几种高分子材料的域结构、分子动力学和相互作用的固体NMR研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚3-羟基丁酸酯(PHB)是微生物细胞在其生长的特定时期在胞内合成的具有相应生物功能的聚羟基烷酸酯类物质,是一种具有潜在的广泛应用前景的生物可降解的高分子材料。由于天然的PHB其较高的结晶度和较窄的温度处理范围,它在应用过程中受到较大的局限性。人们将结构相似的单体3-羟基戊酸(HV)与3-羟基丁酸(HB)共聚形成共聚物(PHBV)以后,显著改善了PHB的物理机械性能,譬如:冲击强度和韧性有所增加,而硬度脆性有一定程度的下降。人们虽然在这些降解高分子材料的开发、制备和物理机械性能以及这些材料的应用等方面有很多研究,但是有关分子水平的问题并未得到系统的探索。因此,我们针对这些分子基础问题(结构域特征和分子动力学等)做了一些初步的研究。
     全氟磺酸树脂(Nafion)是杜邦公司生产的一种燃料电池电极薄膜材料,其较低的使用温度(<100℃)严重地限制了它的应用范围。人们发现,当把层状硅酸盐(蒙脱土)和Nafion合成为有机无机纳米复合材料之后,在一定程度上提高了它的使用温度。虽然这种复合材料很容易合成出来并且已经运用到了实际工业应用之中,但是这种热稳定性提高的原因却不甚清楚。我们试图通过固体NMR等分析方法从微观相互作用方面来认识这种宏观性能改善的原因。
     我们使用固体13C CP MAS、13C SPE MAS NMR以及XRD方法测定了PHB和两种PHBV的结晶度(Xc),发现随着HV的引入它们的Xc逐渐减小。研究同时发现在测量Xc的这几种方法中13C SPE MAS NMR误差较小。实验中我们利用质子弛豫诱导谱编辑(PRISE)、质子自旋扩散(Spin-diffusion)等固体NMR技术研究了PHB以及不同含量HV的PHBV的结构域特征和相应结构域的运动性。实验结果表明随着HV含量的增加,它们的非晶相结构域尺寸增大,晶相结构域尺寸减小,可以看出HV的引入导致PHB的结构域特征的变化是其宏观性能改善的原因。
     我们进一步通过低分辨固体NMR测量了PHB和PHBV的变温质子弛豫时间(T1, T1ρ, T2),然后通过理论拟合获得了它们不同运动状态的分子运动相关频率(τc)和分子活化能(Ea)等动力学信息,研究发现随着HV含量的增加,分子运动加快,活化能减小,我们在分子水平上认识了HV的引入使得PHB宏观性能改善的微观原因。
     我们还通过溶胶凝胶法合成了燃料电池电极薄膜(Nafion)和层状硅酸盐(蒙脱土)纳米复合材料来提高Nafion的使用温度,FT-IR和29Si MAS NMR实验结果表明在杂化材料中虽然质子化的十二烷基胺修饰的蒙脱土(MMT)的引入没有导致MMT的骨架结构发生明显变化,而且Nafion也没有插入到MMT的层间,但是TGA分析表明杂化材料中的Nafion的热稳定性比纯的Nafion高。我们通过一系列固体NMR技术包括19F MAS、1H-13C CP MAS NMR和1H-13C HETCOR 2D NMR实验初步证实了这种材料的热稳定性的提高可能是由于MMT表面吸附的NH3+与Nafion?侧链上的SO3-之间存在较强的静电相互作用,我们初步可以认为这种相互作用是导致电极材料性能改善的原因。
Poly(3-hydroxybutyrate) is one of the most applicative biodegradable polymers. However, its industrial application remains limited, owing to several inherent deficiencies including poor mechanical properties such as brittleness due to its high crystallinity and narrow thermal processing range. To overcome these drawbacks, a number of copolymers with other similar hydroxyalkanoate monomer units have been developed such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate), [P(HB-HV)]. Compared with PHB, these copolymers exhibit outstanding improvement of physical/mechanism properties such as reduced brittleness and enhanced flexibility. Although the preparation and its physical/mechanism properties had been investigated extensively, less work has been done for answering the questions about the molecular basis of them and the relationship between the micaostructural and dynamic properties and their macroscopic properties.
     Nafion is one of the most promising proton-exchange membranes used in direct methanol fuel cell (DMFC). In practice, normal Nafion? materials are not applicable for DMFC due to poor mechanical stability at temperature above 100oC. In order to develop the higher temperature electrolyte materials, many attempts have, so far, been made by modifying the Nafion? membrane with various nonconductive inorganic materials. However, little information is available on the molecular basis of such thermal stability improvement. In addition, there are few reports dealing with the molecular structure of these composite materials, the interactions between the inorganic and organic species at the molecular level and structure-property relationships which will undoubtedly be useful for future development of materials.
     In this dissertation, combined with XRD various solid state NMR techniques including 13C CP MAS、13C SPE MAS NMR, proton relaxation induced spectra editing, 1H spin-diffusion have been employed to investigate the crystallnility and domain structural character. The experimental results show that with the content of HV increasing their crystallinity decrease, domain size of amorphous region increase and domain size of rigid region decrease, which can be seen at the molecular lever that introduction of HV results in the macroscopic properties improvement of PHB.
     Furthermore, 1H variable temperature relaxation time (T1, T1ρand T2) measurements have been employed to investigate the molecular motional parameters such as molecular rotational correlation time (τ0) and active energy (Ea) in the PHB and its copolymers PHBV. The results imply that the higher the content of HV, the faster the molecular motion, the lower the molecular active energy, which can be correlated to their structural and molecular dynamic properties at the molecular lever.
     A series of nanocomposites have been prepared from perfluorosulfonylfluoride copolymer resin (Nafion?) and layered montmorillonite (MMT) modified with protonated dodecylamine by conventional sol-gel intercalation. FT-IR and 29Si MAS NMR results showed no significant alteration to the lattice structure of m-MMT and addition of the organically modified MMT led to moderate improvement of the thermal stability of Nafion? resin though the resin was not intercalated into the m-MMT. 19F MAS, 1H-13C CP MAS and HETCOR 2D NMR experimental results, combined with XRD and element analysis, indicated strong interactions between NH3+ group of surface absorption of dodecylamine and the SO3- group of the resin side chain. It is concluded that interactions between the resin and the surface absorbed organic modifier probably have some contributions to the resin thermal stability enhancement resulting from addition of m-MMT.
引文
[1] Nabar, Y.; Raquez, J. M.; Dubois, P.; Narayan, R., Production of Starch Foams by Twin-Screw Extrusion: Effect of Maleated Poly(butylene adipate-co-terephthalate) as a Compatibilizer, Biomacromolecules 2005, 6, 807.
    [2] Wise, E., Contributions to Chemistry of Wood Cellulose. II-Nature of Wood Cellulose, Ind. Eng. Chem. 1923, 15, 711.
    [3] Carr, M.; Gabriel, D., Corrections: Dextran-Induced Changes in Fibrin Fiber Size and Density Based on Wavelength Dependence of Gel Turbidity, Macromolecules 1981, 14, 890.
