用户名: 密码: 验证码:
动物RNA病毒反向遗传系统的研究和建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对非逆转录RNA病毒发展起来的病毒反向遗传学可以实现对RNA病毒基因组结构与功能、复制与表达、病毒致病机制等研究。本研究用T7RNA聚合酶系统和聚合酶Ⅰ系统为基础建立了体内外拯救方法并初步进行应用。
     一、SVDV HK/70株生物特性测定、生物信息学分析及以T7 RNAP为基础的体外病毒拯救方法的建立和应用
     为了建立以T7 RNA聚合酶系统为基础的体外拯救病毒方法,选择猪水泡病病毒(SVDV)HK/70株作为细胞质复制的RNA病毒的研究模型。首先,分离和鉴定了该病毒,并测定了该病的一些生物学特性。然后,构建了SVDV全长cDNA并进行序列测定,以此为基础,分析了其相关生物信息学特征。为了鉴定SVDV HK/70株的全长cDNA分子的感染性,以线化的SVDV HK/70株的全长cDNA质粒(pSVOK_(12))为模板,应用T7 RNA聚合酶系统在体外进行转录,将获得的RNA用脂质体转染法导入IBRS-2细胞,传代培养,可以观察到典型的SVDV致细胞病变效应。使用反向血凝鉴定试验、间接免疫荧光实验、RT-PCR和序列测定进行检测,结果表明,从猪水泡病病毒全长cDNA拯救出了猪水泡病病毒(G-SVDV);利用常规负染的方法,电镜观察了G-SVDV的形态;测定了G-SVDV的TCID_(50)和LD_(50),并与亲本毒进行了比较,结果显示G-SVDV与亲本毒的毒力差别不显著。本研究结果证明,我们已经成功构建了猪SVDV HK/70的感染性cDNA克隆,为进一步探索SVDV病毒致病的分子机制及研制新型SVD疫苗奠定了良好的基础。
     二、以T7 RNAP为基础的体内病毒拯救方法的建立和应用
     为了建立高效的体内病毒拯救系统,我们利用逆转录病毒转导技术建立了稳定表达T7 RNA聚合酶的细胞系。先克隆出T7 RNAP基因,定向克隆进逆转录病毒载体pBABEpuro,得到阳性重组质粒pT7BABEpuro。共转染包装细胞,获得含有VSV-G膜的假型病毒,含有T7 RNA聚合酶基因。然后把该假型病毒感染靶细胞,把T7 RNAP基因分别整合进BHK-21、IBRS-2和SK6细胞的基因组内。通过抗性筛选,获得了稳定表达具有转录活性T7 RNA聚合酶的细胞系,通过PCR、间接免疫荧光和流式细胞仪(FCM)等技术进行鉴定,结果表明,该T7 RNAP能够被稳定地整合进靶细胞基因组内,细胞系内的T7 RNAP具有较好的转录活性,其活性传代不减弱。最后,利用该细胞系成功拯救出具有感染性的SVDV,并与亲本毒的生物学特性作了比较。该策略使RNA拯救方法简化为一步快速的拯救方法。利用该方法对CSFV C株进行了拯救,进行了拯救病毒的鉴定,并做了兔子致病性试验。
     三、以真核细胞RNA聚合酶Ⅰ系统为基础的体内拯救系统的建立和应用
     为了克服那些难以适应甚至没有可适应细胞系的病毒拯救难题,设计构建了完全利用真核细胞聚合酶的RNA病毒体内拯救系统。先克隆出所需的真核RNA聚合酶Ⅰ启动子和终止子序列,建立RNA聚合酶Ⅰ启动转录的重组质粒。然后把SVDV全长cDNA装配进该载体,在IBRS-2细胞内和乳鼠体内成功拯救出了SVDV,第一次证明了聚合酶Ⅰ系统能够高效拯救细胞质复制的正链RNA病毒。并利用该拯救系统对FMDV进行了拯救,首次证明该聚合酶I系统能够转录出至少长8.2 kb的转录本。在此基础上,构建含有外源性生物标记5B 19的SVDV HK/70全长cDNA克隆,利用聚合酶Ⅰ反向遗传拯救系统拯救出含有该标记的病毒。为制备含有基因标记疫苗和建立鉴别诊断方法奠定一定的基础。该设计思路的实现,拓宽了高效病毒拯救的途径,为病毒反向遗传学研究提供了更为高效和广泛应用的病毒拯救技术方法。
The reverse genetics of RNA virus allows precise study of the mechanisms as antigenicity,virulence, pathogenesis, maturation and replication of the virus at the molecular level. In this study, invitro and in vivo transcription systems were developed.
