用户名: 密码: 验证码:
T/P91钢国产化工艺组织和性能改进的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
T91、P91是美国上世纪七十年代研制开发的火力发电厂锅炉蒸汽管道、集热箱、再热器、蒸汽导管等用热强钢,该钢具有高的许用应力,高的持久强度,高的蠕变抗力,高的疲劳强度,高的热导率,良好的焊接性,较好的抗蚀性,以及适中的价格。当今美、欧、日等先进国家的火力发电厂已普遍使用了T91和P91钢,取得了良好的经济效益。我国于“十五”期间引进了该钢种,并进行了国产化研究与生产,10Cr9MolVNb钢就是T91、P91的国产化新钢种,但10Cr9MolVNb钢的研究和生产尚存在诸多问题,钢管质量比先:进国家的T91、P91有较大差距,难以应用到火力发电厂,为解决我国热强钢10Cr9MolVNb性能比先进国家有较大差距这一问题,本文调研和检测了T/P91钢国产化中存在的理论认识、生产工艺、钢管质量、工程应用等的现实状况,开展了该钢的组织结构、强化机理、合金化原理等的应用理论研究,进行了生产工艺的优化研究,并就优化工艺在钢管制造厂实施了工艺实践,对优化工艺生产的钢管进行了组织结构、力学性能、断口等的统计学评价与综合评价,详细研讨了钢在566℃高温时的一些性能特征,并将国产T91钢管在发电厂实施了工程应用和运行检测。
     在理论认识上,本文的理论研究明确强调,经正火高温回火热处理的钢为回火板条马氏体组织。本文所作正火高温回火的实验证明,在A1温度以下高温回火时,板条马氏体只发生高温回复而不出现再结晶,这是合金元素Cr、Mo的大量固溶升高了回复与再结晶的温度,以及高温回复时释放了马氏体相变时的应变储存能,再加上高温回复时形成的位错网络的钉轧,致使再结晶的驱动力不足所致。马氏体板条发生高温回复时,板条内碎裂成了多个亚晶,高密度的位错规整为亚稳的位错网,析出的碳化物主要为M_(23)C_6型和MC型,M_(23)C_6型多以短条形在板条界和原奥氏体晶界析出,MC型则多以细短条形在板条内析出,AlN也与碳化物一同参与了钢的弥散析出强化。钢的强化机理除弥散析出强化之外,更以固溶强化、马氏体强化、细晶界面强化、位错强化等复合强化使钢获得满意的热强性。为此热强性目的,钢以Cr、Mo实现固溶强化和马氏体强化,升高马氏体的回复与再结晶温度,提高热强性,形成碳化物M_(23)C_6实现析出强化,但由于Mo和Cr的碳化物形成热小,Mo和Cr在高温时较易从基体固溶态向M_(23)C_6化合态转移从而引起M_(23)C_6的Ostwald熟化,故再以V、Nb固C阻止Mo、Cr向M_(23)C_6中转移。M_(23)C_6的Ostwald熟化是热稳定性的重要标志,界面能是公认的Ostwald熟化的驱动力,本文作者认为,对于热强钢来说,碳化物形成元
    
    素例如M。和Cr在基体固溶态和碳化物化合态的化学位是更重要的驱动力,因此碳
    化物在发生ostwald熟化时,不仅是碳化物尺寸、形态、分布的变化,更重要的是
    碳化物形成元素由基体向碳化物中迁移所引起的碳化物成分的变化。大量cr在基体
    中的固溶和马氏体板条发生亚晶碎化与形成亚稳位错网的高温回复,使钢具有高内
    耗的独特性质,从而提高了钢的抗疲劳能力。钢中N元素的存在,保证了钢在正火
    的高温加热时不出现Q(6)相,从而保证了钢的马氏体强化效果,同时所出现的
    AIN的弥散强化更进一步提高了钢的强度。
     对原工艺生产的钢管进行的组织、亚结构、断口、强塑性、强韧性等一系列检
    测表明,钢的组织、亚结构、断口均未达到所希望的标准,马氏体高温回复时位错
    网密度低,碳化物析出的弥散度不高,M”q型碳化物在原奥氏体晶界显著长大,甚至
    出现了决不许可的块状铁素体,本文的实验证明,铁素体的出现是回火温度过高,
    高到了A1点以上所致。组织结构的不当,导致了强塑性和强韧性低,标准偏差大。
    t统计检验表明,取样位置的影响显著,强塑性和强韧性沿钢管上壁厚的均匀性差,
    裂纹扩展功小,总破断功小,并出现准解理脆断和放射状准解理断口。这一切均表
    明制造工艺不佳,调研发现,热处理作业时常常采取提高温度缩短时间的操作,这
    对于厚壁管显然是不适当的。造成这些问题的原因则是在理论上对钢的组织结构、
    强化机理、合金化原理等理论问题的认识尚不深入,甚至模糊误解钢的组织为索氏
    体;在工艺参数上存在不当;在生产作业管理上也待改进。
     改进生产工艺的研究除精炼等工艺外,主要研究了钢管的热处理工艺,采用单
    因素试验法与正交试验法相结合,以室温和高温的强塑性与强韧性共16个力学性能
    指标的综合力学性能为判据,采用作者所提出的多指标级差量化综合评估法,优选
    获得了Pgl钢管的优化热处理工艺参数:正火温度1055℃土15℃(1040℃~1070℃);
    正火冷却平均速率1000~800℃,30℃/min~100℃/min:800~600℃,8℃/min~
    50℃/min;600~400℃,4℃/min~30℃/min;或800~500℃,7oC/min~40℃/min;
    回火温度765℃士15℃(750℃一780℃),回火冷却自然空冷或风冷。经复试和J积
    分延性断裂韧度核实,优化工艺可靠。
     在成都无缝钢管公司P91钢管的制造中实施了优化工艺,对按优化工艺制造的
    钢管进行了服、T以、SEM的组织、亚结构、断口分析,用静力拉伸和动力示波冲击
    法测试了钢管在室温和高温的强塑性与强韧性等力学性能,并对其进行了统计学评
    价?
T91 and P91 are heat resistant steels developed during 1970s in US for boiler components such as steam piping, steam head, reheater, etc in fossil power plants. The steels have higher performance in terms of allowable stress, rupture strength, creep-resistant ability, fatigue strength, and heat conductivity. The steels also have better weld ability and corrosion-resistant ability with a moderate price. Up to now, T91 and P91 have been widely used in fossil plants of the advanced countries and regions such as US, Europe and Japan with good economic benefits achieved. The steels were introduced in China during the 10th 5-year plan period, and the researches on its localization and the productions of the steels have since then been initiated. The 10Cr9MolVNb is a newly localized type of steel imitative of T91 and P91. But there have been many problems with 10Cr9MolVNb in its research and production. The quality of tube made of 10Cr9MolVNb is still substantially lower than that of tube made in advanced countries