    [4] Liu, S.-Q.; Yang, Y.-Y.; Liu, X.-M.; Tong, Y.-W., Preparation and Characterization of Temperature-Sensitive Poly(N-isopropylacrylamide)-b-poly(D,L-lactide) Micro-spheres for Protein Delivery, Biomacromolecules 2003, 4, 1784.
    [5] Ni, Q.; Yu, L., Synthesis of Novel Poly( -caprolactone)s Functionalized with a Thioester End-Group via a Living Ring Opening Polymerization and Their Application in Chemoselective Ligation with Compounds Containing a Cysteine Terminal, J. Am. Chem. Soc. 1998, 120, 1645.
    [6] Qian, H.-S.; Luo, L.-B.; Gong, J.-Y.; Yu, S.-H.; Li, T.-W.; Fei, L.-f., Te@Cross-Linked PVA Core-Shell Structures Synthesized by a One-Step Synergistic Soft-Hard Template Process, Cryst. Growth Des. 2006, 6, 607.
    [7] Reeve, M. S.; McCarthy, S. P.; Gross, R. A., Preparation and characterization of (R)-poly(.beta.-hydroxybutyrate)-poly(epsilon-caprolactone) and (R)- poly (beta- hydroxybutyrate)-poly(lactide) degradable diblock copolymers, Macromolecules 1993, 26, 888.
    [8] Abou-Zeid, D.-M.; Muller, R.-J.; Deckwer, W.-D., Biodegradation of Aliphatic Homopolyesters and Aliphatic-Aromatic Copolyesters by Anaerobic Micro- organisms, Biomacromolecules 2004, 5, 1687.
    [9] Zhang, S.-J.; Yu, H.-Q.; Ge, X.-W.; Zhu, R.-F., Optimization of Radiolytic Degradation of Poly(vinyl alcohol), Ind. Eng. Chem. Res. 2005, 44,1995.
    [10] Yang, B.; Takahashi, K.; Takeishi, M., Styrene Drop Size and Size Distribution in an Aqueous Solution of Poly(vinyl alcohol), Ind. Eng. Chem. Res. 2000, 39, 2085.
    [11] Senti, F. R.; Witnauer, L. P., Structure of Alkali Amylose, J. Am. Chem. Soc. 1948, 70, 1438.
    [12] Kerr, R. W.; Cleveland, F. C., The Structure of Amyloses, J. Am. Chem. Soc.1952, 74, 4036.
    [13] Gelders, G. G.; Goesaert, H.; Delcour, J. A., Potato Phosphorylase Catalyzed Synthesis of Amylose-Lipid Complexes, Biomacromolecules 2005, 6, 2622.
    [14] Kawada, J.; Lutke-Eversloh, T.; Steinbuchel, A.; Marchessault, R. H., Physical Properties of Microbial Polythioesters: Characterization of Poly(3-mercapto alkano -ates) Synthesized by Engineered Escherichia coli, Biomacromolecules 2003, 4, 1698.
    [15] Stigers, D. J.; Tew, G. N., Poly(3-hydroxyalkanoate)s Functionalized with Carboxylic Acid Groups in the Side Chain, Biomacromolecules 2003, 4, 193.
    [16] Reddy, C. S. K.; Ghai, R.; Rashmi; Kalia, V.C., Polyhydroxyalkanoates: an overview, Bioresource Technology 2003, 87, 137.
    [17] Noda, I.; Green, P. R.; Satkowski, M. M.; Schechtman, L. A., Biomacromolecules 2005, 6, 580.
    [18] Hocking, P. J.; Marchessault, R. H.; Biopolyesters. In: Griffin GJL, editor. Chemistry and technology of biodegradable polymers. London: Chapman & Hall, 1994. P. 48–96 and reference therein.
    [19] Ikawa, T.; Mitsuoka, T.; Hasegawa, M.; Tsuchimori, M.; Watanabe, O.; Kawata, Y.; Egami, C.; Sugihara, O.; Okamoto, N., Optical Near Field Induced Change in Viscoelasticity on an Azobenzene-Containing Polymer Surface, J. Phys. Chem. B. 2000, 104, 9055.
    [20] Cammas, S.; Béar, M.-M.; Moine, L.; Escalup, R.; Ponchel, G.; Kataoka, K.; Guérin, P., International Journal of Biological Macromolecules 1999, 25, 273.
    [21] Xu, J.; Guo, B.-H.; Wu, Q.; Chen, J.-C.; Chen, G.-Q.; Zhou, J.-J.; Jiang, Y.; Li, L., Organization process of the hierarchical structures in microbially synthesized polyhydroxyalkanoates, Current Applied Physics 2007, 7, e41.
    [22] Yoshie, N.; Oike, Y.; Kasuya, K.; Doi, Y.; Inoue, Y., Change of Surface Structure of Poly(3-hydroxybutyrate) Film upon Enzymatic Hydrolysis by PHB Depolymerase, Biomacromolecules 2002, 3, 1320.
    [23] He, Y.; Shuai, X.; Kasuya, K.-i.; Doi, Y.; Inoue, Y., Enzymatic Degradation of Atactic Poly(R,S-3-hydroxybutyrate) Induced by Amorphous Polymers and the Enzymatic Degradation Temperature Window of an Amorphous Polymer System, Biomacromolecules 2001, 2, 1045.
    [24] Kim, Y.-R.; Paik, H.-j.; Ober, C. K.; Coates, G. W.; Batt, C. A., Enzymatic Surface-Initiated Polymerization: A Novel Approach for the in Situ Solid-Phase Synthesis of Biocompatible Polymer Poly(3-hydroxybutyrate),Biomacromolecules 2004, 5, 889.
    [25] Bluhm, T. L.; Hamer, G. K.; Marchessault, R. H.; Fyfe, C. A.; Veregin, R. P., Isodimorphism in bacterial poly(-hydroxybutyrate-co--hydroxyvalerate), Macromolecules 1986, 19, 2871.
    [26] Bloembergen, S.; Holden, D. A.; Bluhm, T. L.; Hamer, G. K.; Marchessault, R. H., Isodimorphism in synthetic poly(-hydroxybutyrate-co--hydroxyvalerate): stereoregular copolyesters from racemic –lactones, Macromolecules 1989, 22, 1663.
    [27] Doi, Y.; Kunioka, M.; Nakamura, Y.; Soga, K., Nuclear magnetic resonancestudies on unusual bacterial copolyesters of 3-hydroxybutyrate and 4-hydroxybutyrate, Macromolecules 1988, 21, 2722.
    [28] Andrew, E. R.; Bradbury, A.; Eades, R. G., Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed, Nature 1958, 182, 1659.
    [29] Lowe, I. J., Free Induction Decays of Rotating Solids, Phys. Rev. Lett. 1959, 2, 285-287.
    [30] Mehring, M., Principles of High Resolution NMR in Solids. Springer-Verlag: Berlin, 1983.