     1 Testing of biological properties, analyzing of bioinformatics of SVDV HK/70 strain anddevelopment in in vitro transcription system based on T7 RNA polymerase for the virus
     To develop in vitro transcription system based on T7 RNA polymerase (T7 RNAP) for RNA virus,the swine vesicular disease virus HK/70 strain was selected as a model virus of cytoplasmicpositive-strand RNA virus in the present study. Firstly, the virus was isolated and cultured in mouse andIBRS-2 cells. Then, the biological properties such as 50%tissue culture infecting dose (TCID_(50)) andmouse virulence, and so on, were tested. The bioinformatics of the virus genome was also analyzedbased complete genome sequence by some software.
     At last, the full-length cDNA clone of swine vesicular disease virus HK/70 strain named pSVOK_(12)was constructed in order to study the antigenicity, replication, maturation and pathogenicity of swinevesicular disease virus. In vitro transcription RNA from pSVOK_(12) transfected IBRS-2 cells and therecovered virus RNA was isolated and sequenced, then indirect hemagglutination test, indirectimmunofluorescence assays, eleectron microscope test, 50%tissue culture infecting dose (TCID_(50))assays and mouse virulence studies were used to study the antigenicity and virulence of the recoveredvirus. The result showed that the infectious clones has obtained and the virus derived from pSVOK_(12)had the same biological properties as the parental strain HK/70; The full-length infectious cDNA clone,pSVOK_(12), will be very useful in studies of the antigenicity, virulence, pathogenesis, maturation andreplication of SVDV.
     2 Development in in vivo transcription system based on T7 RNA polymerase
     Establishment of cell lines stably expressing T7 RNA polymerase by using retroviral gene transfertechnique for rescue of infectious RNA virus
     Reverse genetics based on transfection of in vitro transcribed RNA to target cells has lowefficiency to recover RNA viruses. To develop an efficient and vaccinia virus-free recovery system(reverse genetics), three stable cell lines (designated as BHKT7, IBRST7 and SK6T7 respectively)constitutively expressing cytoplasmic bacteriophage T7 RNA polymerase (T7 RNAP) were developed.By using retroviral gene transfer technology, the T7 RNAP gene was integrated into the chromosome of these cells (BHK-21, IBRS-2 and SK6) and then these cell lines stably expressing T7 RNAP (BHKT7)were established under selection pressure. The T7 RNAP produced in the BHKT7 cell line was able toefficiently driving in vivo transcription of enhanced green fluorescent protein (EGFP) reporter genecontrolled by the T7 promoter. When the IBRST7/ BHKT7 cell line was directly transfected withlinearized full-length cDNA of swine vesicular disease viruse (SVDV) HK/70, infectious SVDV wassuccessfully recovered. Two-day-old mice inoculated intra-peritoneally with the recovered virus died at72 hours after inoculation. These data showed the T7 RNAP in BHKT7 cells has transcriptional activityand can be used for recovery of infectious RNA virus directly from full-length cDNAs. InfectiousCSFV was also successfully recovered from the SK6T7 cell line, and rabbit virulence studies were usedto study the virulence of the recovered virus.
     3 Development in the in vivo rescue system based on RNA polymerase I system.
     For some viruses refuse to grow in laboratory cell cultures, which cannot be recovered in cellcultures, or a limited number of mammalian cell lines are available for culture of virus which cannot betransfected with high efficiencies, which sometimes limits their use in reverse genetics systems forvaccine production and studying basic principles of molecular biology of the virus. To address thislimitation, we established a reverse genetics system that is entirely from a RNA polymeraseⅠ-drivenplasmid required for virus generation. Here, we report the recovery of infectious SVDV entirely fromcDNA, which is a polymerase (pol)Ⅰand polⅡ-driven plasmid constructed which permits intracellulartranscription of the accurate viral RNA (vRNA) and caped mRNA of the viral protein to be derivedfrom the same template resulted in the efficient formation of infectious virus with genetic tags in thegenome from IBRS-2 cell transfected and suckling mice directly inoculated with a RNA polymeraseⅠ/Ⅱ-driven vector. The cDNA-derived viruses behaved identically to wild-type virus in both cell cultureand infected mice. Importantly, the virus can be recovered from the mice directly injected with theplasmid, which also would develop a method to rescue the viruses refuse to grow in laboratory cellcultures.
