Review of models and the disturbed State concept for thermomechanical analysis in electronic packaging. Journal of Electronic Packaging., 2001. 123(1): 19-33.
    125. Xiong, Z. and A.A.O. Tay. Modeling of viscoelastic effects on interracial delamination in IC packages, in Proceedings - Electronic Components and Technology Conference. 2000. Piscataway, NJ: IEEE. 2000:1326-1331.
    126. Tanaka, N., M. Kitano, T. Kumazawa, and A. Nishimura. Evaluation of interface delamination in IC packages by considering swelling of the molding compound due to moisture absorption, in 47th ECTC. 1997. 1997.
    127. Wong, E.H., K.C. Chan, T.Y. Tee, and R. Rajoo. Compasive treatment of moisture indeuced failure in IC packaging, in 3rd IEMT. 1999. 1999.
    128. Nguyen, L.T., K.L. Chen, and J. Schaefer. A new criterion for package integrity under solder refiow conditions, in 45th ECTC. 1995. 1995: 478-490.
    129. Lin, T.Y. and A.A.O. Tay, Dynamics of moisture diffusion, hygrothermal stresses and delamination in plastic IC packages. ASME Advances in Electronic Packaging, 1997. 19(1): 1429-1436.
    130. Pecht, M.G. and A. Govind. In-situ measurements of surface mount IC package deformations during refiow soldering, in IEEE Transactions on Components, Packaging, & Manufacturing Technology Part C: Manufacturing. 1997: IEEE, USA. 1997: 207-212.
    
    
    131. Gektin, V. and A. Bar-Cohen. Mechanistic figures of merit for die-attach materials, in Inter-Society Conference on Thermal Phenomena in Electronic Systems, I-THERM V (Cat. No.96CH35940). 1996. Orlando, FL, USA.: IEEE. 1996: 306-313.
    132. Lau, J.H., Ball grid array technology. Electronic packaging and interconnection series. 1995, New York: McGraw-Hill. xviii, 636.
    133. Wong, E.H., S.W. Koh, R. Rajoo, and T.B. Lim. Underfill swelling and temperature-humidity performance of flip chip PBGA package, in Proceedings of 3rd Electronics Packaging Technology Conference. 2000. Piscataway, NJ, USA. 2000: 258-262.
    134. Wong, E.H., K.C. Chan, R. Rajoo, and T.B. Lim. The mechanics and impact of hygroscopic swelling of polymeric materials in electronic packaging, in 50th Electronic Components and Technology Conference (Cat No 00CH37070) IEEE. 2000. Piscataway, NJ, USA. 2000: 576-580.
    135. Lin, R., E. Blackshear, and P. Serisky. Moisture induced package cracking in plastic encapsulated surface mount components during solder reflow process. in 26th Annual Proceedings. Reliability Physics 1988. 1988. Monterey, CA, USA: IEEE. 1988: 83-89.
    136. Chong, J.I.T., D.C.C. Lam, and P. Tong. Measurement of water evaporation rate for popcorning, in Proceedings International Symposium on Advanced Packaging Materials Processes,. 2000. Reston, VA, USA. 2000:131-134.
    137. Lam, D.C.C., J. Wang, and F. Yang. The role of steam evaporation in interfacial failures in electronics packages, in International Conference on Materials for Advanced Technologies (ICMAT 2001). 2001. Singapore. 2001.
    138. Evans, A.G. and J.W. Hutchinson, Thermomechanical integrity of thin films and multilayers. Acta Metailurgica et Materialia, 1995.43(7): 2507-2530.
    139. Tee, T.Y., X.J. Fan, and T.B. Lim, Modeling of whole field vapour pressure during reflow for flip chip BGA and wire bond PGA packges. Int. W/S on Electronic Materials & Packging, 1999.
    140. Schapery, R.A., Application of thermodynamics to thermomechanical fracture and birefringent phenomena in viscoelastic media. J. Appl. Phys., 1964. 35: 1451-1465.