    [31] Fyfe, C. A., Solid Sate NMR for Chemists. C.F.C. Press: Guelph, ON, 1983.
    [32] Dybowski, C.; Lichter, R. L., NMR Spectroscopy Techniques. Dekker: New York, 1987.
    [33] Pines, A.; Gibby, M. G.; Waugh, J. S., Proton-enhanced nuclear induction spectroscopy 13C chemical shielding anisotropy in some organic solids Chem. Phys. Lett. 1972, 15, 373.
    [34] Pines, A.; Gibby, M. G.; Waugh, J. S., Proton-enhanced NMR of dilute spins in solids, J. Chem. Phys. 1973, 59, 569.
    [35] Hartmann, S. R.; Hahn, E. L., Nuclear Double Resonance in the Rotating Frame, Phys. Rev. 1962, 128, 2042.
    [36] Kolodziejski, W.; Klinowski, J., Kinetics of Cross-Polarization in Solid-State NMR: A Guide for Chemists, Chem. Rev. 2002, 102, 613.
    [37] Waugh, J. S.; Huber, L.; Haeberlen, U., Approach to High-Resolution NMR in Solids, Phys. Rev. Lett. 1968, 20, 180.
    [38] Rhim, W. K.; Elleman, D. D.; Vaughan, R. W., Analysis of multiple pulse NMR in solids, J. Chem. Phys. 1973, 59, 3740.
    [39] Burum, D. P.; Rhim, W. K., Analysis of multiple pulses NMR in solids. III, J. Chem. Phys. 1979, 71, 944.
    [40] Scheler, G.; Haubenreisser, U.; Rosenberger, H., High-resolution 1H NMR in solids with multiple-pulse sequences and magic-angle sample spinning at 270 MHz, J. Magn. Reson. 1981, 44, 134.
    [41] Lee, M.; Goldburg, W., Nuclear-Magnetic-Resonance Line Narrowing by a Rotating rf Field, Phys. Rev. 1965, 140, A1261.
    [42] Levitt, M. H.; Kolbert, A. C.; Bielecki, A.; Ruben, D.J., High-resolution 1H NMR in solids with frequency-switched multiple-pulse sequences, Solid State NMR. 1993, 2, 151.
    [43] Bielecki, A.; Kolbert, A. C.; Levitt, M.H., Frequency-switched pulse sequences: Homonuclear decoupling and dilute spin NMR in solids, Chem. Phys. Lett. 1989, 155, 341.
    [44] Lesage, A.; Steuernagel, S.; Emsley, L., Carbon-13 Spectral Editing in Solid-State NMR Using Heteronuclear Scalar Couplings, J. Am. Chem. Soc. 1998, 120, 7095.
    [45] Charmont, P.; Lesage, A.; Steuernagel, S.; Engelke, F.; Emsley, L., Sample Restriction Using Magnetic Field Gradients in High-Resolution Solid-State NMR, J. Magn. Reson. 2000, 145, 334.
    [46] Vinogradov, E.; Madhu, P. K.; Vega, S., High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee–Goldburg experiment, Chem. Phys. Lett.1999, 314, 443.
    [47] Vinogradov, E.; Madhu, P. K.; Vega, S., A bimodal Floquet analysis of phase modulated Lee–Goldburg high resolution proton magic angle spinning NMR experiments, Chem. Phys. Lett. 2000, 329, 207.
    [48] Vinogradov, E.; Madhu, P. K.; Vega, S., Phase modulated Lee–Goldburg magic angle spinning proton nuclear magnetic resonance experiments in the solid state: A bimodal Floquet theoretical treatment, J. Chem. Phys. 2001, 115, 8983.
    [49] Brus, J.; Jegorov, A., Through-Bonds and Through-Space Solid-State NMR Correlations at Natural Isotopic Abundance: Signal Assignment and Structural Study of Simvastatin, J. Phys. Chem. A. 2004, 108, 3955.
    [50] Meiboom, S.; Gill, D., Modified spin-echo method for measuring spin relaxation times, Rev. Sci. Instrum. 1958, 29, 688.
    [51] Foster, T. J.; Ablett, S.; Mccann, M. C.; Gidley, M. J., Mobility-resolved 13C-NMR spectroscopy of primary plant cell walls, Biopolymers 1996, 39, 51.
    [52] Tang, H. R.; Wang, Y. L.; Belton, P. S., 13C CPMAS studies of plant cell wall materials and model systems using relaxation –induced spectral editing techniques Solid State NMR 2000, 15, 239.
    [53] Brown, S.P.; Perez-Torralba, M.; Sanz, D.; Claramunt, R. M.; Emsley, L., Determining hydrogen-bond strengths in the solid state by NMR: the quantitative measurement of homonuclear J couplings, Chem. Commun. 2002, 17, 1852.
    [54] Brown, S.P.; Perez-Torralba, M.; Sanz, D.; Claramunt, R. M.; Emsley, L., The Direct Detection of a Hydrogen Bond in the Solid State by NMR through theObservation of a Hydrogen-Bond Mediated 15N-15N J Coupling, J. Am. Chem. Soc. 2002, 124, 1152.
    [55] Tang, H. R.; Brian, P. H., Use of 13C MAS NMR to Study Domain Structure and Dynamics of Polysaccharides in the Native Starch Granules, Biomacromolecules 2003, 4, 1269.
    [56] Jeener, J.; Broekaert, P., Nuclear Magnetic Resonance in Solids: Thermodynamic Effects of a Pair of rf Pulses, Phys. Rev. 1967, 157, 232.
    [57] Clauss, J.; Schmidt-Rohr, K.; Adam, A.; Boeffel, C.; Spiess, H. W., Stiff macromolecules with aliphatic side chains: side-chain mobility, conformation, and organization from 2D solid-state NMR spectroscopy, Macromolecules 1992, 25, 5208.
    [58] Cheung, T. T. P., Spin Diffusion in Solids, Phys. Rev. B 1981, 23, 1404.
    [59] Goldman, M.; Shen, L., Spin-Spin Relaxation in LaF3, Phys. Rev. 1966, 144, 321.
    [60] Buda, A.; Demco, D.E.; Bertmer, M.; Blümich, B.; Reining, B.; Keul, H.; H?cker, H., Domain sizes in heterogeneous polymers by spin diffusion using single-quantum and double-quantum dipolar filters, Solid State NMR 2003, 24, 39.
    [61] Bechmanna, M.; Foersterb, H.; Maiselc, H.; Sebald, A., Double-quantum filtered 1H MAS NMR spectra, Solid State NMR 2005, 27, 174.
    [62] Sun, P.; Dang, Q.; Li, B.; Chen, T.; Wang, Y.; Lin, H.; Jin, Q.; Ding, D., Mobility, Miscibility, and Microdomain Structure in Nanostructured Thermoset Blends ofEpoxy Resin and Amphiphilic Poly(ethyleneoxide)-block-poly(propylene oxide)-block-poly(ethyleneoxide) Triblock Copolymers Characterized by Solid-State NMR, Macromolecules 2005, 38, 5654.