     This technology provides an important basis for investigating various fields of virological research.The reverse genetic procedures are simplified to a faster, one step protocol to recover virus andovercome the obstacle to rescue the viruses which have no adaptive cell line. In addition, our findingsdemonstrate that polⅠ/Ⅱ-based vector systems may represent an efficient alternative strategy for therecovery of cytoplasmic positive-strand RNA viruses from cDNA. Then, infectious FMDV was alsosuccessfully recovered from BHK-21 cell line by the in vivo rescue system, it is the first time that theresults shown that the RNA polymeraseⅠcould drive transcripts of about 8.2 kb in length,
     4 Research on recombinant viruses with marker as vaccines against viral diseases by reversegenetics system
     To develop a marker vaccination: designing unique antigens to be added to vaccines todifferentiate between natural infection and vaccination. The full-length cDNA clone of SVDVreplication-competent recombinant virus with bio-mark 5B19 was constructed. Then the recombinantvirus was recovered by reverse genetics system.
引文
1.陈小云.猪繁殖与呼吸综合征病毒全长感染性cDNA克隆的构建[博士学位论文].北京:中国农业大学,2004.
    2.范宝昌.我国登革病毒全长cDNA克隆的构建及其转录体的感染性研究[博士学位论文].北京:中国人民解放军军事医学科学院,2002.
    3.李呈军.中国H9N2亚型禽流感病毒进化分析与H5N1亚型禽流感病毒标记疫苗的研究[博士学位论文].北京:中国农业科学院研究生院,2005.
    4.冶贵生,刘湘涛,谢庆阁,等.猪水泡病病毒全基因组核苷酸序列的测定与分析.病毒学报,2005,21:69~71.
    5.张淼涛,冯霞,刘湘涛,等.猪瘟病毒C株(脾淋毒)全长cDNA分子几个突变位点的重组改造.畜牧兽医学报,2005,36(2):166~171.
    6. Agrawal S, Gupta D, Panda SK. The 3' end of hepatitis E virus (HEV) genome binds specifically to the viral RNA~dependent RNA polymerase (RdRp). Virology, 2001, 282, 87~101.
    7. Ahlquist P, Janda M. cDNA cloning and in vitro transcription of the complete brome mosaic virus genome. Mol Cell Biol, 1984, 4(12):2876~2882.
    8. Almazan F, Gonzatez JM, Penzes Z, et al. Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A, 2000, 97(10): 5516~5521.
    9. Angenent GC, Posthumus E, Bol JF. Biological activity of transcripts synthesized in vitro from full~length and mutated DNA copies of tobacco rattle virus RNA 2. Virology, 1989, 173(1): 68~76.
    10. Ausubel F M, Brent R, Kingdom R E, et al. Current Protocols in Molecular Biology [M]. New York: Greene Publishing Associates and Wiley Interscience, 1987.
    11. Banerji J, Rusconi S, Schaffner W. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell, 1981, 27: 299~308.
    12. Barbara ES, Syline D, William L M, et al. Disease of Swine (8th ediction). USA: Iowa State University, 2000: 327~340.
    13. Baxt B, Grubman M J, Bachrach H L. The relation ofpoly(A) length to specific infectivity of viral RNA: a comparison of different types of foot-and-mouth disease virus. Virology, 1979, 98:480~483.
    14. Beard CW, Mason PW. Genetic determinants of altered virulence of Taiwanese foot-and-mouth disease virus. J Virol, 2000, 74:987~991.
    15. Bell SP, Learned RM, Jantzen HM, et al. Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science, 1988, 241:1192~1197.
    16. Belsham G J, Brangwyn JK. A region of the 5' noncoding region of foot-and-mouth disease virus RNA directs efficient internal initiation of protein synthesis within cells: involvement with the role of L protease in translational control. J Virol, 1990, 64: 5389~5395.
    17. Belsham GJ, Sonenberg N. Picornavirus RNA translation: roles for cellular proteins. Trends Microbiol, 2000, 8: 330-335.
