转基因体细胞克隆水牛与广西水牛的遗传特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先分离培养水牛胎儿成纤维细胞,并检测细胞传代培养过程中的核型稳定性和支原体污染情况。结果发现,组织块法和胰酶消化法均可从水牛胎儿皮肤组织获得大量高活力细胞,15代以前的水牛胎儿成纤维细胞生长良好。分别对体外培养5代、15代、25代和30代的胎儿成纤维细胞染色体分析结果显示,核型的正常率随体外传代增加呈下降趋势,但各代细胞之间差异不显著(P>0.05),核型正常比率均在75%以上。设计两对PCR引物对第5、15、25和30代细胞的支原体检测污染情况进行了检测,结果检测细胞样本和阴性对照均为阴性,说明培养到30代以内的水牛胎儿成纤维细胞没有发生支原体污染。上述结果表明,在现有实验条件下水牛胎儿成纤维细胞能进行稳定传代培养,可满足体细胞核移植与转基因操作的需要。
     在此基础上,对影响水牛胎儿成纤维细胞在极低细胞接种密度条件下生长增殖和细胞集落形成的各种因素进行了系统的研究。结果发现,低密度接种的水牛胎儿成纤维细胞总体细胞集落形成率低于20%;在培养液中添加适宜浓度的胰岛素对水牛胎儿成纤维细胞的增殖具有显著的促进作用;培养液中添加不同浓度的细胞条件培养液,能明显改善细胞的增长;进口血清比自制血清更有利于提高细胞集落形成率;使用多聚赖氨酸做生长介质可以让细胞集落形成率增加,而琼脂和明胶的作用相反。这些研究结果表明,低密度接种的水牛胎儿成纤维细胞集落形成率较低;在培养液中添加胰岛素、条件培养液、进口血清及以多聚赖氨酸为细胞生长介质,可以提高水牛胎儿成纤维细胞集落形成率。
     对电穿孔法和阳离子脂质体法转染水牛胎儿成纤维细胞的条件进行系统摸索,获得了较好的DNA转染参数。电穿孔法转染时脉冲时间为15ms,电场强度为40~50V/mM时,细胞的死亡率处于20%~50%之间,比较适合外源DNA转入水牛胎儿成纤维细胞。将脂质体与DNA的比例控制在8μL:2μg,可获得较高的转染率。相同培养条件下,脂质体法比电穿孔能获得更多的转基因抗性细胞集落,转染DNA的纯度和细胞的状态也明显影响脂质体法的转染效率。
     用含有GFP基因的线性化载体pCE-EGFP-IRES-Neo-dNdB通过lipofectamine~(TM2000)转染水牛胎儿成纤维细胞,G418筛选2周后挑取抗性细胞集落扩大培养,对转染外源基因的抗性细胞系的生物学特性进行了分析。结果发现,经过G418筛选后细胞增殖活力下降,细胞爬片HE染色后可看到细胞形态发生变化,凋亡分析发现部分抗性细胞表现出早期凋亡征状,但染色体核型正常率与正常组相比差异不明显。这些结果表明,转染本身或随后的筛选过程会对细胞造成一定的损害。
     从绵羊基因组扩增得到β-casein基因启动子区到第二内含子区4.1kb的5调控序列,从人基因组克隆得到人血小板生成素(TPO)基因长5.5kb的基因组序列,然后将启动子和TPO定向插入到ploxp骨架上。包含CMV超级启动子的GFP片段从质粒pCE-EGFP-IRES-Neo-dNdB中获得,并定向连接到ploxp-CN-TPO中。经酶切、PCR鉴定,成功获得了包含人TPO基因、绵羊β-casein启动子、GFP标记基因和新霉素抗性基因等长达20kb的转基因载体ploxp-EGFP-CN-TPO。通过脂质体介导将构建好的载体线性化后导入水牛胎儿成纤维细胞中,G418筛选后得到35个抗性细胞集落,扩大培养后其中4个表达GFP绿色荧光。经PCR鉴定目的基因整合的完整性,发现1个为完整转EGFP-CN-TPO基因阳性细胞集落。通过显微操作、电融合的方法将阳性细胞移入体外成熟去核的水牛卵母细胞内构建重组胚,囊胚率显著低于对照组(P<0.05),说明供体细胞经过基因转染及长期体外培养筛选对克隆胚胎的早期发育有明显影响;对转基因体细胞构建核移植重组胚外源基因表达进行检测发现,绿色荧光蛋白开始表达于4细胞以后的重组胚,说明转染的外源基因能够在胚胎早期发育过程中表达。
     为研究广西沼泽水牛核基因组的多态性,采用23对荧光标记微卫星引物,对随机抽取的60个广西本地水牛样本进行了PCR检测,然后联合应用具有多态性的位点进行培养细胞的遗传鉴定。结果发现,23对引物中,有19对可以获得特异性产物且存在多态,平均有效等位基因数为4.0189,基因座ILSTS086含有13个等位基因;各微卫星基因座的平均杂合度变化范围为0.1852~0.4722,ILSTS019基因座平均杂合度最高(0.4722),而ILSTS017平均杂合度最低(0.1852);群体基因平均多态信息含量(PIC)为0.6639,19个标记中有18个PIC大干0.5,属高度多态位点。联合应用19个位点对培养细胞的基因组来源进行同一分析,证明培养细胞与供体水牛基因型完全相同,培养细胞基因组来源于供体水牛。研究结果表明,18个微卫星标记可进一步用于水牛亲缘关系的分析研究。
     为研究广西沼泽型水牛线粒体D-loop区DNA的多态性,比较分析沼泽型水牛与河流型水牛之间的差异,本研究对26头广西本地水牛、8头贵州贵阳水牛、11头广西水牛与河流型水牛杂交后代、9头尼里拉菲和12头摩拉水牛(共4个品种66头水牛个体)的线粒体全长D-loop序列进行了扩增测序。66头水牛912bp的D-loop多重序列比较结果发现了147个多态位点,共形成58个单体型,其中中国沼泽型水牛与河流型水牛后裔单体型明显分成两簇;以牛为外群通过NJ、ML和贝叶斯方法构建的单体型进化树显示,沼泽型与河流型水牛分成明显两大支,河流型水牛聚在一起,而在沼泽型水牛内部又分成两个侧支;观察单体型之间的遗传关系与距离的median joining network网络分析产生三个区,与进化树分析结果一致;66头水牛D-loop区序列的碱基错配分布分析表明,水牛群体在历史上发生两次独立的群体扩增事件。为进一步验证实验结果,我们从genebank上下载了211条水牛D-loop序列与我们得到的序列整合在一起进行分析,在共有序列878bp区域中,包含了158个多态位点,共获得129个单体型;以牛为外群的进化树分析与单体型网络分析表明,沼泽型水牛分成两簇,所有的河流型水牛聚集成一紧密的簇,与进化树结果一致;碱基错配分布分析结果呈现两个明显的峰,进一步推断水牛群体在历史上发生过两次大的群体扩增。根据上述结果推断:沼泽型水牛与河流型水牛来自不同的家养化事件,沼泽型水牛起源于中国,其祖先可能存在两个基因池。
Firstly, methods for isolation and in vitro culture of buffalo fetal fibroblasts (BFF) were establishd, and karyotype stability and mycoplasma contamination of BFF were detected during passages. Large number of high vitality cells could be obtained by tissue explant culture and trypsin digestion. Karyotype analysis of 5th, 15th, 25th, 30th passage BFF showed that more than 75% cells had normal karyotype, and there were no significant difference among different passages (P>0.05). Two pair of nested-PCR primers were designed to detect mycoplsma contamination of BFF, and no contamination was found in 5th, 15th, 25th, 30th passages cells. Thus, the present culture system is stable enough to serve BFF cells for somatic cell cloning and transgenic studies.