    [63] Abe, H.; Takahashi, N.; Kim, K. J.; Mochizuki, M.; Doi, Y., Effects of Residual Zinc Compounds and Chain-End Structure on Thermal Degradation of Poly(ε-caprolactone), Biomacromolecules 2004, 5, 1480.
    [64] Clark, M. B.; Burkhardt, C. A.; Gardella, J. A., Surface studies of polymer blends: An ESCA, IR, and DSC study of the effect of homopolymer molecular weight on crystallinity and miscibility of poly(ε-caprolactone)/poly(vinyl chloride) homopolymer blends, Macromolecules 1991, 24, 799.
    [65] Yao, L.; Haas, T. W.; Guiseppi-Elie, A.; Simpson, D. G.; Bowlin, G. L.; Wnek, G. E., Electrospinning and Stabilization of Fully Hydrolyzed Poly(Vinyl Alcohol) Fibers, Chem. Mater. 2003, 15, 1860.
    [66] Slager, J.; Domb, A. J., Heterostereocomplexes Prepared from D-Poly(lactide) and Leuprolide. I. Characterization, Biomacromolecules 2003, 4, 1308.
    [67] Hahn, J. J.; Eschenlauer, A. C.; Sleytr, U. B.; Somers, D. A.; Srienc, F., Peroxisomes as Sites for Synthesis of Polyhydroxyalkanoates in Transgenic Plants, Biotechnol. Prog. 1999, 15, 1053.
    [68] He, Y.; Shuai, X.; Kasuya, K.-i.; Doi, Y.; Inoue, Y., Enzymatic Degradation of Atactic Poly(R,S-3-hydroxybutyrate) Induced by Amorphous Polymers and the Enzymatic Degradation Temperature Window of an Amorphous Polymer System, Biomacromolecules 2001, 2, 1045.
    [69] Scandola, M.; Focarete, M. L.; Adamus, G.; Sikorska, W.; Baranowska, I.; Swierczek, S.; Gnatowski, M.; Kowalczuk, M.; Jedlinski, Z., Polymer Blends of Natural Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and a Synthetic Atactic Poly(3-hydroxybutyrate). Characterization and Biodegradation Studies, Macromolecules 1997, 30, 2568.
    [70] Moore, S., Advances in Protein Chemistry, J. Am. Chem. Soc. 1958, 80, 5326.
    [71] Roesch, R. R.; Corredig, M., Heat-Induced Soy-Whey Proteins Interactions: Formation of Soluble and Insoluble Protein Complexes, J. Agric. Food Chem. 2005, 53, 3476.
    [72] Schoch, T. J.; Maywald, E. C., Microscopic Examination of Modified Starches, Anal. Chem. 1956, 28, 382.
    [73] Biganska, O.; Navard, P., Kinetics of Precipitation of Cellulose from Cellulose-NMMO-Water Solutions, Biomacromolecules 2005, 6, 1948.
    [74] Liu, L. S.; Liu, C.-K.; Fishman, M. L.; Hicks, K. B., Composite Films from Pectin and Fish Skin Gelatin or Soybean Flour Protein, J. Agric. Food Chem. 2007, 55, 2349.
    [75] Kokkonen, H. E.; Ilvesaro, J. M.; Morra, M.; Schols, H. A.; Tuukkanen, J., Effect of Modified Pectin Molecules on the Growth of Bone Cells, Biomacromolecules 2007, 8, 509.
    [76] Hocking, P. J.; Marchessault, R. H.; Biopolyesters. In: Griffin, G. J. L., editor. Chemistry and technology of biodegradable polymers. London: Chapman & Hall, 1994. P. 48–96 and reference therein.
    [77] Gunaratne, L. M. W. K.; Shanks, R. A., Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC, European Polymer Journal 2005, 41, 2980.
    [78] Shafee, E. E., The influence of semicrystalline morphology on the dielectric relaxation properties of poly(3-hydroxybutyrate), European Polymer Journal 2001, 37, 1677.
    [79] Gazzano, M.; Focarete, M. L.; Riekel, C.; Scandola, M., Bacterial Poly(3-hydroxybutyrate): An Optical Microscopy and Microfocus X-ray Diffraction Study, Biomacromolecules 2000, 1, 604.
    [80] Naoko, K.; Minoru, S.; Yoshio, I.; Riichir?, C.; Yoshiharu, D., Study of cocrystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by solid-state high-resolution carbon-13 NMR spectroscopy and differential scanning calorimetry, Macromolecules 1991, 24, 2178.
    [81] Yoshio, I.; Naoko, K.; Yasuhiko Y.; Riichiro, C.; Doi, Y., The microstructures of commercially available poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s, Macromolecules, 1989, 22, 3800.
    [82] Naoko, K.; Yoshio, I.; Yasuhiko, Y.; Riichiro, C.; Doi, Y., Conformational analysis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in solution by proton NMR spectroscopy, Macromolecules 1990, 23, 1313.
    [83] Shafee, E. E., Dielectric relaxation study of atactic poly(epichlorohydrin)/ poly(3-hydroxybutyrate) blends, European Polymer Journal 2002, 38, 413.
    [84] Shafee, E. E., Investigation of the phase structure of poly(3-hydroxybutyrate)/poly(vinyl acetate) blends by dielectric relaxation spectroscopy, European Polymer Journal 2001, 37, 451.
    [85] Andrew, E. R.; Hinshaw, W. S.; Hutchins, M. G.; Sj?blom, R. O. I., Proton magnetic relaxation and molecular motion in polycrystalline amino acids I. Aspartic acid, cystine, glycine, histidine, serine, tryptophan and tyrosine, Molecular Physics 1976, 31, 1479.
    [86] Andrew, E. R.; Hinshaw, W. S.; Hutchins, M. G.; Sj?blom, R. O. I., Proton magnetic relaxation and molecular motion in polycrystalline amino acids II. Alanine, isoleucine, methionine, norleucine, threonine and valine, Molecular Physics 1976, 32, 795.
    [87] Andrew, E. R.; Hinshaw, W. S.; Hutchins, M. G.; Sj?blom, R. O. I., Proton magnetic relaxation and molecular motion in polycrystalline amino acids III. Arginine, asparagine, cysteine, glutamine, phenylalanine and praline, Molecular Physics 1977, 34, 1695.
    [88] Tang, H. R.; Belton, P. S., Molecular Dynamics of Polycrystalline Cellobiose Studied by Solid-State NMR, Solid State NMR 2002, 21, 117.
    [89] Wang, Y. L.; Tang, H. R.; Belton, P. S., Solid State NMR Studies of the Molecular Motions in the Polycrystalline r-L-Fucopyranose and Methyl r-L-Fucopyranoside, J. Phys. Chem. B 2002, 106, 12834.
    [90] Wang, Y. L.; Belton, P. S.;Tang, H. R., Proton NMR relaxation studies of solid tyrosine derivatives and their mixtures with L-leucinamide, Solid State NMR 1999, 14, 19.