    18. Bergamini G, Preiss T, Hentze M W. Picornavirus IRESes and the poly(A) tail jointly promote cap-independent translation in a mammalian cell-free system . RNA, 2000, 6(12):1781-1790.
    19. Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res, 2000, 28:235-242.
    20. Bogenhagen DF, Sakonju S, Brown DD. A control region in the center of the 5S RNA gene directs specific initiation of transcription: II the 3'border of the region. Cell, 1980, 19: 27-35.
    21. Boyer JC, Haenni AL, Infectious transcripts and cDNA clones of RNA viruses. Virology, 1994, 198(2): 415-426.
    22. Bridgen A, Elliott RM. Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci U S A, 1996, 93(26): 15400-15404.
    23. Brocchi E, Zhang G, Knowles N J, et al. Molecular epidemiology of recent outbreaks of swine vesicular disease: two genetically and antigenically distinct variants in Europe, 1987 - 94 . Epidemiol Infect, 1997, 118(1): 51-61.
    24. Brown F, Talbot P, Burrows R. Antigenic differences between isolates of swine vesicular disease virus and their relationship to coxsackie B5 virus. Nature, 1973, 245: 315-316.
    25. Buchholz UJ, Finke S, Conzelmann KK. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol, 1999, 73:251-259.
    26. Burgess RR, Travers AA, Dunn JJ, et al. Factor stimulating transcription by RNA polymerase. Nature, 1969, 221:43-46.
    27. Burness ATH, Pardoe IU, Duffy EM, et al. Size and location of the Poly(A) tract in EMC virus RNA. J Gen Virol, 1977, 34:331-345.
    28. Chatterjee NK, Bachrach HL, Polatnick J. Foot-and-mouth disease virus RNA. Presence of 3'-terminal polyriboadenylic acid and absence of amino acid binding ability. Virology, 1976, 69(2):369-377
    29. Cheetham GM, Jeruzalmi D, Steitz T A. Structural basis for initiation of transcription from an RNA polymerase-promoter complex. Nature, 1999, 399: 80-83.
    30. Cheetham GMT, Steitz TA. Structure of a transcribing T7 RNA polymerase initiation complex. Science, 1999, 286:2305-2309.
    31. Chou PY, Fasman GD. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol, 1978, 47:45-148.
    32. Coffin JM, Hughes SH, Varmus H E. Retroviruses [EB/OL]. New York: Cold Spring Harbor Laboratory Press, 1997. http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=rv
    33. Cohen JI, Ticehurst JR, Feinstone SM, et al. Hepatitis A virus cDNA and its RNA transcripts are infectious in cell culture. J Virol, 1987, 61(10):3035-3039.
    34. Commandeur U, Jarausch W, Li Y, et al. cDNAs of beet necrotic yellow vein virus RNAs 3 and 4 are rendered biologically active in a plasmid containing the cauliflower mosaic virus 35S promoter. Virology, 1991, 185(1):493-495.
    35. Conzelmann KK, Schnell M. Rescue of synthetic genomic RNA analogs of rabies virus by plasmid-encoded proteins. J Virol, 1994, 68(2):713-719.
    36. Conzelmann KK. Reverse genetics of mononegavirales. Curr Top Microbiol Immunol, 2004, 283:1-41.
    37. Cramer P, Bushnell DA, Fu J, et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science, 2000, 288: 640-649.
    38. Cui T, Porter AG. Localization of binding site for Encephalomyocarditis virus RNA polymerase in the 3'noncoding region of the viral RNA. Nucleic Acids Res, 1995, 23: 377-382.
    39. Dawson WO, Beck DL, Knorr DA, et al. cDNA cloning of the complete genome of tobacco mosaic virus and production of infectious transcripts. Proc Natl Acad Sci U S A, 1986, 83(6): 1832-1836.
    40. Dekker A. Swine vesicular disease, studies on pathogenesis, diagnosis, and epizootiology: a review. Vet Q, 2000, 22 (4): 189-192.
    41. Delarue M, Poch O, Tordo N, et al. An attempt to unity the structure of polymerases. Protein Eng, 1990, 3(6):461-467.
    42. Deng H, Wang C, Acsadi G, et al. High-efficiency protein synthesis from T7 RNA polymerase transcripts in 3T3 fibroblasts. Gene, 1991, 109:193-201.