     with as to be applied in power plant. In order to fill the performance gap between 10Cr9MolVNb and T91/P91, this paper carries out investigations on theoretical understanding and practice concerning production process; tube quality and engineering applications of domestically produced T91 and P91 steel. The paper also conducts application researches on theories of its structure, strengthening mechanism, alloying mechanism and optimization of production process. The optimized process has been used in a tube factory for verification need. The tubes manufactured with optimized process are then assessed statistically and comprehensively upon their structures, mechanic properties and fractures etc. The performance properties of the 10Cr9MolVNb under 566C temperature are discussed in detail in this paper. The paper also gives the application experience and testing results of the 10Cr9Mol VNb under operating condition.
    The paper indicates definitely in theory that the microstructure of the 10Cr9Mo1VNb is tempered martensitic lath when normalized and tempered under high temperature. It is proved by the experiments in this paper that lath martensite only appears high temperature recovery other than recrystallization when tempered below the temperature of A1. This is caused by the lack of driving force of recrystallization due to the elevation of recovery and recrystallization temperature owing to the solid solution of alloying element Cr and Mo, the release of strain energy stored during the phase transformation of martensite and the formation of dislocation network pining. When recovered under high temperature, the inner structure of martensitic lam breaks into several sub-grains. The high-density dislocation transforms into metastable type. The carbide precipitated are mainly type M23C6 and type MC, the former with elliptic shape appearing on grain boundary of martensite lath and austenite, while the latter with fine-short
     shape precipitated inside of the martensite lath. A1N also participates together with carbide in dispersed precipitation strengthening of steel. Besides dispersed precipitation strengthening, the steel acquires heat-resistant property through some composite strengthening mechanisms such as solution treatment, martensitic strengthening, fined interface surface strengthening, etc. The solution strengthening and martensitic strengthening are realized with the use of Cr and Mo. The precipitation strengthening is acquired through the precipitation of carbide M23C6 due to the elevation of the temperature of recovery and recrystallization. However, Mo and Cr can easily migrate from solid solution matrix to compound M23C6 under high temperature causing the Ostwald ripening of M23C6, thus, V, Nb and solid C are applied to obstruct the migration of Mo and Cr to
    
    
    
    M23Q5. Ostwald ripening of M23C6 is a significant mark indicating the heat stability of the steel. The interfacing surface energy is widely recognized as the driving force of the Ostwald ripening. However the author of this paper thinks that the
引文
[1] Vallourec & Mannesmann Tubes,P91/T91(X10CrMoVNb91)在电站和锅炉行业的应用[R],Beijing,1999,4.