    [91] Belton, P. S.; Wang, Y. L.; Tang, H. R., Molecular dynamics in concentrated sugar solutions and glasses: an NMR field cycling study, Molecular Physics 2001, 99, 1679.
    [92] Mellinger, F.; Wilhelm, M.; Spiess, H. W., Calibration of 1H NMR Spin Diffusion Coefficients for Mobile Polymers through Transverse Relaxation Measurements, Macromolecules 1999, 32, 4686.
    [93] Schmidt-Rohr, K.; Spiess, H. W., “Multidimensional Solid State NMR and Polymers” Academic Press, San Diego, 1994.
    [94] Feike, M.; Graf, R.; Schnell, I.; Jager, C.; Spiess, H. W., Structure of Crystalline Phosphates from 31P Double-Quantum NMR Spectroscopy, J. Am. Chem. Soc. 1996, 118, 9631.
    [95] Sawayanagi, T.; Tanaka, T.; Iwata, T.; Abe, H.; Doi, Y.; Ito, K.; Fujisawa, T.; Fujita, M., Structural Transition of Poly[(R)-3-hydroxybutyrate-co-(R)-3- hydroxyvalerate] Single Crystals on Heating As Revealed by Synchrotron Radiation SAXS and WAXD, Macromolecules 2007, 40, 2392.
    [96] Tanaka, T.; Fujita, M.; Takeuchi, A.; Suzuki, Y.; Uesugi, K.; Ito, K.; Fujisawa, T.; Doi, Y.; Iwata, T., Formation of Highly Ordered Structure in Poly[(R)-3- ydroxybutyrate-co-R)-3-hydroxyvalerate] High-Strength Fibers, Macromolecules 2006,39, 940.
    [97] Bielecki, A.; Burum, D. P.; Rice, D. M.; Karasz, F. E., Solid-state two-dimensional carbon-13-proton correlation (HETCOR) NMR spectrum of amorphous poly(2,6-dimethyl-p-phenylene oxide) (PPO), Macromolecules 1991,24, 4820.
    [98] Lesage, A.; Sakellariou, D.; Steuernagel, S.; Emsley, L., Carbon-Proton Chemical Shift Correlation in Solid-State NMR by Through-Bond Multiple-Quantum Spectroscopy, J. Am. Chem. Soc. 1998, 120, 13194.
    [99] Lesage, A.; Emsley, L.; Through-Bond Heteronuclear Single-Quantum Correlation Spectroscopy in Solid-State NMR, and Comparison to Other Through-Bond and Through-Space Experiments, J. Magn. Reson. 2001, 148, 449.
    [100] Lesage, A.; Bardet, M.; Emsley, L., Through-Bond Carbon-Carbon Connectivities in Disordered Solids by NMR, J. Am. Chem. Soc. 1999, 121, 10987.
    [101] Wu, G.; Rovnyak, D.; Griffin, R. G., Quantitative Multiple-Quantum Magic-Angle-Spinning NMR Spectroscopy of Quadrupolar Nuclei in Solids, J. Am. Chem. Soc. 1996, 118, 9326.
    [102] Brown, S. P.; Spiess, H. W., Advanced Solid-State NMR Methods for the Elucidation of Structure and Dynamics of Molecular, Macromolecular, and Supramolecular Systems, Chem. Rev. 2001, 101, 412.
    [1] Doi, Y., Microbial Polyesters; VCH: New York, 1990.
    [2] Anderson, A. J.; Dawes, E. A., A rapid gas chromatographic method for the determination of Poly-β-hydroxybutyric acid in microbial biomass, Microbial Rev 1990, 54, 450.
    [3] Reddy, C. S. K.; Ghai, R.; Rashmi; Kalia, V.C., Polyhydroxyalkanoates: an overview, Bioresource Technology 2003, 87, 137.
    [4] Young, J. C.; Subryan, L. M.; Potts, D.; McLaren, M. E.; Gobran, F. H., Reduction in levels of deoxynivalenol in contaminated wheat by chemical and physical treatment, J. Agric. Food Chem. 1986, 34, 461.
    [5] Citterio, S.; Aina, R.; Labra, M.; Ghiani, A.; Fumagalli, P.; Sgorbati, S.; Santagostino, A., Soil Genotoxicity Assessment: A New Strategy based on Biomolecular Tools and Plant Bioindicators, Environ. Sci. Technol. 2002, 36, 2748.
    [6] Smith, W.; Hale, R.; Greaves, J.; Huggett, R., Corrections: Trace Organochlorine Contamination of the Forest Floor of the White Mountain National Forest, New Hampshire, Environ. Sci. Technol. 1994, 28, 1204.
    [7] Yoshie, N.; Oike, Y.; Kasuya, K.; Doi, Y.; Inoue, Y., Change of Surface Structure of Poly(3-hydroxybutyrate) Film upon Enzymatic Hydrolysis by PHB Depolymerase, Biomacromolecules 2002, 3, 1320.
    [8] He, Y.; Shuai, X.; Kasuya, K.-i.; Doi, Y.; Inoue, Y., Enzymatic Degradation of Atactic Poly(R,S-3-hydroxybutyrate) Induced by Amorphous Polymers and the Enzymatic Degradation Temperature Window of an Amorphous Polymer System, Biomacromolecules 2001, 2, 1045.
    [9] Bluhm, T. L.; Hamer, G. K.; Marchessault, R. H.; Fyfe, C. A.; Veregin, R. P.,Isodimorphism in bacterial poly(-hydroxybutyrate-co--hydroxyvalerate), Macromolecules 1986, 19, 2871.
    [10] Kim, Y.-R.; Paik, H.-j.; Ober, C. K.; Coates, G. W.; Batt, C. A., Enzymatic Surface-Initiated Polymerization: A Novel Approach for the in Situ Solid-Phase Synthesis of Biocompatible Polymer Poly(3-hydroxybutyrate), Biomacromolecules 2004, 5, 889.
    [11] Doi, Y.; Kunioka, M.; Nakamura, Y.; Soga, K., Nuclear magnetic resonance studies on unusual bacterial copolyesters of 3-hydroxybutyrate and 4-hydroxy- butyrate, Macromolecules 1988, 21, 2722.
    [12] Prud’homme, R. E.; Marchessault, R. H., а-βTransformation in Polypivalolactone Macromolecules 1974, 7, 541.
    [13] Prud’homme, R. E., The alpha-beta transformation in polypivalolactone. II. A simple mechanical model, J. Polym. Sci., Polym. Phys. Ed. 1974, 12, 2455.
    [14] Feughelman, M., Cooperative unfolding of –keratin, J Appl Polym Sci 1966, 10, 1937.
    [15] Hocking, P. J.; Marchessault, R. H.; Biopolyesters. In: Griffin GJL, editor. Chemistry and technology of biodegradable polymers. London: Chapman & Hall, 1994. P. 48–96 and reference therein.
    [16] Kuwabara, K.; Gan, Z.; Nakamura, T.; Abe, H.; Doi, Y., Molecular mobility and crystalline phase structure of biodegradable poly[(R)-3-hydroxybutylicacid-co-(R)- 3-hydroxyhexanoic acid], Polymer Degradation and Stability 2004, 84, 135.