    
    
    141. 张锦,张乃恭,新型复合材料力学机理及其应用.1993.3,北京:北京航空航天大学出版社.278.
    142. 高庆,工程断裂力学.1986,重庆:重庆大学出版社.
    143. 邓增杰,周敬恩,工程材料的断裂与疲劳.1995,北京:机械工业出版社.
    144. 朱锡雄,朱国瑞,高分子材料强度学.1992,杭州:浙江大学出版社.
    145. Irwin, G.R. Onset of fast crack propagation in the high strength steel and aluminum alloys, in Sagamore research conference proceedings. 1956. 1956: 289-305.
    146. Truesdell, C. and R.A. Toupin, in Handbuch der physik. Springer - Verlag. 1960: 226.
    147. Mueller, H.K. and W.G. Knauss, Crack propagation in a linearly viscoelastic strip. Journal of Applied Mechanics-Transactions of the ASME, 1971. 38(2): 483-488.
    148. Mueller, H.K. and W.G. Knauss, The fracture energy and some mechanical properties of a polyurethane elastomer. Transactions of the Society of Rheology., 1971. 15(2): 217-233.
    149. Knauss, W.G. and H. Dietmann, Crack propagation under variable load histories in linearly viscoelastic solids. International Journal of Engineering Science, 1970. 8(8): 643-56.
    150. Knauss, W.G., An observation of crack propagation in anti-plane shear. International Journal of Fracture Mechanics, 1970.6(2): 183-187.
    151. Crochet, M.J. and A.J. Staverman, A class of simple solids with fading memory. Int. J. Eng. Sci., 1969.7: 1173.
    152. Crochet, M.J. and P.M. Naghdi. On thermorheologially simple solids, in Proc. IUTAM Symp. Thermoelasticity. 1970. New York: Springer. 1970: 59.
    153. Christensen, R.M., A thermodynamical criterion for the glass-transition temperature. Trns. Soc. Rheol., 1977.21: 163.
    154. Berryman, J.G., Theory of elastic properties of composite materials. Applied Physics Letters, 1979.35(11): 856-8.
    155. Watt, J.P., G.F. Davies, and R.J. O'Connell, The elastic properties of composite materials. Reviews of Geophysics & Space Physics, 1976. 14(4): 541-63.
    156. Barrier, R.M., Nature of the Diffusion in Rubber. Nature, 1937. 140: 106-107.
    
    
    157. Bennett, S.J., K.L. deVries, and M.L. Williams, Adhesive fracture mechanics. Int, J. Fracture, 1974. 10: 33.
    158. Henriksen, M., Nonlinear Viscoelastic Stress Analysis - a Finite Element Approach. Computers & Structures, 1984. 18(1): 133-139.
    159. 袁龙蔚,智荣斌,李之达,流变断裂学基础.1992,北京:国防工业出版社.
    160. 王珺,杨帆,陈大鹏,计及热效应和湿分扩散的耦合粘弹性本构方程.力学学报,2002(待发表).
    161. 郭源君,文建国,谢献忠,刘泽军,耐磨胶年涂层的动态吸湿过程研究.复合材料学报,1999.16(4):52-56.
    162. 张义同,变温粘弹性蠕变型本构方程.固体力学学报,1995.16(2):152-156.
    163. 屈钧利,变温粘弹性有限元.西安矿业学院学报,1997.17(1):70-73.
    164. 黄克智,非线性连续介质力学.1989,北京:北京大学出版社.
    165. 杨挺青,非线性粘弹理论中的单积分型本构关系.力学进展,1988.18(52-59).
    166. 张淳源,张为民,非线性粘弹性本构理论中的弹性回复对应原理.湘潭大学自然科学学报,1998(3):59-65.
    167. Fourier,J.B.J.,热的解析理论.Di 1 ban.ed.Ke xue ming zhu wen ku. 1993,武汉:武汉出版社.xxxiii,438.
    168. 张为民,松弛模量与蠕变柔量的实用表达式.湘潭大学自然科学学报,1999.21(3):26-28.