     Factors affecting the proliferation and colony formation of BFF cells cultured in low density were studied. The rate of colony formation was less than 20% when BFF cells were cultured in low density. Insulin could stimulate proliferation of BFF cells and more colonies were formed. Addition of cell conditioned medium also could improve the growing of BFF cells. Qualified serum could increase the colony formation in vitro than that of homemade serum. Poly-lysine was also beneficial to the form of the colony when used as growing media, but agar and glutin were harmful to the growing of BFF cells.
     The transfection efficiency of electroporation and lipofectin mediated methods was compared. The efficiency of electroporation was line up with the electrical field intensity in which 20%~50% of cells died when the field intensity was set at 40 to 50V/mm. Employment of 8μL lipofectin and 2μg DNA resulted in more cells transfected. Quality of DNA and state of cell were associated with transfection efficiency of lipofectin. At the same culture condition, lipofectin reagent method can obtain more transgenic colonies.
     The growing status of transgenic cells selected by G418 was investigated in this study. Buffalo fetal fibroblasts were transfected with lined plasmid pCE-EGFP-IRES-Neo-dNdB by Lipofectin reagent. Then anti-G418 cell colonies were collected after two weeks of selecting culture and continued culturing to enlarge the cell amount for detecting cytobiology characterization. The results showed that the proliferation vitality of anti-G418 cell colony was decreased, morphology changing can be seen with normal cells as control which grown on coverslips after hematoxylin and eosin staining. Apoptosis symptom also can be detected, though chromosome karyotype had no distinct difference with nomal cells. These results stated clearly that the long time screening in G418 could do harm to the transgenic cells to a certain degree.
     4.1kb 5' promoter region of sheepβ-casein gene from the far upstream sequence to the part of exon2 was amplified by the long distance-PCR technique, the human 5.5kb thrombiotin gene was obtained with the same technique. We insert these two segments into ploxp vector after cutting with restriction enzymes. Green fluorescent protein (GFP) gene sequence came from plasmid pCE-EGFP-IRES-Neo-dNdB and then inserted into ploxp-CN-TPO. Enzyme cutting analysis and PCR testing results showed that the transgenic vector ploxp-EGFP-CN-TPO was constructed as designed advance. BFF cells were transfected with the lined ploxp-EGFP-CN-TPO, and 35 anti-G418 cell colonies were harvested after G418 selection. GFP signals was detected in 4 colonies and got 1 positive transgenic cell colony after PCR proving. The positive transgenic cells were used as donors to reconstruct embryos by micromanipulate and fusion method. The development rate of embryos derived from transgenic cells were significant lower than normal cells (P<0.05). The GFP signal could be detected after 4-cell stage of reconstructed transgenic embryos, which means that foreign gene can express normally in the transgenic embryos.
     Twenty three microsatellite loci were selected to observe the genetic variation of Guangxi swamp buffalo population. Nineteen primer pairs amplified discrete products and gave polymorphic band patterns on a panel of 60 buffaloes. The mean effective number of alleles per polymorphic marker was 4.0189, mean heterozygosity per polymorphic marker ranged from 0.1852 to 0.4722, mean polymorphism information contents (PIC) for Guangxi buffalo was 0.6639, eighteen microsatellite loci displayed high polymorphism. Then genome source of cultured cell was analyzed using nineteen microsatellite loci, results indicated that cultured cell and donor buffalo had same genome pattern. Thus we conclude that eighteen microsatellite loci can be used in identify the genetic relationship of buffaloes.
     To investigate the polymorphism of mitochondrial DNA in Guangxi swamp buffalo, the entire mitochondrial D-loop region of 66 water buffaloes of four different breeds were analyzed, 58 mitochondrial haplotypes with 147 polymorphic sites were detected. The haplotypes of swamp buffaloes and river buffaloes formed two different clusters. Using bovine D-loop sequences as outgroup, three phylogenetic trees were constructed with NJ, ML and Bayes method respectively. These trees all showed that swamp buffaloes and river buffaloes belong to two different clusters distinctly, and two small clusters were observed in the swamp cluster of the three. By median joining network analysis, three different clusters also be found, the high diverged clusters between swamp and river buffalo, and two little clusters appear in the whole swamp cluster. The mismatch distribution analysis showed that there may be two different indepent events in the evolution history of buffaloes. Pooled with 211 released D-loop sequences of Genbank, we detected 129 haplotypes with 158 polymorphic sites in 878bp multi-aligned region. The phylogenetic tree and median joining network analysis also showed that there were three clusters in total buffaloes, two swamp buffalo's clusters and one high diverged river swamps. Two obviously wave crests appeared in the mismatch distribution analysis, which means that there maybe two different population expanding event in water buffaloes. We conclude based on the above results, that river and swamp buffalos decented from two different domestication events, and there were at least two ancestor gene pools in the domestication of swamp buffaloes.
引文
1. Illmensee K, Hoppe PC. Nuclear transplantation in Mus musculus: developmental potential of nuclei from preimplantation embryos. Cell 1981; 23(1): 9-18.
    
    2. Willadsen SM. Nuclear transplantation in sheep embryos. Nature 1986; 320(6057): 63-65.
    
    3. Aalami OO, Nacamuli RP, Lenton KA, et al. Applications of a mouse model of calvarial healing: differences in regenerative abilities of juveniles and adults. Plast Reconstr Surg 2004; 114(3): 713-720.
    4. Prather RS, Barnes FL, Sims MM, et al. Nuclear transplantation in the bovine embryo: assessment of donor nuclei and recipient oocyte. Biol Reprod 1987; 37(4): 859-866.
    5. Prather RS, Sims MM, First NL. Nuclear transplantation in early pig embryos. Biol Reprod 1989; 41(3): 414-418.
    6. Meng L, Ely JJ, Stouffer RL, et al. Rhesus monkeys produced by nuclear transfer. Biol Reprod 1997; 57(2): 454-459.
    7. Keefer CL, Stice SL, Matthews DL. Bovine inner cell mass cells as donor nuclei in the production of nuclear transfer embryos and calves. Biol Reprod 1994; 50(4): 935-939.
    8. Sims M, First NL. Production of calves by transfer of nuclei from cultured inner cell mass cells. Proc Natl Acad Sci U S A1994; 91(13): 6143-6147.
    9. Tsunoda Y, Kato Y. Not only inner cell mass cell nuclei but also trophectoderm nuclei of mouse blastocysts have a developmental totipotency. J Reprod Fertil 1998; 113(2): 181-184.
    10. Wakayama T, Yanagimachi R. The first polar body can be used for the production of normal offspring in mice. Biol Reprod 1998; 59(1): 100-104.
    11. Dong YJ, Bai XJ, Li JD, et al. [Isolation and nuclear transfer of ES-like cells colonies derived from embryos being cloning of bovine somatic]. Yi Chuan Xue Bao 2003; 30(2): 114-118.
    12. Yamazaki Y, Low EW, Marikawa Y, et al. Adult mice cloned from migrating primordial germ cells. Proc Natl Acad Sci U S A 2005; 102(32): 11361-11366.
    13. Miki H, Inoue K, Kohda T, et al. Birth of mice produced by germ cell nuclear transfer. Genesis 2005; 41(2): 81-86.
    14. Campbell KH, McWhir J, Ritchie WA, et al. Sheep cloned by nuclear transfer from a cultured cell line. Nature 1996; 380(6569): 64-66.
    15. Wilmut I, Schnieke AE, McWhir J, et al. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385(6619): 810-813.
    16. Wakayama T, Yanagimachi R. Cloning the laboratory mouse. Semin Cell Dev Biol 1999; 10(3): 253-258.
    17. Shiga K, Fujita T, Hirose K, et al. Production of calves by transfer of nuclei from cultured somatic cells obtained from Japanese black bulls. Theriogenology 1999; 52(3): 527-535.
    18. Cibelli JB, Stice SL, Golueke PJ, et al. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat Biotechnol 1998; 16(7): 642-646.
    19. Wells DN, Misica PM, Tervit HR. Production of cloned calves following nuclear transfer with cultured adult mural granulosa cells. Biol Reprod 1999; 60(4): 996-1005.