    43. Devic M, Jaegle M, Baulcombe D.Symptom production on tobacco and tomato is determined by two distinct domains of the satellite RNA of cucumber mosaic virus (strain Y). J Gen Virol, 1989, 70(10): 2765-2774.
    44. Doel MT, Carey NH. The translational capacity of deadenylated ovalbumin messenger RNA . Cell, 1976, 8(1):51-58.
    45. Dolja VV, McBride HJ, Carrington JC. Tagging of plant potyvirus replication and movement by insertion of beta-glucuronidase into the viral polyprotein. Proc Natl Acad Sci U S A, 1992, 89(21): 10208-10212.
    46. Dore JM, Erny C, Pinck L. Biologically active transcripts of alfalfa mosaic virus RNA3. FEBS Lett, 1990,264(2): 183-186.
    47. Duechler M, Skern T, Blaas D, et al. Human rhinovirus serotype 2: in vitro synthesis of an infectious RNA. Virology, 1989, 168(1):159-161.
    48. Duke GM, Palmenberg AC. Cloning and synthesis of infectious cardiovirus RNAs containing short, discrete poly(C) tracts. J Virol, 1989, 63:1822-1826.
    49. Dzianott AM, Bujarski JJ. An in vitro transcription vector which generates nearly correctly ended RNAs by self-cleavage of longer transcripts. Nucleic Acids Res, 1988, 16(22): 10940.
    50. Dzianott AM, Bujarski JJ. Derivation of an infectious viral RNA by autolytic cleavage of in vitro transcribed viral cDNAs. Proc Natl Acad Sci U S A. 1989, 86(13): 4823-4827.
    51. Eggen R, Verver J, Wellink J, et al. Improvements of the infectivity of in vitro transcripts from cloned cowpea mosaic virus cDNA: impact of terminal nucleotide sequences. Virology, 1989, 173(2): 447-455.
    52. Elroy-Stein O, Moss B. Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc Natl Acad Sci USA, 1990, 87:6743-6747.
    53. Emi N, Friedmann T, Yee JK. Pseudotyped formation of murine leukemia virus with G protein of vesicular stomatitis virus. J Virol, 1991, 65:1202-1207.
    54. Emini EA, Hughes JV, Perlow DS, et al. Induction of hepatitis A virus-neutralizing antibody by a virus-specfic synthetic peptide . J Virol, 1985, 55:836-839.
    55. Enterlein S, Volchkov V, Weik M, et al. Rescue of recombinant Marburg virus from cDNA is dependent on nucleocapsid protein VP30. J Virol, 2006, 80: 1038-1043.
    56. Farshid M, Taffs RE, Scott D, et al. The clearance of viruses and transmissible spongiform encephalopathy agents from biologicals. Curr Opin Biotechnol, 2005, 16:561-567.
    57. Fauquet CM, Mayo MA, Maniloff J, et al. Virus Taxonomy. VIIIth Report of the International Committee on Taxonomy of Viruses [M]. San Diego: Elsevier Academic Press, 2005.
    58. Finke S, Conzelmann K K. Virus promoters determine interference by defective RNAs: selective amplification of mini-RNA vectors and rescue from cDNA by a 3-copy-back ambisense rabies virus. J Virol, 1999, 73: 3818-3825.
    59. Flatz L, Bergthaler A, de la Torre JC, et al. Recovery of an arenavirus entirely from RNA polymerase I/II-driven cDNA. Proc Natl Acad Sci U S A, 2006,103(12):4663-4668.
    60. Flick R, Pettersson RF. Reverse genetics system for Uukuniemi virus (Bunyaviridae): RNA polymerase I-catalyzed expression of chimeric viral RNAs. J Virol, 2001, 75(4): 1643 - 1655.
    61. Fuchs F. Quality control of biotechnology - derived vaccines: technical and regulatory considerations. Biochimie, 2002, 84:1173-1179.
    62. Fuerst T R, Niles E G, Studier F, et al. Eukaryotic transient expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A, 1986, 83:8122-8126.
    63. Galli G, Hofstetter H, Birnstiel ML. Two conserved sequence blocks within eukaryotic tRNA genes are major promoter elements. Nature, 1981, 294:626-631.