    169. 张淳源,热粘弹性断裂力学基本方程.湘潭大学自然科学学报,1990.12:22-27.
    170. 杨卫,宏微观断裂力学.1995,北京:国防工业出版社.
    171. 胡辉,谈谈粘弹性材料力学.力学与实践,2000.22(1):54-55.
    172. 曾竟成等,复合材料理化性能.1998,长沙:国防科技大学出版社.
    173. 王嘉弟,物质本构理论.1995,成都:成都科技大学出版社.
    174. 付志一,华云龙,Maxwell 粘弹性球体的湿应力.力学与实践,1998.20(3):17-19.
    175. 熊大国,积分变换.1990,北京:北京理工大学出版社.
    176. 沈亚鹏,李录贤,王晓明,粘弹性准静态、动态问题的数值解法.力学进展,1994.25(2):265-272.
    177. 张淳源,粘弹性断裂力学.1994,武汉:华中理工大学出版社.
    178. 裴清清,陈在康,几种常用建材的等温吸放湿线试验研究.湖南大学学报,1999.26(4):96-99.
    179. 何平笙,高聚物的力学性能.1997,合肥:中国科学技术大学出版社.
    
    
    180. Chung, W.N. and J.G. Williams, Determination of JIc for polymers using the single specimen method. ASTM Special Technical Publication. Publ by ASTM, Philadelphia, PA, USA. n 1114. 1114: 320-339.
    181. Schapery, R.A., Nonlinear Fracture Analysis of Viscoelastic Composite Materials Based on a Generalized J Integral Theory. Available from ISBS, Beaverton, Oreg, USA. Publ by Jpn Soc for Compos Mater, Tokyo: 171-180.
    182. Wnuk, M.P. and W.G. Knauss, Delayed fracture in viscoelastic-plastic solids. International Journal of Solids & Structures., 1970.6(7): 995-1009.
    183. Knauss, W.G., The mechanics of polymer fracture. Applied Mechanics Reviews, 1973.26(1): 1-17.
    184. McCartney, L.N., Crack propagation in linear viscoelastic solids: some new results. International Journal of Fracture, 1978. 14(6): 547-54.
    185. McCartney, L.N., Crack growth laws for a variety of viscoelastic solids using energy and COD fracture criteria. International Journal of Fracture, 1979. 15(1): 31-40.
    186. Christensen, R.M. and E.M. Wu, A theory of crack growth in viscoelastic materials. Engineering Fracture Mechanics, 1981. 14(1): 215-225.
    187. Chung, T.-S., Note on the Role of Diffusion During the Inflation of a Tubular Viscoelastic Film. Polymer Engineering & Science, 1984.24(16): 1249-1252.
    188. Shvets, R.N., Y.I. Dasyuk, and V.P. Zabolotnyi, Stressed Condition Occurring in a Viscoelastic Cyclinder in Diffusion Impregnation. Soviet Materials Science (English Translation of Fiziko-Khimicheskaya Mekhanika Materialov), 1984.20(6): 533-537.
    189. Chung, T.-S., Effect of Diffusion on the Inflation of a Spherical Viscoelastic Film. Chemical Engineering Science, 1985.40(8): 1608-1610.
    190. Kyung-Suk, K., K.L. Dickerson, and W.G. Knauss, Viscoelastic behavior of opto-mechanical properties and its application to viscoelastic fracture studies. International Journal of Fracture, 1986.32(4): 265-83.
    191. Weitsman, Y., Continuum damage model for viscoelastic materials. Journal of Applied Mechanics-Transactions of the ASME, 1988.55(4): 773-780.
    192. Knauss, W.G. Time dependent fracture of polymers, in Advances in Fracture Research. 1989. 1989: Proceedings of the 7th International Conference on Fracture (ICF7).
    
    
    193. Bucci, S., H. Hoffmann, and G. Platz, Diffusion of latex particles in viscoelastic surfactant solutions. Progress in Colloid & Polymer Science., 1990. 81: 87-88.