    20. Shin T, Kraemer D, Pryor J, et al. A cat cloned by nuclear transplantation. Nature 2002; 415(6874): 859.
    21. Boquest AC, Grupen CG, Harrison SJ, et al. Production of cloned pigs from cultured fetal fibroblast cells. Biol Reprod 2002; 66(5): 1283-1287.
    22. Yin XJ, Tani T, Yonemura I, et al. Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol Reprod 2002; 67(2): 442-446.
    23. Lee JW, Wu SC, Tian XC, et al. Production of cloned pigs by whole-cell intracytoplasmic microinjection. Biol Reprod 2003; 69(3): 995-1001.
    24. Hyun S, Lee G, Kim D, et al. Production of nuclear transfer-derived piglets using porcine fetal fibroblasts transfected with the enhanced green fluorescent protein. Biol Reprod 2003; 69(3): 1060-1068.
    25. Wakayama T, Yanagimachi R. Cloning of male mice from adult tail-tip cells. Nat Genet 1999; 22(2): 127-128.
    26. Baguisi A, Behboodi E, Melican DT, et al. Production of goats by somatic cell nuclear transfer. Nat Biotechnol 1999; 17(5): 456-461.
    27. Chesne P, Adenot PG, Viglietta C, et al. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat Biotechnol 2002; 20(4): 366-369.
    28. Challah-Jacques M, Chesne P, Renard JP. Production of cloned rabbits by somatic nuclear transfer. Cloning Stem Cells 2003; 5(4): 295-299.
    29. Galli C, Lagutina I, Crotti G, et al. Pregnancy: a cloned horse born to its dam twin. Nature 2003; 424(6949): 635.
    30. Vanderwall DK, Woods GL, Aston KI, et al. Cloned horse pregnancies produced using adult cumulus cells. Reprod Fertil Dev 2004; 16(7): 675-679.
    31. Lu F, Shi D, Wei J, et al. Development of embryos reconstructed by interspecies nuclear transfer of adult fibroblasts between buffalo (Bubalus bubalis) and cattle (Bos indicus). Theriogenology 2005; 64(6): 1309-1319.
    32. Lee BC, Kim MK, Jang G, et al. Dogs cloned from adult somatic cells. Nature 2005; 436(7051): 641.
    33. Eggan K, Baldwin K, Tackett M, et al. Mice cloned from olfactory sensory neurons. Nature 2004; 428(6978): 44-49.
    34. Li J, Ishii T, Feinstein P, et al. Odorant receptor gene choice is reset by nuclear transfer from mouse olfactory sensory neurons. Nature 2004; 428(6981): 393-399.
    35. Kato Y, Yabuuchi A, Motosugi N, et al. Developmental potential of mouse follicular epithelial cells and cumulus cells after nuclear transfer. Biol Reprod 1999; 61(4): 1110-1114.
    36. Ono Y, Shimozawa N, Ito M, et al. Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer. Biol Reprod 2001; 64(1): 44-50.
    37. Polejaeva IA, Chen SH, Vaught TD, et al. Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 2000; 407(6800): 86-90.
    38. Hall VJ, Ruddock NT, Cooney MA, et al. Production of a cloned calf using zona-free serial nuclear transfer. Theriogenology 2005.
    39. Wells DN, Misica PM, Tervit HR, et al. Adult somatic cell nuclear transfer is used to preserve the last surviving cow of the Enderby Island cattle breed. Reprod Fertil Dev 1998; 10(4): 369-378.
    40. Vogel G. Endangered species. Cloned gaur a short-lived success. Science 2001; 291(5503): 409.
    41. Loi P, Ptak G, Barboni B, et al. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat Biotechnol 2001; 19(10): 962-964.
    42. Kim MK, Jang G, Oh HJ, et al. Endangered wolves cloned from adult somatic cells. Cloning Stem Cells 2007; 9(1): 130-137.
    43. Lee JB, Park C. Molecular genetics: verification that Snuppy is a clone. Nature 2006; 440(7081): E2-3.
    44.安晓荣,苟克勉,关宏,等.卵丘细胞核移植技术生产克隆牛犊.中国科学C辑2002;32(1):69-76.
    45.王玉阁,邹贤刚,成国祥,等.由胎儿成纤维细胞而来的克隆山羊(Capra hircus).科学通报 1999;44(21):2319-2323.
    46. Cheng Y, Wang YG, Luo JP, et al. [Cloned goats produced from the somatic cells of an adult transgenic goat]. Sheng Wu Gong Cheng Xue Bao 2002; 18(1): 79-83.
    47. Chen DY, Jiang MX, Zhao ZJ, et al. Cloning of Asian yellow goat (C. hircus) by somatic cell nuclear transfer: telophase enucleation combined with whole cell intracytoplasmic injection. Mol Reprod Dev 2007; 74(1): 28-34.
    48. Xu XM, Lei AM, Hua JL, et al. [Nuclear transfer and therapeutic cloning]. Yi Chuan 2005; 27(2): 289-296.
    49. Hubner K, Fuhrmann G, Christenson LK, et al. Derivation of oocytes from mouse embryonic stem cells. Science 2003; 300(5623): 1251-1256.
    50. Toyooka Y, Tsunekawa N, Akasu R, et al. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci U S A 2003; 100(20): 11457-11462.
    51. Carpenter MK, Inokuma MS, Denham J, et al. Enrichment of neurons and neural precursors from human embryonic stem cells. Exp Neurol 2001; 172(2): 383-397.
    52. Mummery C, Ward-van Oostwaard D, Doevendans P, et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 2003; 107(21): 2733-2740.
    53. Kaufman DS, Hanson ET, Lewis RL et al. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 2001; 98(19): 10716-10721.
    54. Assady S, Maor G, Amit M, et al. Insulin production by human embryonic stem cells. Diabetes 2001; 50(8): 1691-1697.
    55. Trounson A, Pera M. Potential benefits of cell cloning for human medicine. Reprod Fertil Dev 1998; 10(1): 121-125.
    56. Li GP, Chen DY, Lian L, et al. Viable rabbits derived from reconstructed oocytes by germinal vesicle transfer after intracytoplasmic sperm injection (ICSI). Mol Reprod Dev 2001; 58(2): 180-185.
    57. Moffatt O, Drury S, Tomlinson M, et al. The apoptotic profile of human cumulus cells changes with patient age and after exposure to sperm but not in relation to oocyte maturity. Fertil Steril 2002; 77(5): 1006-1011.
    58. Sakkas D, Moffatt O, Manicardi GC, et al. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod 2002; 66(4): 1061-1067.
    59. Brenner CA, Barritt JA, Willadsen S, et al. Mitochondrial DNA heteroplasmy after human ooplasmic transplantation. Fertil Steril 2000; 74(3): 573-578.
    60. Mombaerts P. Therapeutic cloning in the mouse. Proc Natl Acad Sci U S A 2003; 100 Suppl 1: 11924-11925.
    61. Gao S, McGarry M, Priddle H, et al. Effects of donor oocytes and culture conditions on development of cloned mice embryos. Mol Reprod Dev 2003; 66(2): 126-133.
    62. Peura TT, Kleemann DO, Rudiger SR, et al. Effect of nutrition of oocyte donor on the outcomes of somatic cell nuclear transfer in the sheep. Biol Reprod 2003; 68(1): 45-50.
    63. Gomez MC, Jenkins JA, Giraldo A, et al. Nuclear transfer of synchronized african wild cat somatic cells into enucleated domestic cat oocytes. Biol Reprod 2003; 69(3): 1032-1041.
    64. Wilmut I, Young L, Campbell KH. Embryonic and somatic cell cloning. Reprod Fertil Dev 1998; 10(7-8): 639-643.
    65. Betthauser J, Forsberg E, Augenstein M, et al. Production of cloned pigs from in vitro systems. Nat Biotechnol 2000; 18(10): 1055-1059.
    66. Wakayama T, Rodriguez I, Perry AC, et al. Mice cloned from embryonic stem cells. Proc Natl Acad Sci U S A 1999; 96(26): 14984-14989.