    64. Garcia-Sastre A, Palese P. Genetic manipulation of negative-strand RNA virus genomes. Annu Rev Microbiol, 1993, 47: 765-490.
    65. Garcin D, Pelet T, Calain P, et al. A highly recombinogenic system for the recovery of infectious Sendai paramyxovirus from cDNA: generation of a novel copy - back non - defective interferingvirus. EMBO J, 1995, 14:6087-6094.
    66. Gamier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol, 1978,120(1):97-120
    67. Goldstein NO, Pardoe IU, Burness ATH. Requirement of an adenylic acid-rich segment for the infectivity of encephalomyocarditis virus RNA. J Gen Virol, 1976, 31:271-276.
    68. Grant RA, Hiremath CN, Filman DJ, et al. Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Curr Biol, 1994, 4(9):784-797.
    69. Graves J H. Serological relationship of swine vesicular disease virus and coxsackie B5 virus . Nature, 1973, 245(5424):314-315.
    70. Greenblatt J, Nodwell JR, Mason SW. Transcriptional antitermination. Nature, 1993, 364: 401 -406.
    71. Groseth A, Feldmann H, Theriault S, et al. RNA polymerase I-driven minigenome system for Ebola viruses. J Virol, 79(7): 4425-4433.
    72. Grubman MJ, Baxt B, Bachrach HL. Foot-and-mouth disease virion RNA: studies on the relation between the length of its 3'-poly(A) segment and infectivity. Virol, 1979, 97(1):22-31.
    73. Grummt I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev, 2003, 17:1691 - 1702.
    74. Guilford PJ, Beck DL, Forster RLS. Influence of the poly(A) tail and putative polyadenylation signal on the infectivity of white clover mosaic potexvirus. Virology, 1991, 182: 61-67.
    75. Gutierrez A, Martinez-Salas E, Pintado B, et al. Specific inhibition of aphthovirusinfection by RNAs transcribed from both the 5' and the 3' noncoding regions. J Virol, 1994, 68(11):7426-7432.
    76. Hahn H, Palmenberg AC. Encephalomyocarditis viruses with short poly(C) tracts are more virulent than their mengovirus counterparts. J Virol, 1995, 69(4): 2697-2699.
    77. Harty R N, Brown M E, Hayes F P, et al. Vaccinia virus-free recovery of vesicular stomatitis virus. J Mol Microbiol Biotechnol, 2001, 3:513-517.
    78. Hatta M, Neumann G, et al. Reverse genetics approach towards understanding pathogenesis of H5N1 Hongkong influenza A virus infection. Philos Tans R Soclond B Biol Sci, 2001, 356(1416): 1841-1843.
    79. Hayes RJ, Buck KW. Infectious cucumber mosaic virus RNA transcribed in vitro from clones obtained from cDNA amplified using the polymerase chain reaction. J Gen Virol, 1990, 71 (11):2503-2508.
    80. Heaton LA, Carrington JC, Morris TJ. Turnip crinkle virus infection from RNA synthesized in vitro. Virology, 1989, 170(1):214-218.
    81. Herold J, Andino R. Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol Cell, 2001, 7: 581-591.
    82. Hoffman M A, Banerjee A K. An infectious clone of human parainfluenza virus type 3. J Virol, 1997,71:4272-4277.
    83. Hoffmann E, Webster RG. Unidirectional RNA polymerase I-polymerase II transcription system for the generation of influenza A virus from eight plasmids. J Gen Virol, 2000, 81(12): 2843-2847.
    84. Holt CA, Beachy RN. In vivo complementation of infectious transcripts from mutant tobacco mosaic virus cDNAs in transgenic plants. Virology, 1991, 181(1):109-117.
    85. Hruby DE, Robert WK. Encephalomyocarditis virus RNA: variation in polyadenylic acid content and biological activity. J Virol, 1976, 19: 325-330.
    86. Inoue T, Yamaguchi S, Saeki T, et al. Production of infectious swine vesicular disease virus from cloned cDNA in mammalian cells . J Gen Virol, 1990, 71:1835-1838.
    87. Ito Naoto, Mutsuyo Takayama-Ito, Kentaro Yamada, et al. Improved Recovery of Rabies Virus from Cloned cDNA Using a Vaccinia Virus-Free Reverse Genetics System. Microbiology and immunology, 2003, 47: 613-617.