    194. Cohen, D.S. and A.B. White, Jr., Sharp fronts due to diffusion and viscoelastic relaxation in polymers. SIAM Journal on Applied Mathematics, 1991. 51(2): 472-483.
    195. Sanopoulou, M. and J.H. Petropoulos, Relation of diffusion to viscoelastic properties in a glassy polymer-swelling agent system. Journal of Non-Crystalline Solids., 1991. 131(33): 827-830.
    196. Vieth, W.R., Diffusion in and through polymers: principles and applications. 1991, Munich; New York: Hanser ;Distributed in the U.S.A. and in Canada by Oxford University Press. xiii, 322.
    197. Herman, M.F., Linear viscoelastic response in the lateral diffusion model for linear chain polymer melts. Macromolecules, 1992.25(19): 4931-4936.
    198. Losi, G.U. and W.G. Knauss, Thermal stresses in nonlinearly viscoelastic solids. Journal of Applied Mechanics-Transactions of the ASME, vol.59, no.2, pt.2, June 1992, pp. S43-9. USA., 1992.59(2): S43-49.
    199. Bassetti, F. and C. Cali, Numerical evaluations and thermomechanical measurements for viscoelastic and nonlinear fracture mechanics behaviour of polymeric materials. Journal of Polymer Engineering, 1994. 13(4): 261-286.
    200. Bencher, C.D., R.H. Dauskardt, and R.O. Ritchie, Microstructural damage and fracture processes in a composite solid rocket propellant. Journal of Spacecraft & Rockets, 1995.32(2): 328-334.
    201. Neogi, P., Diffusion in polymers. Plastics engineering; 32. 1996, New York; Hong Kong: Marcel Dekker. ix, 309.
    202. Sagis, L.M.C., Constitutive equations for surface diffusion in mixtures of viscoelastic surfactants. Physica A, 1998. 254(3-4): 377-388.
    203. Wang, B., M.M.F. Yuen, and Z. Xiao. On the calculation of energy release rate for viscoelastic cracked laminates, in International Conference on Solid-State & Integrated Circuit Technology Proceedings. 1998. Beijing, China. 1998: 564-567.
    
    
    204. Manero, O. and R.F. Rodriguez, Thermodynamic description of coupled flow and diffusion in a viscoelastic binary mixture. Journal of Non-Equilibrium Thermodynamics, 1999.24(2): 177-195.
    205. Ogawa, K., A. Misawa, and M. Takashi, Crack growth behavior in an epoxy strip above and below Tg. International Journal of Fracture, 1999. 93(1): 209-226.
    206. Sagis, L.M.C., Constitutive equations for viscoelastic surface diffusion: effects of deformation and thermal history. Physica A, 1999. 262(3-4): 335-348.
    207. Schapery, R.A., Nonlinear viscoelastic and viscoplastic constitutive equations with growing damage. International Journal of Fracture, 1999.97(1-4): 33-66.
    208. Yoneyama, S., K. Ogawa, A. Misawa, and M. Takashi, Evaluation of timedependent fracture mechanics parameters of a moving crack in a viscoelastic strip, JSME International Journal Series A-Solid Mechanics & Material Engineering, 1999.42(4): 624-630.
    209. Yoon, C. and D.H. Allen, Damage dependent constitutive behavior and energy release rate for a cohesive zone in a thermoviscoelastic solid. International Journal of Fracture, 1999.96(1): 55-74.
    210. Ashour, A.S., Propagation of guided waves in a fluid layer bounded by two viscoelastic transversely isotropic solids. Journal of Applied Geophysics, 2000. 44(4): 327-336.
    211. Kitano, T., E. Haghani, T. Tanegashima, and P. Saha, Mechanical properties of glass fiber/organic fiber mixed-mat reinforced thermoplastic composites. Polymer Composites, 2000.21(4): 493-505.
    212. Han, X., F. Ellyin, and Z. Xia, A crack near the interface of bonded elasticviscoelastic planes. International Journal of Solids & Structures, 2001.38(20): 3453-3468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700