    67. Tani T, Kato Y, Tsunoda Y. Direct exposure of chromosomes to nonactivated ovum cytoplasm is effective for bovine somatic cell nucleus reprogramming. Biol Reprod 2001; 64(1): 324-330.
    68. Lai L, Tao T, Machaty Z, et al. Feasibility of producing porcine nuclear transfer embryos by using G2/M-stage fetal fibroblasts as donors. Biol Reprod 2001; 65(5): 1558-1564.
    69. Gibbons J, Arat S, Rzucidlo J, et al. Enhanced survivability of cloned calves derived from roscovitine-treated adult somatic cells. Biol Reprod 2002; 66(4): 895-900.
    70. Gao S, McGarry M, Ferrier T, et al. Effect of cell confluence on production of cloned mice using an inbred embryonic stem cell line. Biol Reprod 2003; 68(2): 595-603.
    71. Hayes O, Ramos B, Rodriguez LL, et al. Cell confluency is as efficient as serum starvation for inducing arrest in the G0/G1 phase of the cell cycle in granulosa and fibroblast cells of cattle. Anim Reprod Sci 2005; 87(3-4): 181-192.
    72. Dominko T, Mitalipova M, Haley B, et al. Bovine oocyte cytoplasm supports development of embryos produced by nuclear transfer of somatic cell nuclei from various mammalian species. Biol Reprod 1999; 60(6): 1496-1502.
    73. Onishi A, Iwamoto M, Akita T, et al. Pig cloning by microinjection of fetal fibroblast nuclei. Science 2000; 289(5482): 1188-1190.
    74. De Sousa PA, Dobrinsky JR, Zhu J, et al. Somatic cell nuclear transfer in the pig: control of pronuclear formation and integration with improved methods for activation and maintenance of pregnancy. Biol Reprod 2002; 66(3): 642-650.
    75. Hiiragi T, Solter D. Reprogramming is essential in nuclear transfer. Mol Reprod Dev 2005; 70(4): 417-421.
    76. Wakayama T, Yanagimachi R. Fertilisability and developmental ability of mouse oocytes with reduced amounts of cytoplasm. Zygote 1998; 6(4): 341-346.
    77. Cohen J, Scott R, Schimmel T, et al. Birth of infant after transfer of anucleate donor oocyte cytoplasm into recipient eggs. Lancet 1997; 350(9072): 186-187.
    78. Hochedlinger K, Jaenisch R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 2002; 415(6875): 1035-1038.
    79. Kim JM, Ogura A, Nagata M, et al. Analysis of the mechanism for chromatin remodeling in embryos reconstructed by somatic nuclear transfer. Biol Reprod 2002; 67(3): 760-766.
    80. Kruip TA, Bevers MM, Kemp B. Environment of oocyte and embryo determines health of IVP offspring. Theriogenology 2000; 53(2): 611-618.
    81. Inoue F, Matsuda J, Ohkoshi K, et al. Differences in gene expression patterns between somatic cell nuclear transfer embryos constructed with either rabbit granulosa cells or their derivatives. Anim Reprod Sci 2005.
    82. Wrenzycki C, Herrmann D, Keskintepe L, et al. Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum Reprod 2001; 16(5): 893-901.
    83. Rizos D, Lonergan P, Boland MP, et al. Analysis of differential messenger RNA expression between bovine blastocysts produced in different culture systems: implications for blastocyst quality. Biol Reprod 2002; 66(3): 589-595.
    84. Schnieke AE, Kind AJ, Ritchie WA, et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 1997; 278(5346): 2130-2133.
    85. McEvoy TG, Sinclair KD, Young LE, et al. Large offspring syndrome and other consequences of ruminant embryo culture in vitro: relevance to blastocyst culture in human ART. Hum Fertil (Camb) 2000; 3(4): 238-246.
    86. Solter D. Mammalian cloning: advances and limitations. Nat Rev Genet 2000; 1(3): 199-207.
    87. Rideout WM, 3rd, Eggan K, Jaenisch R. Nuclear cloning and epigenetic reprogramming of the genome. Science 2001; 293(5532): 1093-1098.
    88. Eggan K, Akutsu H, Loring J, et al. Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci U S A 2001; 98(11): 6209-6214.
    89. Rideout WM, 3rd, Wakayama T, Wutz A, et al. Generation of mice from wild-type and targeted ES cells by nuclear cloning. Nat Genet 2000; 24(2): 109-110.
    90. Bortvin A, Eggan K, Skaletsky H, et al. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 2003; 130(8): 1673-1680.
    91. Kato Y, Tani T, Tsunoda Y. Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J Reprod Fertil 2000; 120(2): 231-237.
    92. Kasinathan P, Knott JG, Wang Z, et al. Production of calves from G1 fibroblasts. Nat Biotechnol 2001; 19(12): 1176-1178.
    93. Tamashiro KL, Wakayama T, Akutsu H, et al. Cloned mice have an obese phenotype not transmitted to their offspring. Nat Med 2002; 8(3): 262-267.
    94. Ogonuki N, Inoue K, Yamamoto Y, et al. Early death of mice cloned from somatic cells. Nat Genet 2002; 30(3): 253-254.
    95. Palmiter RD, Brinster RL, Hammer RE, et al. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 1982; 300(5893): 611-615.
    96. Hammer RE, Pursel VG, Rexroad CE, Jr, et al. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 1985; 315(6021): 680-683.
    97. van Berkel PH, Welling MM, Geerts M, et al. Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol 2002; 20(5): 484-487.
    98. Uchida M, Shimatsu Y, Onoe K, et al. Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res 2001; 10(6): 577-582.
    99. 黄淑帧, 黄英, 陈美珏, 等.转人血清白蛋白基因试管牛的研究. 遗传学报 2000; 27(7): 573-579. 100.Haskell RE, Bowen RA. Efficient production of transgenic cattle by retroviral infection of early embryos. Mol Reprod Dev 1995; 40(3): 386-390.
    101.Inaba M, Toninelli E, Vanmeter G, et al. Retroviral gene transfer: effects on endothelial cell phenotype. J Surg Res 1998; 78(1): 31-36.
    102.Woo YJ, Zhang JC, Taylor MD, et al. One year transgene expression with adeno-associated virus cardiac gene transfer. Int J Cardiol 2005; 100(3): 421-426.
    103. Lavitrano M, Camaioni A, Fazio VM, et al. Sperm cells as vectors for introducing foreign DNA into eggs: genetic transformation of mice. Cell 1989; 57(5): 717-723.
    104. Lavitrano M, Bacci ML, Forni M, et al. Efficient production by sperm-mediated gene transfer of human decay accelerating factor (hDAF) transgenic pigs for xenotransplantation. Proc Natl Acad Sci U S A 2002; 99(22): 14230-14235.
    105.何新,齐冰,刘桂生,等.A Novel Method to Transfer Gene In vivo System.生物化学与生物物理进展2006;33(7):685-690.
    106. Shen W, Li L, Pan Q, et al. Efficient and simple production of transgenic mice and rabbits using the new DMSO-sperm mediated exogenous DNA transfer method. Mol Reprod Dev 2006; 73(5): 589-594.
    107. Naito M, Sakurai M, Kuwana T. Expression of exogenous DNA in the gonads of chimaeric chicken embryos produced by transfer of primordial germ cell transfected in vitro and subsequent fate of the introduced DNA. J Reprod Fertil 1998; 113(1): 137-143.
    108. Piedrahita JA, Moore K, Oetama B, et al. Generation of transgenic porcine chimeras using primordial germ cell-derived colonies. Biol Reprod 1998; 58(5): 1321-1329.
    109. Cibelli JB, Stice SL, Golueke P J, et al. Cloned transgenic calves produced from nonquiescent fetal fibroblasts. Science 1998; 280(5367): 1256-1258.
    110. Chen SH, Vaught TD, Monahan JA, et al. Efficient production of transgenic cloned calves using preimplantation screening. Biol Reprod 2002; 67(5): 1488-1492.