    [2] Sasaki, Terufumi, Kobayashi, etc. Production and properties of seamless modified 9Cr-1Mo steel boiler tubes [R]. Kawasaki Steel Technical Report[J],1991, (25):78-87
    [3] 电力规划设计总院管道专业技术小组.关于我国火电厂主蒸汽管道采用P91钢的建议[J].中国电力,1996,29(7):3-9.
    [4] Takeda,Y.,Masuyama, F.,Heat Resisting Steels for Ultra Supercritical Fossil Power Plants(Part 2) ,Ibid
    [5] Takeda,Y.,Masuyama,F.,Heat Resisting Steels for Ultra Supercritical Fossil Power Plants(Part 1),Heat-resisting Materials,Proceeding of the First Intematinal Conference ,Fontana,Wisconsin, Usa/23-26,Sept,1991.
    [6] V. K. Sikka, ORNL, private communication from P. J. Grobner ,Climax Molybdenum CoMPany, April 30, 1980
    [7] Development of High Strength 2.25Cr-1.6W-V-Nb Steel Tube(HCM2S) for Boiler Application, mitomo Metal Industries ,Ltd,May 1996
    [8] Guntz Gand etc.,The T91 Book, Vallourec Industries-France,Revision 2,1990
    [9] S.Murase et.al.,The Properties of Modified 9Cr-lMo Steel, TeMPaloy F-9,ibid, 116-130
    [10] Sawarragi,Y.,Otsuka N.,Senba,H.,Yamamoto S.,Properties of a New 18-8 Austenitic Steel Tube(Super 304H) for Fossil Fired Boilers after Service Exposure with high Elevated Temperature Stength ,The Sumito Search No.56,Oct,1994
    [11] J Fmullen Kahe pioneers use of T91 for superheater-tube replacement
    [12] G.Guntz et.al.,The T91 Book-Ferritic Tubes and Pipe for High Temperature Use in Boilers. Vallourec industries,France,Revision.March 1994
    [13] M.Kuwahara et.al.,Design of 700MW Coal Fired Boiler with Elewated Reheat Steam Temperature for Hekinan No.3 Uint,Chubu ElectricPower Co.,Inc.The Thermal and Nuclear Power,(in Japanese), vol.42,no.7,1991
    [14] M.K.Booker et.al.,CoMParison of the Mechanical Strength Properties of Several High-Chromium Ferritic Steels, ibid,257-273
    [15] Development of High Strength HCM2S for Large Diameter and Thick Wall Pipe , ,Sumitomo Metal Industries ,Ltd,June.,1995
    [16] G.C.Bodine et.al.,Laboratory and Pilot Commercial Process/Product Development of Modified 9Cr-1Mo Ferritic Alloy, in Ferritic Steels for High-temperature Applications,Edited by Ashok K.Khare,American Society for Metals,Metals Park,Ohio 44073,1983,9-20
    [17] F.Barbier ,etc ,Corrsion behavior of steelsin flowing lead-bismuth, Journalof Nuckear Materials,296(2001)231-236..
    [18] J Cadek and etc An analysis of a set of creep data for a 9Cr-1Mo-0.2V(P91type), material science engineering, 1997,22-28.
    [19] B.Schmidt,etc,,Evaluation of the mechanical properties of T91 steel exposed to Pb and Pb-Bi at high temperature in controlled environment ,Journal of Nuckear, Materials,296(2001)249-255.