    [17] Verhoogt, H.; Ramsay, B. A.; Favis, B. D., Structural analysis of poly(ethyleneterephthalate) reinforced with glass fibre: 1. A photoacoustic Fourier transform infra-red study, Polymer 1994, 35, 514.
    [18] Park, S. H.; Lim, S. T.; Shin, T. K.; Choi, H. J.; Jhon, M. S., Viscoelasticity of biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(ethylene oxide), Polymer 2001, 42, 5737.
    [19] Gassner, F.; Owen, A. J., Physical properties of poly(β-hydroxybutyrate)/poly(- caprolactone) blends, Polymer 1994, 35, 2233.
    [20] Park, J. W.; Doi, Y.; Iwata, T., Unique Crystalline Orientation of Poly[(R)-3- hydroxybutyrate]/Cellulose Propionate Blends under Uniaxial Drawing, Macromolecules 2005, 38, 2345.
    [21] Ceccorulli, G.; Pizzoli, M.; Scandola, M., Effect of a low-molecular-weight plasticizer on the thermal and viscoelastic properties of miscible blends of bacterial poly(3-hydroxybutyrate) with cellulose acetate butyrate, Macromolecules 1993, 26, 6722.
    [22] Fujita, M.; Takikawa, Y.; Teramachi, S.; Aoyagi, Y.; Hiraishi, T.; Doi, Y., Morphology and Enzymatic Degradation of Oriented Thin Film of Ultrahigh Molecular Weight Poly[(R)-3-hydroxybutyrate], Biomacromolecules 2004, 5, 1787.
    [23] Spyros, A.; Kimmich, R.; Briese, B. H.; Jendrossek, D., 1H NMR Imaging Study of Enzymatic Degradation in Poly(3-hydroxybutyrate) and Poly(3- hydroxyl- butyrate-co-3-hydroxyvalerate). Evidence for Preferential Degradation of the Amorphous Phase by PHB Depolymerase B from Pseudomonas lemoignei,Macromolecules 1997, 30, 8218.
    [24] Yalpani, M.; R Marchessault, O. H.; Morin, F. G.; Monasterios, C. J., Synthesis of poly(3-hydroxyalkanoate) (PHA) conjugates: PHA-carbohydrate and PHA- synthetic polymer conjugates, Macromolecules 1991, 24, 6046.
    [25] Kamiya, N.; Yamamoto, Y.; Inoue, Y.; Chujo, R.; Doi, Y., Microstructure of bacterially synthesized poly(3-hydroxybutyrate-co-3-hydroxyvalerate), Macromolecules 1989, 22, 1676.
    [26] Torchia, D. A., The measurement of proton-enhanced carbon-13 T1 values by a method which suppresses artifacts, J. Magn. Reson. 1978, 30, 613.
    [27] Hartmann, S. R.; Hahn, E. L., Nuclear Double Resonance in the Rotating Frame, Phys. Rev. 1962, 128, 2042.
    [28] Fu, R.; Jun, H.; Timothy, A. C., Towards quantitative measurements in solid-state CPMAS NMR: A Lee–Goldburg frequency modulated cross-polarization scheme, J. Magn. Reson. 2004, 168, 8.
    [29] Rindlav-Westling, A; Stading, M.; Crystallinity and Morphology in Films of Starch, Amylose and Amylopectin Blends, Biomacromolecules 2002, 3, 84.
    [30] Yoshie, N.; Menju, H.; Sato, H.; Inoue, Y., Complex composition distribution of poly(3-hydroxybutyrate-co-3-hydroxyvalerate), Macromolecules 1995, 28, 6516.
    [31] Bluhm, T. L.; Hamer, G. K.; Marchessault, R. H.; Fyfe, C. A.; Veregin, R. P., Isodimorphism in bacterial poly(-hydroxybutyrate-co-hydroxyvalerate), Macromolecules 1986, 19, 2871.
    [32] Zumbulyadis, N., Selective carbon excitation and the detection of spatialheterogeneity in cross-polarization magic-angle-spinning NMR, J. Magn. Reson. 1983, 53, 486.
    [33] Wang, Y. L.; Tang, H. R.; Belton, P. S., Solid State NMR Studies of the Molecular Motions in the Polycrystalline r-L-Fucopyranose and Methyl r-L-Fucopyranoside, J. Phys. Chem. B 2002, 106, 12834.
    [34] Wang, Y. L.; Belton, P. S.;Tang, H. R., Proton NMR relaxation studies of solid tyrosine derivatives and their mixtures with L-leucinamide, Solid State NMR 1999, 14, 19.
    [35] Tang, H. R.; Wang, Y. L.; Belton, P. S., 13C CPMAS studies of plant cell wall materials and model systems using relaxation–induced spectral editing techniques Solid State NMR 2000, 15, 239.
    [36] Tang, H. R.; Brian, P. H., Use of 13C MAS NMR to Study Domain Structure and Dynamics of Polysaccharides in the Native Starch Granules, Biomacromolecules 2003, 4, 1269.
    [37] Vinogradov, E.; Madhu, P. K.; Vega, S., High-resolution proton solid-state NMR spectroscopy by phase-modulated Lee–Goldburg experiment, Chem. Phys. Lett. 1999, 314, 443.
    [38] Demco, D. E.; Johansson, A.; Tegenfeldt, J., Proton spin diffusion for spatial heterogeneity and morphology investigations of polymers, Solid State NMR 1995, 4, 13.
    [39] Marchessault, R. H.; Kawada, J., PHB Lamellar Single Crystals: Origin of the Splintered Texture, Macromolecules 2004, 37, 7418.
    [40] Cheung, T. T. P., Spin Diffusion in Solids, Phys. Rev. B 1981, 23, 1404.
    [41] Goldman, M.; Shen, L., Spin-Spin Relaxation in LaF3, Phys. Rev. 1966, 144, 321.
    [42] Mellinger, F.; Wilhelm, M.; Spiess, H. W., Calibration of 1H NMR Spin Diffusion Coefficients for Mobile Polymers through Transverse Relaxation Measurements, Macromolecules 1999, 32, 4686.
    [43] Mellinger, F.; Wilhelm, M.; Landfester, K.; Spiess, H. W.; Haunschild, A.; Packusch, J., Structure of water-containing latexes: Remagnetization effects during solid-state NMR spin-diffusion experiments, Acta Polym. 1998, 49, 108.
    [44] Clauss, J.; Schmidt-Rohr, K.; Spiess, H. W., Determination of Domain Sizes in Heterogeneous Polymers by Solid-State NMR, Acta Polym. 1993, 44, 1.
    [45] Mellinger, F.; Wilhelm, M.; Belik, P.; Schwind, H.; Spiess, H. W., Quantitative Determination of Dynamic Heterogeneities in Core-Shell Lattices by 1H Solid State NMR, Macromol. Chem. Phys. 1999, 200, 2454.