    111. Keefer CL, Baldassarre H, Keyston R, et al. Generation of dwarf goat (Capra hircus) clones following nuclear transfer with transfected and nontransfected fetal fibroblasts and in vitro-matured oocytes. Biol Reprod 2001; 64(3): 849-856.
    112. Brophy B, Smolenski G, Wheeler T, et al. Cloned transgenic cattle produce milk with higher levels of beta-casein and kappa-casein. Nat Biotechnol 2003; 21(2): 157-162.
    113. Donovan DM, Kerr DE, Wall RJ. Engineering disease resistant cattle. Transgenic Res 2005; 14(5): 563-567.
    114. Lai L, Kang JX, Li R, et al. Generation of cloned transgenic pigs rich in omega-3 fatty acids. Nat Biotechnol 2006; 24(4): 435-436.
    115.安晓荣,苟克勉,陈永福.体细胞克隆法生产绵羊转基因囊胚.科学通报2001;46(10):820-825.
    116. Zou X, Wang Y, Cheng Y, et al. Generation of cloned goats (Capra hircus) from transfected foetal fibroblast cells, the effect of donor cell cycle. Mol Reprod Dev 2002; 61(2): 164-172.
    117. Gou KM, An XR, Guan H, et al. Transgenic twin lambs cloned by granulosa cells. Cloning Stem Cells 2003; 5(1): 71-78.
    118. Gong G, Dai Y, Fan B, et al. Birth of calves expressing the enhanced green fluorescent protein after transfer of fresh or vitrified/thawed blastocysts produced by somatic cell nuclear transfer. Mol Reprod Dev 2004; 69(3): 278-288.
    119. Thomas KR, Capecchi MR. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 1987; 51(3): 503-512.
    120. Zou YR, Gu H, Rajewsky K. Generation of a mouse strain that produces immunoglobulin kappa chains with human constant regions. Science 1993; 262(5137): 1271-1274.
    121. McCauley LK. Transgenic mouse models of metabolic bone disease. Curr Opin Rheumatol 2001; 13(4): 316-325.
    122. Metzger D, Chambon P. Site-and time-specific gene targeting in the mouse. Methods 2001; 24(1): 71-80.
    123. Harper AJ. Production of transgenic and mutant mouse models. Methods Mol Med 2005; 104: 185-202.
    124. Shapiro SD. Transgenic and gene-targeted mice as models for chronic obstructive pulmonary disease. Eur Respir J 2007; 29(2): 375-378.
    125. McCreath KJ, Howcroft J, Campbell KH, et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature 2000; 405(6790): 1066-1069.
    126. Houdebine LM. The methods to generate transgenic animals and to control transgene expression. J Biotechnol 2002; 98(2-3): 145-160.
    127. Lai L, Kolber-Simonds D, Park KW, et al. Production of alpha-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 2002; 295(5557): 1089-1092.
    128. Denning C, Burl S, Ainslie A, et al. Deletion of the alpha(1,3)galactosyl transferase (GGTA1) gene and the prion protein (PrP) gene in sheep. Nat Biotechnol 2001; 19(6): 559-562.
    129. Dai Y, Vaught TD, Boone J, et al. Targeted disruption of the alphal, 3-galactosyltransferase gene in cloned pigs. Nat Biotechnol 2002; 20(3): 251-255.
    130. Lai L, Park KW, Cheong HT, et al. Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol Reprod Dev 2002; 62(3): 300-306.
    131. Phelps CJ, Koike C, Vaught TD, et al. Production of alpha 1,3-galactosyltransferase-deficient pigs. Science 2003; 299(5605): 411-414.
    132. Kuroiwa Y, Kasinathan P, Matsushita H, et al. Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle. Nat Genet 2004; 36(7): 775-780.
    133. Takahagi Y, Fujimura T, Miyagawa S, et al. Production of alphal,3-galactosyltransferase gene knockout pigs expressing both human decay-accelerating factor and N-acetylglucosaminyltransfcrase Ⅲ. Mol Reprod Dev 2005; 71(3): 331-338.
    134. Richt JA, Kasinathan P, Hamir AN, et al. Production of cattle lacking prion protein. Nat Biotechnol 2007; 25(1): 132-138.
    135.周江,程萱,孙彦洵,等.基于Cre/LoxP系统的Smad2条件基因打靶小鼠的建立. 中国科学C辑 2001; 31(4): 335-343.
    136.Hasuwa H, Kaseda K, Einarsdottir T, et al. Small interfering RNA and gene silencing in transgenic mice and rats. FEBS Lett 2002; 532(1-2): 227-230.
    137.Wiznerowicz M, Trono D. Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 2003; 77(16): 8957-8961.
    138.Xia XG, Zhou H, Xu Z. Transgenic RNAi: Accelerating and Expanding Reverse Genetics in Mammals. Transgenic Res 2006; 15(3): 271-275.
    139.Golding MC, Long CR, Carmell MA, et al. Suppression of prion protein in livestock by RNA interference. Proc Natl Acad Sci U S A 2006; 103(14): 5285-5290.
    140.Ritz JM, Kuhle O, Riethdorf S, et al. A novel transgenic mouse model reveals humanlike regulation of an 8-kbp human TERT gene promoter fragment in normal and tumor tissues. Cancer Res 2005; 65(4): 1187-1196.
    141. Hao YH, Yong HY, Murphy CN, et al. Production of endothelial nitric oxide synthase (eNOS) over-expressing piglets. Transgenic Res 2006; 15(6): 739-750.
    142.Winkler ME, Winkler M, Burian R, et al. Analysis of pig-to-human porcine endogenous retrovirus transmission in a triple-species kidney xenotransplantation model. Transpl Int 2005.
    143.Tanaka S, Oda M, Toyoshima Y, et al. Placentomegaly in cloned mouse concepti caused by expansion of the spongiotrophoblast layer. Biol Reprod 2001; 65(6): 1813-1821.
    144.Young LE, Sinclair KD, Wilmut I. Large offspring syndrome in cattle and sheep. Rev Reprod 1998; 3(3): 155-163.
    145.Cibelli JB, Campbell KH, Seidel GE, et al. The health profile of cloned animals. Nat Biotechnol 2002; 20(1): 13-14.
    146.Heyman Y, Chavatte-Palmer P, LeBourhis D, et al. Frequency and occurrence of late-gestation losses from cattle cloned embryos. Biol Reprod 2002; 66(1): 6-13.
    147.Hill JR, Roussel AJ, Cibelli JB, et al. Clinical and pathologic features of cloned transgenic calves and fetuses (13 case studies). Theriogenology 1999; 51(8): 1451-1465.
    148.Hassanin A, Douzery EJ. Evolutionary affinities of the enigmatic saola (Pseudoryx nghetinhensis) in the context of the molecular phylogeny of Bovidae. Proc Biol Sci 1999; 266(1422): 893-900.
    
    149.Cockrill WR. The water buffalo: a review. Br Vet J 1981; 137(1): 8-16.
    150.Cockrill WR. Observations on skin colour and markings of the water buffalo (Bubalus bubalis). Veterinarian 1968; 5(1): 29-32.
    151.Amano T, Miyakoshi Y, Takada T, et al. Genetic variants of ribosomal DNA and mitochondrial DNA between swamp and river buffaloes. Anim Genet 1994; 25 Suppl 1: 29-36.
    152.Barker JS, Moore SS, Hetzel DJ, et al. Genetic diversity of Asian water buffalo (Bubalus bubalis): microsatellite variation and a comparison with protein-coding loci. Anim Genet 1997; 28(2): 103-115.
    153. Kierstein G, Vallinoto M, Silva A, et aI. Analysis of mitochondrial D-loop region casts new light on domestic water buffalo (Bubalus bubalis) phylogeny. Mol Phylogenet Evol 2004; 30(2): 308-324.
    154. Chunxi Z, Zhongquan L. Buffalo Genetic Resources in China. Buffalo Newsletter 2001: 1-7.
    155. Arranz JJ, Bayon Y, San Primitivo F. Comparison of protein markers and microsatellites in differentiation of cattle populations. Anim Genet 1996; 27(6): 415-419.