    
    
    [20] S.F.Pugh et.al., Ferritic Steels for Fast Reactor Steam Generators. vol.1, Britich Nuclear Energy Society ,London,1978
    [21] D.P.Edmonds et.al., Weldability of Modified 9Cr-1Mo Steels, ORNL/TM-6890,August 1979
    [22] K. Hamada et.al.,Effects of Precipitate Shape on High Temperature Strength of Modified 9Cr-1Mo Steels. ISIJ International., 1995, 35 (1)
    [23] A.Iseda et.al.,Creep Strength and Stress Corrosion Cracking of Welded Joint of 0.1C-12Cr-1Mo-1W-V-Nb Steel Tube for Boiler Application, in Heat-Resistant Materials, Proceeding of the First International Conference, Fontana, Wisconsin,USA, 1991
    [24] K.Tokuno et.al., Dispersion Strengthening High-Cr Steels by Forming "V-Wings" , JOM, 1992, Apr.
    [25] W. B. Jones et.al., Microstructural Evoluation of Modified 9Cr-1Mo Steel, Metallurgical Transactions A, 1991, 22A (5)
    [26] K.Kimura et.al.,Microstructural change and degradation Behaviour of 9Cr-1Mo-V-Nb Steel in the Long Term. Procedings of the 5th International Charles Parsons Turbine Conference
    [27] E.G.Nisbett,The Production and Properties of Heavy Walled Forged Vessel Shells in 9Cr-1Mo Alloy Steel,ibid,21-30
    [28] J.W.Davis et.al.,Ferritic Alloys for Use in Nuclear Energy Technologies .The Metallurgical Society of AIME,1983
    [29] D.A.Canonico.Thick-Walled Pressure Vessels for Energy Systems, ibid,31-41
    [30] H.C.Rauschenplat et.al.,9Cr-1Mo Forgings Used in Fabrication of Pressure Vessels,ibid,42-64
    [31] V.K.Sikka et.al.,Modified 9Cr-1Mo Steel-An Improved Alloy for Steam Generator Application,ibid,65-84
    [32] S.J.Sanderson,Mechanical Properties and Metallurgy of 9Cr-1Mo Steel,ibid,85-99
    [33] K.Iwanaga.Construction and Trial Operation of Kawagoe Thermal Power Station Unit no.1 and no.2,Chubu Electric Power Co.,Inc.The Thermal and Nuclear Power , (in Japanese), vol.42, no.4,1990
    [34] Masuyama,F, Ishihara,I.,Yokoyama,T.,Fujita,M.Application of Tungsten Strengthed 9-12Cr% Boiler Steel Tube,The Thermal and Nuclear Power(in Japanese),46,No.5,1995
    [35] G C.Bodine et.al.,The Development of a 9Cr Steel with Improved Strength and Toughness,in Ferritic Steels for Fast Reactor Steam Generators vol.1,Edited by S.F.Pugh et.al.,British Nuclear Energy Society, London,1978,160-163
    [36] P. Patriarca et.al., Nucl .Technol., 28, march 1976, 516
    [37] J. Orr et.al., "The Physical Metallurgy of Chromium-Molybdenum Steels for Fast Reactor Boilers" Proc. Int. Conf. Ferdtic Steels for Fast Reactor Steam Generators, May 30 June 2, 1977, Vol. 1, ed. By S. F. Pugh and E. A. Little, British Nuclear Energy Society ,1978
    [38] E. H. Kottcamp et.al., Weld. J. 41 (8) ,August 1962,
    [39] O.N.Carlson et.al.,Effects of Compocition and Thermal Treatment on Bend-Ductility Transition Temperature of 9Cr-1Mo Ferritic Steel,in Ferritic Alloys for Use in Nuclear Energy Technologies, Edited by J.W.Davis et.al.,The Metallurgical Society of AIME,1983,357-364
    [40] V.K.Sikka et.al.,Creep Properties of Modified 9Cr-1Mo Steel, ibid,413-423