    [46] Schmidt-Rohr, K.; Spiess, H. W., “Multidimensional Solid State NMR and Polymers” Academic Press, San Diego, 1994.
    [1] Shafee, E. E., The influence of semicrystalline morphology on the dielectric relaxation properties of poly(3-hydroxybutyrate), European Polymer Journal 2001, 37, 1677.
    [2] Gunaratne, L. M. W. K.; Shanks, R. A., Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC, European Polymer Journal 2005, 41, 2980.
    [3] Naoko, K.; Minoru, S.; Yoshio, I.; Riichir?, C.; Yoshiharu, D., Study of cocrystallization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by solid-state high-resolution carbon-13NMR spectroscopy and differential scanning calorimetry, Macromolecules 1991, 24, 2178.
    [4] Naoko, K.; Yoshio, I.; Yasuhiko, Y.; Riichiro, C.; Doi, Y., Conformational analysis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in solution by proton NMR spectroscopy, Macromolecules 1990, 23, 1313.
    [5] Relles, H. M.; Johnson, D. S.; Manello, J. S., Spectroscopic evidence for electron transfer preceding or accompanying nucleophilic aromatic displacement reactions on nitrophthalic systems with 4-methylphenoxide ion, J. Am. Chem. Soc. 1977, 99, 6677.
    [6] Andrew, E. R.; Hinshaw, W. S.; Hutchins, M. G.; Sj?blom, R. O. I., Proton magnetic relaxation and molecular motion in polycrystalline amino acids I. Aspartic acid, cystine, glycine, histidine, serine, tryptophan and tyrosine, Molecular Physics 1976, 31, 1479.
    [7] Andrew, E. R.; Hinshaw, W. S.; Hutchins, M. G.; Sj?blom, R. O. I., Proton magnetic relaxation and molecular motion in polycrystalline amino acids II. Alanine, isoleucine, methionine, norleucine, threonine and valine, MolecularPhysics 1976, 32, 795.
    [8] Andrew, E. R.; Hinshaw, W. S.; Hutchins, M. G.; Sj?blom, R. O. I., Proton magnetic relaxation and molecular motion in polycrystalline amino acids III. Arginine, asparagine, cysteine, glutamine, phenylalanine and praline, Molecular Physics 1977, 34, 1695.
    [9] Belton, P. S.; Wang, Y. L.; Tang, H. R., Molecular dynamics in concentrated sugar solutions and glasses: an NMR field cycling study, Molecular Physics 2001, 99, 1679.
    [10] Tang, H. R.; Belton, P. S., Molecular Dynamics of Polycrystalline Cellobiose Studied by Solid-State NMR, Solid State NMR 2002, 21, 117.
    [11] Wang, Y. L.; Tang, H. R.; Belton, P. S., Solid State NMR Studies of the Molecular Motions in the Polycrystalline r-L-Fucopyranose and Methyl r-L-Fucopyranoside, J. Phys. Chem. B 2002, 106, 12834.
    [12] McCall, D. W., Nuclear Magnetic Resonance Studies of Molecular Relaxation Mechanisms in Polymers, Molecular Relaxation in Polymers 1971, 6, 223.
    [13] Bloembergen, N.; Purcell, E. M.; Pound, R.V., Relaxation Effects in Nuclear Magnetic Resonance Absorption, Phys. Rev. 1948, 73, 679.
    [14] Kubo, R.; Tomita, K.; J. Phys. Soc. Jpn. 1954, 9, 888.
    [15] Wang, Y. L.; Tang, H. R.; Belton, P. S., Proton NMR relaxation studies of solid L-alaninamide, Chem. Phys. Lett. 1997, 268, 387.
    [16] Tang, H. R.; Belton, P. S., Proton relaxation in plant cell walls and model systems, In Adv. Magnet. Reson. Food Sci., pp166-184, Royal Soc. Chem., Cambridge,1999.
    [17] Wang, Y. L.; Belton, P. S.; Tang, H. R., Proton NMR relaxation studies of solid tyrosine derivatives and their mixtures with L-leucinamide, Solid State NMR 1999, 14, 19.
    [18] Tang, H. R.; Belton, P. S., Molecular motions of D-alpha-galacturonic acid (GA) and methyl-D-alpha-galacturonic acid methyl ester (MGAM) in the solid state –A proton NMR study, Solid State NMR 1998, 12, 21.
    [19] McCall, D. W.; Douglass, D. C., Molecular motion in polyethylene. V, Appl. Phys. Lett. 1965, 7, 12.
    [20] Belton, P.; Wang, Y. L., Proton NMR relaxation studies of solid l-leucinamide, Mol. Phys. 1997, 90, 119.
    [21] Abragam, A., The Principles of Nuclear Magnetism, Oxford Univ. Press, Oxford, 1961.
    [22] Saito, M.; Inoue, Y.; Yoshie, N., Cocrystallization and phase segregation of blends of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate), Polymer 2001, 42, 5573.
    [23] Cao, A.; Asakawa, N.; Yoshie, N.; Inoue, Y., High-resolution solid-state 13C n.m.r. study on phase structure of the compositionally fractionated bacterial copolyester poly(3-hydroxybutyric acid-co-3-hydroxypropionic acid)s, polymer 1999, 40, 3309.
    [24] Andrew, E. R.; Gloinkowski, S.; Radomski, J.; Szczesniak, E., Molecular dynamics in solid pregnenolone studied by 1H spin–lattice relaxation, Solid StateNMR 2000, 15, 227.
    [25] Diehl, P.; Fluck, E.; Gunther, H.; Kosfeld, R.; Seelig, J., Structure and Dynamics of Bulk Polymers by NMR-Methods, Springer-Verlag Berlin Heidelberg New York London Paris Tokyo.
    [1] Hampson, N. A.; Wilars, M. J., Conductivity measurements on pure and mixed metal dioxides, J. Power Sources 1979, 4, 191.
    [2] Rollet, A. -L.; Diat, O.; Gebel, G.; A New Insight into Nafion Structure, J. Phys. Chem. B 2002, 106, 3033.
    [3] Tsushima, S.; Teranishi, K.; Hirai, S., Water diffusion measurement in fuel-cell SPE membrane by NMR, Energy 2005, 30, 235.
    [4] Zawodzinski, T. A.; Jr., Neeman, M. L.; Sillerud, O.; Gottesfeld, S., Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes, J. Phys. Chem. 1991, 95, 6040.
    [5] Lee, C. H.; Park, H. B.; Lee, Y. M.; Lee, R. D., Importance of Proton Conductivity Measurement in Polymer Electrolyte Membrane for Fuel Cell Application, Ind. Eng. Chem. Res. 2005, 44, 7617.
    [6] Whittingham, M. S.; Savinell, R. F.; Zawodzinski, T. A., Introduction: Batteries and Fuel Cells, Chem. Rev. 2004, 104, 4243.
    [7] Jung, D. H.; Cho, S. Y.; Peck, D. H.; Shim, D. R.; Kim, J. S., Preparation and performance of a Nafion?/montmorillonite nanocomposite membrane for direct methanol fuel cell, J. Power Sources 2003, 118, 205.