    156. Sanchez JA, Clabby C, Ramos D, et al. Protein and microsatellite single locus variability in Salmo salar L. (Atlantic salmon). Heredity 1996; 77 (Pt 4): 423-432.
    157. Crooijmans RP, Groen AF, Van Kampen AJ, et al. Microsatellite polymorphism in commercial broiler and layer lines estimated using pooled blood samples. Poult Sci 1996; 75(7): 904-909.
    158. Hillel J, Groenen MA, Tixier-Boichard M, et al. Biodiversity of 52 chicken populations assessed by microsatellite typing of DNA pools. Genet Sel Evol 2003; 35(5): 533-557.
    159. Peelman LJ, Mortiaux F, Van Zeveren A, et al. Evaluation of the genetic variability of 23 bovine microsatellite markers in four Belgian cattle breeds. Anim Genet 1998; 29(3): 161-167.
    160.吴信生,陈国宏,王得前,等.利用微卫星技术分析中国部分地方鸡种的遗传结构.遗传学报 2004;31(1):43-50.
    161. Martinez AM, Delgado JV, Rodero A, et al. Genetic structure of the Iberian pig breed using microsatellites. Anim Genet 2000; 31(5): 295-301.
    162. Lanzilao I, Burgalassi F, Fancelli S, et al. Polymerase chain reaction-restriction fragment length polymorphism analysis of mitochondrial cytb gene from species of dairy interest. J AOAC Int 2005; 88(1): 128-135.
    163. Loftus RT, MacHugh DE, Ngere LO, et al. Mitochondrial genetic variation in European, African and Indian cattle populations. Anim Genet 1994; 25(4): 265-271.
    164. Watanabe T, Hayashi Y, Ogasawara N, et al. Polymorphism of mitochondrial DNA in pigs based on restriction endonuclease cleavage patterns. Biochem Genet 1985; 23(1-2): 105-113.
    165. Watanabe T, Masangkay JS, Wakana S, et al. Mitochondrial DNA polymorphism in native Philippine cattle based on restriction endonuclcase cleavage patterns. Biochem Genet 1989; 27(7-8): 431-438.
    166. Bhat PP, Mishra BP, Bhat PN. Polymorphism of mitochondrial DNA (mtDNA) in cattle and buffaloes. Biochem Genet 1990; 28(7-8): 311-318.
    167. Sutarno, Cummins JM, Greeff J, et al. Mitochondrial DNA polymorphisms and fertility in beef cattle. Theriogenology 2002; 57(6): 1603-1610.
    168. Parma P, Erra-Pujada M, Feligini M, et al. Water buffalo (Bubalus bubalis): complete nucleotide mitochondrial genome sequence. DNA Seq 2004; 15(5-6): 369-373.
    169. Cymbron T, Loftus RT, Malheiro MI, et al. Mitochondrial sequence variation suggests an African influence in Portuguese cattle. Proc Biol Sci 1999; 266(1419): 597-603.
    170. Steinborn R, Muller M, Brem G. Genetic variation in functionally important domains of the bovine mtDNA control region. Biochim Biophys Acta 1998; 1397(3): 295-304.
    171.刘延鑫.黄牛线粒体DNAD.环序列多态性与系统发育关系研究.硕士论文,四川农业大学 2004.
    172.王朝锋.中国8个黄牛品种线粒体DNA遗传多样性研究.硕士论文,西北农林科技大学 2005.
    173.雷初朝,宏陈,王德解,等.关中驴线粒体DNA D-loop多态性分析.中国畜牧杂志2004;40(4):10-12.
    174. Tanaka K, Yamagata T, Masangkay JS, et al. Nucleotide diversity of mitochondrial DNAs between the swamp and the river types of domestic water buffaloes, Bubalus bubalis, based on restriction endonuclease cleavage patterns. Biochem Genet 1995; 33(5-6): 137-148.
    175. Barker JS, Tan SG, Selvaraj OS, et al. Genetic variation within and relationships among populations of Asian water buffalo (Bubalus bubalis). Anita Genet 1997; 28(1): 1-13.
    176. Hu W, Xu B, Lian L. Polymorphism of mitochondrial DNAs of Yunnan domestic water buffaloes, Bubalus bubalis, in China, based on restriction endonuclease cleavage patterns. Biochem Genet 1997; 35(7-8): 225-231.
    177. Kikkawa Y, Yonekawa H, Suzuki H, et al. Analysis of genetic diversity of domestic water buffaloes and anoas based on variations in the mitochondrial gene for cytochrome b. Anita Genet 1997; 28: 195-201.
    178. Lau CH, Drinkwater RD, Yusoff K, et al. Genetic diversity of Asian water buffalo (Bubalus bubalis): mitochondrial DNA D-loop and cytochrome b sequence variation. Anim Genet 1998; 29(4): 253-264.
    179. Tanaka K, Solis CD, Masangkay JS, et al. Phylogenetic relationship among all living species of the genus Bubalus based on DNA sequences of the cytochrome b gene. Biochem Genet 1996; 34(11-12): 443-452.
    180. Ritz LR, Glowatzki-Mullis ML, MacHugh DE, et al. Phylogenetic analysis of the tribe Bovini using microsatellites. Anim Genet 2000; 31(3): 178-185.
    181.史荣仙,赖松家,郑维明,等.中国水牛血红蛋白多态性及命名研究.南京农业大学学报,1995;18(3):94-99.
    182.郑维明,赖松家,史荣仙.中国水牛血清白蛋白多态性研究 中国畜牧杂志 1995;31(1):3-6.
    183.赖松家,史荣仙,郑维明.中国水牛血清淀粉酶多态性及型命名研究.四川农业大学学报 1995;13(2):203-207,
    184.赖松家,史荣仙,郑维明,等.中国水牛血清运铁蛋白多态性研究.四川畜牧兽医 1994; (3): 2-5.
    185. Ignatova M, Karadzhov I. [Karyological study of a long-term cell culture of calf kidney]. Vet Med Nauki 1982; 19(8): 3-11.
    186. Mastromonaco GF, Perrault SD, Betts DH, et al. Role of chromosome stability and telomere length in the production of viable cell lines for somatic cell nuclear transfer. BMC Dev Biol 2006; 6: 41.
    187.刘玉琴.体外培养细胞工作中支原体污染及对策.中华病理学杂志 2004;33(6):571-572.
    188. Kubota C, Yamakuchi H, Todoroki J, et al. Six cloned calves produced from adult fibroblast cells after long-term culture. Proc Natl Acad Sci U S A 2000; 97(3): 990-995.
    189.于元松,岳奎忠,孙兴参等.山羊耳皮肤成纤维细胞的传代培养及活力分析.解剖学报 2002;33(5):534-537.
    190. Yang X, Jiang S, Farrell P, et al. Nuclear transfer in cattle: effect of nuclear donor cells, cytoplast age, co-culture, and embryo transfer. Mol Reprod Dev 1993; 35(1): 29-36.
    191.吴尚辉,彭聪,顾焕华,等.体外细胞培养支原体的检测与清除.中国现代医学杂志 2004;14(12):111-113.
    192. Denning C, Dickinson P, Burl S, et al. Gene targeting in primary fetal fibroblasts from sheep and pig. Cloning Stem Cells 2001; 3(4): 221-231.
    193. Cotter TG, al-Rubeai M. Cell death (apoptosis) in cell culture systems. Trends Biotechnol 1995; 13(4): 150-155.
    194.崔蕴霞,狄静芳,曾耀英,等.成纤维细胞生长因子和胰岛素对小鼠软骨细胞增殖的影响.中国病理生理杂志 2003;19(3):394-396.
    195.洪华山,林岚,王一波,等.胰岛素促进心肌成纤维细胞增殖和心肌细胞肥大的作用.中国病理生理杂志 2002;18(51:505-509.
    196.刘敏,彭明惺,刘铭,等.胰岛素及丹参对体外培养成纤维细胞影响的实验研究.中国修复重建外科杂志 1998;12(1):52-54.