    [41] V.K.Sikka,Development of Modified 9Cr-1Mo Steel for Elevated Temperature Service,ibid,
    
    317-327
    [42] F.H.Huang et.al.,Fracture Behavior of Unirradiated HT-9 and Modified 9CrolMo Welds,in Ferritic Alloys for Use in Nuclear Energy Technologies,Edited by J.W.Davis et.al.,The Metallurgical Society of AIME,1983,337-346
    [43] P.J.Ennis et.al.,9-12%Chromium Steels: Application Limits and Potential for Further Development. Procedings of the 5th International Charles Parsons Turbine Conference
    [44] B.Schmidt et.al.,Evaluation of the mechanical properties of T91 steel exposed to Pb and Pb-Bi at high temperature in controlled environment.Joural of Nuclear Materials.296(2001),249-255
    [45] G. Ebi et.al.,Effects of Processing on the High Temperature Low Cycle Fatigue Properties of Modified 9Cr-1Mo Ferritic Steel.Fatigue Engng. Mater. Struet.,1984,7 (4) ,299-314
    [46] W.B.Jones et.al.,Mierostruetural Evoluation of Modofoed 9Cr-1Mo Steel, Metallurgical Transactions A,1991,22A (5) ,1049-1058
    [47] Y.Yamamoto et.al.,Manufacture and Properties of Modofood 9Cr-1Mo SteelForgings for Valve Bodies in Ultra Super Critical Power Plants,The Thermal and Nuclear Power,(in Japanese ),1995,46 (5) ,488-496
    [48] F.Barbier et.al.,Corrosion behavior of steels in flowing lead-bismuth.Journal of Nuclear Materials 296(2001)249-255
    [49][19] A.K.Khare .Ferritie Steels for High-temperature Applications. ASM,Metals Park .Ohio 44073, 1981
    [50] John Hald,Birendra Nath,Ney High Temperature Steels for Steam Power Plants,Elsam/Elkraft/TU Denmark, Denmark National Powerplc.UK
    [51] G.Eggeler et.al.,Analysis of Creep in a Welded 'P91' Pressure Vessel, Int.J.Pres.Ves. & Piping, 1994, 60:237-257
    [52] I.A.Shibli et.al.,Creep crack growth in P22 and P91 welds——overview from SOTA and HIDA projects.International Journal of Pressure Vessels and Ppping 78(2001)785-793
    [53] S.Spigarelli et.al.,Analysis of the creep behaviour of modified P91(9Cr-IMo-NbV) welds.Materials and Design 23(2002)547-552
    [54] K.Hamada et.al.,Effects of PREClPITATE shape on High Temperature Strength of Modified 9Cr-lMo Steels.ISIJ International.,1995,35 (1) ,86-91
    [55] A.Iseda et.al.,Application and Properties of Modified 9Cr-lMo Steel Tubes and Pipe for Fossirfired Power Plants,The Sumitomo Search,1988,36(5)
    [56] 544
    [57] 孙智,董小文,张绪平,等.奥氏体化温度对9Cr-1Mo-V-Nb钢组织与性能的影响[J].金属热处理,2001,26(8):12-14.
    [58] 章燕谋编.锅炉与压力容器用钢.西安:西安交通大学出版社,1984.12
    [59] 韩佳泉,常风华,张国平,T91钢的研究现状及焊接,黑龙江电力技术,1999。21(3)
    [60] 赵钦新,10Cr9MoVNbN耐热钢的深化研究,西安交通大学,博士论文,1998,1
    [61] 王艳丽等.电厂主蒸汽管的微观性能分析.材料热处理学报.2002,23(2)
    [62] 宛农等.Mod 9Cr-1Mo耐热钢析出相的热力学计算及应用[J].特殊钢.1999,20(2)
    [63] 王春旭等.钒含量对T91钢性能的影响[J].钢铁研究学报.1997,9(Suppl.)
    
    
    [64] 朱丽慧等.Al对T91耐热钢蠕变性能的影响[J].钢铁.2002,37(5)
    [65] 李素芹,李士琦,王雅娜.钢中残余元素控制对策的分析与探讨[J].钢铁,2001,36(12):70-72.
    [66] 赵钦新等.国产T91钢管蠕变脆性倾向的微观结构.锅炉技术.1997,11
    [67] 朱丽慧等.新型耐热钢T91的蠕变断裂寿命估算.锅炉技术.2002,33(5)
    [68] 朱丽慧,赵钦新,顾海澄,等.Al对T91耐热钢蠕变性能的影响[J].钢铁,2002,37(5):50-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700