    [8] Lanniello, R.; Schmit, V. M.; Stimming, U.; Stunper, J.; Wallau, A., CO adsorption and oxidation on Pt and Pt-Ru alloys: dependence on substrate composition, Electrochim. Acta 1994, 39, 1863.
    [9] Stefanithis, K. A.; Mauritz, I. D.; Davis, S. V.; Scheetz, R. W.; Pope, R. K.; Wilkes, G. L.; Huang, H. H., Microstructural evolution of a silicon oxide phase in a perfluorosulfonic acid ionomer by an in situ sol-gel reaction, J. Appl. Polym. Sci. 1995, 55, 181.
    [10] Gummaraju, R. V.; Moore, R. B.; Mauritz, K. A., Asymmetric Nafion?/silicon oxide] hybrid membranes via the in situ sol-gel reaction for tetraethoxysilane, J. Polym. Sci., Part B: Polym. Phys. 1996, 34, 2383.
    [11] Apichatachuapan, W.; Moore, R. B.; Mauritz, K. A., Asymmetric nafion/ (zirconium oxide) hybrid membranes via in situ sol-gel chemistry, J. Appl. Polym. Sci. 1996, 62, 417.
    [12] Shao, O. L.; Mauritz, K. A.; Moore, R. B., Perfluorosulfonate Ionomer/Mixed Inorganic Oxide Nanocomposites via Polymer-in Situ Sol-Gel Chemistry, Chem. Mater. 1995, 7, 192.
    [13] Yang, C.; Srinivasan, S.; Aricò, A. S.; Cretì, P.; Baglio, V.; Antonuccib, V., Composite Nafion/Zirconium Phosphate Membranes for Direct Methanol Fuel Cell Operation at High Temperature, Electrochem. Solid-State Lett. 2001, 4, A31.
    [14] Alberti, G.; Casciola, M.; Costantino, U.; Leonardi, M., ac conductivity of anhydrous pellicular zirconium phosphate in hydrogen form, Solid State Ionics 1984, 14, 289.
    [15] Tircoli, V.; Nannetti, F., Zeolite–Nafion composites as ion conducting membrane materials, Electrochim. Acta 2003, 48, 2625.
    [16] Won, J.; Kang, Y. S., Nafion Composite Membranes Containing Rod-Shaped Polyrotaxanes for Direct Methanol Fuel Cells, Macromol. Symp. 2003, 204, 79.
    [17] Costamagna, P.; Yang, C.; Bocarsly, A. B.; Srinivasan, S., Nafion? 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 °C, Electrochim. Acta 2002, 47, 1023.
    [18] Casciola, M.; Marmottini, F.; Peraio, A., ac conductivity of α-layered zirconium phosphate in the presence of water vapor at 100–200°C, Solid State Ionics 1993, 61, 125.
    [19] Kim, Y. K.; Lee, J. S.; Rhee, C. H.; Kim, H. K.; Chang, H., Montmorillonite functionalized with perfluorinated sulfonic acid for proton-conducting organic–inorganic composite membranes, J. Power Sources 2006, 162, 180.
    [20] Zhang, G. W.; Zhou, Z. T., Organic/inorganic composite membranes for application in DMFC, J. Mem. Sci. 2005, 261, 107.
    [21] Meier, L. P.; Nueesch, R.; Madsen, F. T., Organic Pillared Clays, J. Colloid Interface Sci. 2001, 238, 24.
    [22] Yang, T. -H.; Yoon, Y. -G.; Kim, C. -S.; Kwak, S. -H.; Yoon, K. -H., A novel preparation method for a self-humidifying polymer electrolyte membrane, J. Power Sources 2002, 106, 328.
    [23] Rhee, C. H.; Kim, H. K.; Chang, H.; Lee, J. S., Nafion/Sulfonated Montmorillonite Composite: A New Concept Electrolyte Membrane for Direct Methanol Fuel Cells, Chem. Mater. 2005, 17, 1691.
    [24] Hoang, H. V.; Holze, R., Electrochemical Synthesis of Polyaniline/ Montmorillonite Nanocomposites and Their Characterization, Chem. Mater. 2006, 18, 1976.
    [25] Lee, D.; Lee, S. H.; Char, K.; Kim, J., Preparation and rheological characterization of intercalated polystyrene/organophilic montmorillonite nanocomposite, Macromol. Rapid Commun. 2000, 21, 1136.
    [26] Wilkie, C. A.; Thomsen, J. R.; Mittleman, M. L., Interaction of poly(methyl methacrylate) and nafions, J. Appl. Polm. Sci. 1991, 42, 901.
    [27] Wen, X. Y.; Deng, F.; He, H. P.; Zhu, J. X.; Ye, C. H., Arrangement, conformation, and mobility of surfactant molecules intercalated in montmorillonite prepared at different pillaring reagent concentrations as studied by solid-state NMR spectroscopy, J. Colloid Interface Sci. 2006, 299, 754.
    [28] Young, S. K.; Jarrett, W. L.; Mauritz, K. A., Nafion?/ORMOSIL Nanocomposites via Polymer-in Situ Sol-Gel Reactions: 1. Probe of ORMOSIL Phase Nanostructures by 29Si Solid State NMR Spectroscopy, Polymer 2002, 43, 2311.
    [29] Mauritz, K. A.; Payne, T. J., [Perfluorosulfonate ionomer]/silicate hybrid membranes via base-catalyzed in situ sol–gel processes for tetraethylorthosilicate, J. Mem. Sci. 2000, 168, 39.
    [30] Chen, Q.; Schmidt-Rohr, K., 19F and 13C NMR Signal Assignment and Analysis in a Perfluorinated Ionomer (Nafion) by Two-Dimensional Solid-State NMR, Macromolecules 2004, 37, 5995.
    [31] Takasaki, M.; Kimura, K.; Kawaguchi, K.; Abe, A.; Katagiri, G., Structural Analysis of a Perfluorosulfonate Ionomer in Solution by 19F and 13C NMR Macromolecules 2005, 38, 6031.
    [32] Hou, S. S.; Schmidt-Rohr, K., Polymer-Clay Nanocomposites from Directly Micellized Polymer/Toluene in Water and Their Characterization by WAXD and Solid-State NMR Spectroscopy, Chem. Mater. 2003, 15, 1938.
    [33] Ye, G.; Janzen, N.; Goward, G. R., Solid-State NMR Study of Two Classic Proton Conducting Polymers: Nafion and Sulfonated Poly(ether ether ketone)s, Macromolecules 2006, 39, 3283.
    [34] Ray, S. S.; Okamoto, K.; Okamoto, M., Structure-Property Relationship in Biodegradable Poly(butylene succinate)/Layered Silicate Nanocomposites, Macromolecules 2003, 36, 2355.
    [35] Uhl, F. M.; Davuluri, S. P.; Wong, S. -C.; Webster, D. C., Polymer Films Possessing Nanoreinforcements via Organically Modified Layered Silicate, Chem. Mater. 2004, 16, 1135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700