    197.李湘萍.在绵羊体细胞敲除myostatin基因及定点整合mAAT基因的初步研究.博士学位论文广西大学,2002.
    198.金国华,黄镇,田美玲,等.成鼠神经干细胞的分离、克隆和增殖.南通医学院学报 2001;21(4):331-334.
    199.徐静娟.离体细胞的培养条件.江南大学学报(自然科学版)2002;1(1):94-96.
    200.黄镇,金国华,张新化,等.提高成年大鼠神经干细胞单克隆形成率的方法.解剖学报 2002;33(6):594-598.
    201.薛庆善.体外培养的原理与技术[M].北京:科学出版社,2001.
    202.赵迪诚,龙志高,郑多,等.直接消化法分离单克隆贴壁细胞.湖南医科大学学报2002;27(6):553-555.
    203. Saito M, Saga A, Matsuoka H. Production of a cloned mouse by nuclear transfer from a fetal fibroblast cell of a mouse closed colony strain. Exp Anim 2004; 53(5): 467-469.
    204. Stamatatos L, Leventis R, Zuckermann MJ, et al. Interactions of cationic lipid vesicles with negatively cliarged phospholipid vesicles and biological membranes. Biochemistry 1988; 27(11): 3917-3925.
    205. Neumann E, Schaefer-Ridder M, Wang Y, et al. Gene transfer into mouse lyoma cells by electroporation in high electric fields. Embo J 1982; 1(7): 841-845.
    206. Tekle E, Astumian RD, Chock PB. Selective and asymmetric molecular transport across electroporated cell membranes. Proc Natl Acad Sci U S A 1994; 91(24): 11512-11516.
    207. Ghosh C, Song W, Lahiri DK. Efficient DNA transfection in neuronal and astrocytic cell lines. Mol Biol Rep 2000; 27(2): 113-121.
    208. van den Hoff MJ, Christoffels VM, Labruyere WT, et al. Electrotransfection with "intracellular" buffer. Methods Mol Biol 1995; 48: 185-197.
    209. Delteil C, Teissie J, Rols MP. Effect of serum on in vitro electrically mediated gene delivery and expression in mammalian cells. Biochim Biophys Acta 2000; 1467(2): 362-368.
    210. Wang D, Jing NH, Lin QS. Stearylamine liposome as a new efficient reagent for DNA transfection of eukaryotic cells. Biochem Biophys Res Commun 1996; 226(2): 450-455.
    211.钱锋,肖成祖.影响非洲绿猴肾细胞脂质体转染效率的因素.生物技术通报1998;(5):31-35.
    212. Farhood H, Bottega R, Epand RM, et al. Effect of cationic cholesterol derivatives on gene transfer and protein kinase C activity. Biochim Biophys Acta 1992; 1111(2): 239-246.
    213. Caplen NJ, Kinrade E, Sorgi F, et al. In vitro liposome-mediated DNA transfection of epithelial cell lines using the cationic liposome DC-Chol/DOPE. Gene Ther 1995; 2(9): 603-613.
    214.梁惠珍,谢举临,文剑明.脂质体载体法转染成纤维细胞的最佳条件.临床与实验病理学杂志 1999;15(3):273-274.
    215. Weber M, Moller K, Welzeck M, et al. Short technical reports. Effects of lipopolysaccharide on transfection efficiency in eukaryotic cells. Biotechniques 1995; 19(6): 930-940.
    216.钱锋,肖成祖.脂质体法和电穿孔法转染哺乳动物细胞研究.生物化学与生物物理进展 1999;26(3):289-291.
    217. Bombelli C, Faggioli F, Luciani P, et al. Efficient transfection of DNA by liposomes formulated with cationic gemini amphiphiles. J Med Chem 2005; 48(16): 5378-5382.
    218. Watanabe S, Iwamoto M, Suzuki S, et al. A novel method for the production of transgenic cloned pigs: electroporation-mediated gene transfer to non-cultured cells and subsequent selection with puromycin. Biol Reprod 2005; 72(2): 309-315.
    219. Lee SL, Ock SA, Yoo JG, et al. Efficiency of gene transfection into donor cells for nuclear transfer of bovine embryos. Mol Reprod Dev 2005; 72(2): 191-200.
    220. Arat S, Gibbons J, Rzucidlo S J, et al. In vitro development of bovine nuclear transfer embryos from transgenic cl6nal lines of adult and fetal fibroblast cells of the same genotype. Biol Reprod 2002; 66(6): 1768-1774.
    221. Zakhartchenko V, Mueller S, Alberio R, et al. Nuclear transfer in cattle with non-transfected and transfected fetal or cloned transgenic fetal and postnatal fibroblasts. Mol Reprod Dev 2001; 60(3): 362-369.
    222. Roh S, Shim H, Hwang WS, et al. In vitro development of green fluorescent protein (GFP) transgenic bovine embryos after nuclear transfer using different cell cycles and passages of fetal fibroblasts. Reprod Fertil Dev 2000; 12(1-2): 1-6.
    223. Bondioli K, Ramsoondar J, Williams B, et al. Cloned pigs generated from cultured skin fibroblasts derived from a H-transferase transgenic boar. Mol Reprod Dev 2001; 60(2): 189-195.
    224. Yamasaki H, Krutovskikh V, Mesnil M, et al. Role of connexin (gap junction) genes in cell growth control and carcinogenesis. C R Acad Sci Ⅲ 1999; 322(2-3): 151-159.
    225. Jin DI, Lee SH, Choi JH, et aI. Targeting efficiency of a-l,3-galactosyl transferase gene in pig fetal fibroblast cells. Exp Mol Med 2003; 35(6): 572-577.
    226. Yang LY, Trujillo JM. Biological characterization of multidrug-resistant human colon carcinoma sublines induced/selected by two methods. Cancer Res 1990; 50(11): 3218-3225.
    227.王海嵘,顾春红,钟济华,等.流式细胞术结合G418筛选重组质粒稳定转染细胞.诊断学理论与实践2006;5(1):52-55.
    228. Norgren RB, Jr. Creation of non-human primate neurogenetic disease models by gene targeting and nuclear transfer. Reprod Biol Endocrinol 2004; 2(1): 40.
    229. Buser R, Montesano R, Garcia I, et al. Bovine microvascular endothelial cells immortalized with human telomerase. J Cell Biochem 2006; 98(2): 267-286.
    230. Morales CP, Holt SE, Ouellette M, et al. Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat Genet 1999; 21(1): 115-118.
    231. Jin OH, Zhao B, Zhang XJ. Cytochrome c release and endoplasmic reticulum stress are involved in caspase-dependent apoptosis induced by G418. Cell Mol Life Sci 2004; 61(14): 1816-1825.
    232. Kaushansky K. The mpl ligand: molecular and cellular biology of the critical regulator of megakaryocyte development. Stem Cells 1994; 12 Suppl 1: 91-96; discussion 96-97.
    233.曹新,曾溢滔.山羊β-酪蛋白基因启动子指导人血清白蛋白基因在小鼠组织中的特异性表达.遗传2001;23(6):518-520.
    234. Kanai A, Nonomura N, Yoshimura M, et al. DNA-binding proteins and their cis-acting sites controlling hormonal induction of a mouse beta-casein:: CAT fusion protein in mammary epithelial cells. Gene 1993; 126(2): 195-201.
    235. Ziomek CA. Commercialization of proteins produced in the mammary gland. Theriogenology 1998; 49(1): 139-144.
    236.黄英,黄缨,黄赞,等.山羊β-酪蛋白基因启动区指导人血清白蛋白在转基因小鼠乳汁中的高效表达.科学通报 2000;45(19):2081-2085.
    237.崔奎青,刘庆友,石德顺,等.水牛β-酪蛋白5′启动区的克隆和序列分析.广西农业生物科学 2005;24(2):94-98.
    238. Drachman JG. Role of thrombopoietin in hematopoietic stem cell and progenitor regulation. Curr Opin Hematol 2000; 7(3): 183-190.
    239. de Sauvage FJ, Hass PE, Spencer SD, et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 1994; 369(6481): 533-538.
    240.李海涛.TPO基因乳腺表达打靶载体构建的初步研究.硕士学位论文,广西大学,2003.
    241. Chalfie M, Tu Y, Euskirchen G, et al. Green fluorescent protein as a marker for gene expression. Science 1994; 263(5148): 802-805.
    242. Megason S, Amsterdam A, Hopkins N, et al. Uses of GFP in transgenic vertebrates. Methods Biochem Anal 2006; 47: 285-303.
    243.张运海,潘登科,孙秀柱,等.利用体细胞核移植技术生产表达绿色荧光蛋白的猪转基因克隆胚胎.中国科学C辑 2005;35(5):439-445.
    244. Jang G, Park ES, Cho JK, et al. Preimplantational embryo development and incidence of blastomere apoptosis in bovine somatic cell nuclear transfer embryos reconstructed with long-term cultured donor cells. Theriogenology 2004; 62(3-4): 512-521.
    245. Iguma LT, Lisauskas SF, Melo EO, et al. Development of bovine embryos reconstructed by nuclear transfer of transfected and non-transfected adult fibroblast cells. Genet Mol Res 2005; 4(1): 55-66.
    246. Roh S, Hwang WS. In vitro development of porcine parthenogenetic and cloned embryos: comparison of oocyte-activating techniques, various culture systems and nuclear transfer methods. Reprod Fertil Dev 2002; 14(1-2): 93-99.
    247. Park KW, Lai L, Cheong HT, et al. Mosaic gene expression in nuclear transfer-derived embryos and the production of cloned transgenic pigs from ear-derived fibroblasts. Biol Reprod 2002; 66(4): 1001-1005.
    248. Ihara N, Takasuga A, Mizoshita K, et al. A comprehensive genetic map of the cattle genome based on 3802 microsatellites. Genome Res 2004; 14(10A): 1987-1998.
    249. Crawford AM, Dodds KG, Ede AJ, et al. An autosomal genetic linkage map of the sheep genome. Genetics 1995; 140(2): 703-724.
    250. Buchanan FC, Adams LJ, Littlejohn RP, et al. Determination of evolutionary relationships among sheep breeds using microsatellites. Genomics 1994; 22(2): 397-403.
    251. Navani N, Jain PK, Gupta S, et al. A set of cattle microsatellite DNA markers for genome analysis of riverine buffalo (Bubalus bubalis). Anim Genet 2002; 33(2): 149-154.
    252. Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 1980; 32(3): 314-331.
    253. Nijman IJ, Vastenburg JB, Williams JL, et al. Thirteen bovine microsatellite markers that are polymorphic in sheep. Anim Genet 1998; 29(6): 474-475.
    254. Slate J, Coltman DW, Goodman SJ, et al. Bovine microsatellite loci are highly conserved in red deer (Cervus elaphus), sika deer (Cervus nippon) and Soay sheep (Ovis aries). Anim Genet 1998; 29(4): 307-315.
    255. Moore SS, Sargeant LL, King TJ, et al. The conservation of dinucleotide microsatellites among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics 1991; 10(3): 654-660.
    256. Cockett NE, Jackson SP, Shay TL, et al. Chromosomal localization of the callipyge gene in sheep (Ovis aries) using bovine DNA markers. Proc Natl Acad Sci U S A 1994; 91(8): 3019-3023.
    257. Cheng HH, Levin I, Vallejo RL, et al. Development of a genetic map of the chicken with markers of high utility. Poult Sci 1995; 74(11): 1855-1874.
    258. de Gortari MJ, Freking BA, Kappes SM, et al. Extensive genomic conservation of cattle microsatellite heterozygosity in sheep. Anim Genet 1997; 28(4): 274-290.
    259. Pepin L, Amigues Y, Lepingie A, et al. Sequence conservation of microsateilites between Bos taurus (cattle), Capra hircus (goat) and related species. Examples of use in parentage testing and phylogeny analysis. Heredity 1995; 74 ( Pt 1): 53-61.
    260. van Hooft WE Hanotte O, Wenink PW, et al. Applicability of bovine microsatellite markers for population genetic studies on African buffalo (Syncerus caffer). Anim Genet 1999; 30(3): 214-220.
    261.樊斌,彭中镇,李奎,等.微卫星标记及其在猪遗传育种中的应用.河南农业大学学报 1999;33(2):161-165.
    262. Gill P, Urquhart A, Millican E, et al. A new method of STR interpretation using inferential logic—development of a criminal intelligence database. Int J Legal Med 1996; 109(1): 14-22.
    263.毛永江,常洪,杨章平,等.盱眙水牛遗传多样性及系统地位的研究.家畜生态学报 2006;27(1):11-17.
    264. Ellegren H. Mutation rates at porcine microsatellite loci. Mamm Genome 1995; 6(5): 376-377.
    265. Schulz MM, Reichert W, Wehner HD, et al. [An already archived latent fingerprint as a DNA source for STR typing in a murder case]. Arch Kriminol 2004; 213(5-6): 165-170.
    266. Luikart G, Biju-Duval MP, Ertugrul O, et al. Power of 22 microsatellite markers in fluorescent multiplexes for parentage testing in goats (Capra hircus). Anim Genet 1999; 30(6): 431-438.
    267. Heyen DW, Beever JE, Da Y, et al. Exclusion probabilities of 22 bovine microsatellite markers in fluorescent multiplexes for semiautomated parentage testing. Anim Genet 1997; 28(1): 21-27.
    268. Glowatzki-Mullis ML, Gaillard C, Wigger G, et al. Microsatellite-based parentage control in cattle. Anim Genet 1995; 26(1): 7-12.
    269.张亚平,王文,宿兵,等.大熊猫微卫星DNA的筛选及其应用.动物学研究1995;16(4):301-306.
    270.张于光,李迪强,饶力群,等.东北虎微卫星DNA遗传标记的筛选及在亲子鉴定中的应用.动物学报2003;49(1):118-123.
    271. Fredholm M, Wintero AK. Efficient resolution of parentage in dogs by amplification of microsatellites. Anim Genet 1996; 27(1): 19-23.
    272. Giovambattista G, Ripoli MV, Liron JP, et al. DNA typing in a cattle stealing case. J Forensic Sci 2001; 46(6): 1484-1486.
    273. Ashworth D, Bishop M, Campbell K, et al. DNA microsatellite analysis of Dolly. Nature 1998; 394(6691): 329.
    274. Kishi M, Itagaki Y, Takakura R, et al. Nuclear transfer in cattle using colostrum-derived mammary gland epithelial cells and ear-derived fibroblast cells. Theriogenology 2000; 54(5): 675-684.
    275. Hurles M. Human Evolutionary Genetics: Origins, Peoples and Disease Garland Science, 2003.
    276. Hassanin A, Douzery EJ. The tribal radiation of the family Bovidae (Artiodactyla) and the evolution of the mitochondrial cytochrome b gene. Mol Phylogenet Evol 1999; 13(2): 227-243.
    277. Saccone C, Lanave C, Pesole G. Time and biosequences. J Mol Evol 1993; 37(2): 154-159.
    278. Boyce WM, Ramey RR, 2rid, Rodwell TC, et al. Population subdivision among desert bighorn sheep (Ovis canadensis) ewes revealed by mitochondrial DNA analysis. Mol Ecol 1999; 8(1): 99-106.
    279. Douzery E, Randi E. The mitochondrial control region of Cervidae: evolutionary patterns and phylogenetic content. Mol Biol Evol 1997; 14(11): 1154-1166.
    280. Nagata J, Masuda R, Tamate HB, et al. Two genetically distinct lineages of the sika deer, Cervus nippon, in Japanese islands: comparison of mitochondrial D-loop region sequences. Mol Phylogenet Evol 1999; 13(3): 511-519.
    281. Troy CS, MacHugh DE, Bailey JF, et al. Genetic evidence for Near-Eastern origins of European cattle. Nature 2001; 410(6832): 1088-1091.
    282. Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 1999; 16(1): 37-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700