    88. Jacobson SJ, Konings D A, Sarnow P. Biochemical and genetic evidence for a pseudoknot structure at the 3' terminus of the poliovirus RNA genome and its role in viral RNA amplification. J Virol, 1993, 67(6):2961-2971.
    89. Jameson BA, Wolf H. The antigenic index: a novel algorithm for predicting antigenic determinants . Comput Appl Biosci, 1988, 4(1):181 -186.
    90. Jimenez-clavero M A, Escribano-Romero E, Douglas A J, et al. The N-terminal region of the VP1 protein of swine vesicular disease virus contains a neutralization site that arises upon cell attachment and is involved in viral entry . J Virol, 2001, 75(2):1044-1047.
    91. Jobling SA, Cuthbert CM, Rogers SG, et al. In vitro transcription and translational efficiency of chimeric SP6 messenger RNAs devoid of 5' vector nucleotides. Nucleic Acids Res, 1988, 16(10): 4483-4498.
    92. Johnson PF, McKnight SL. Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem, 1989, 58:799-839.
    93. Joseph S, David W R. Molecular cloning:A Laborary Mannual [M]. 3rd ed. USA:Cold Spring Harbor Laboratory Press, 2001: 597-701.
    94. Kandolf R, Canu A, Hofschneider PH. Coxsackie B3 virus can replicate in cultured human foetal heart cells and is inhibited by interferon. J Mol Cell Cardiol, 1985, 17(2):167-181.
    95. Kandolf R, Hofschneider PH. Molecular cloning of the genome of a cardiotropic coxsackie B3 virus: full-length reverse-transcribed recombinant cDNA generates infectious virus in mammalian cells. Proc Natl Acad Sci USA, 1985, 82: 4818-4822.
    96. Kanno T, Inoue T, Mackay D, et al. Viruses produced from complementary DNA of virulent and avirulent strains of swine vesicular disease viruses retain the in vivo and in vitro characteristics of the parental strain. Arch Virol, 1998, 143 (6): 1055-1062.
    97. Kanno T, Mackay D, Inoue T, et al, Mapping the genetic determinants of pathogenicity and plaque phenotype in swine vesicular disease virus. Journal of Virology, 1999, 73:2710-2716.
    98. Kaplan G, Lubinski J, Dasgupta A, et al. In vitro synthesis of infectious poliovirus RNA. Proc Natl Acad Sci USA, 1985, 82(24): 8424-8428.
    99. Kaplan G, Racaniello V R. Construction and haracterization of poliovirus subgenomic replicons. J Virol, 1988,62:1687-1696.
    100. Karplus PA, Schultz G E. Prediction of chain flexibility in proteins. Naturwissenschaften, 1985, 72:212-213.
    101.Kassimi LB, Boutrouille A, Gonzague M, et al. Nucleotide sequence and construction of an infectious cDNA clone of an EMCV strain isolated from aborted swine fetus. Virus Res, 2002, 83(1-2): 71-87.
    102. Kean KM. The role of mRNA 5'-noncoding and 3'-end sequences on 40S ribosomal subunit recruitment, and how RNA viruses successfully compete with cellular mRNAs to ensure their own protein synthesis . Biol Cell, 2003, 95(3-4): 129-139.
    103. Kean KM. The role of mRNA 5'-noncoding and 3'-end sequences on 40S ribosomal subunit recruitment, and how RNA viruses successfully compete with cellular mRNAs to ensure their own protein synthesis . Biol Cell, 2003, 95(3-4):129-139.
    104. Kedinger C, Gniazdowski M, Mandel JL, et al. a-amanitin: a specific inhibitor of one of the two DNA-dependent RNA polymerase activities from calf thymus. Biochem Biophys Res Commun, 1970,38: 165-171.
    105. Keohavong P, Thilly WG. Fidelity of DNA polymerases in DNA amplification. Proc Natl Acad Sci U S A. 1989, 86(23):9253-9257.
    106. Klump WM, Bergmann I, Muller BC, et al. Complete nucleotide sequence of infectious Coxsackievirus B3 cDNA: two initial 5' uridine residues are regained during plus-strand RNA synthesis. J Virol, 1990, 64(4):1573-1583.
    107. Knowles NJ, Davies PR, Henry T, et al. Emergence in Asia of foot-and-mouth disease viruses with altered host range: characterization of alterations in the 3A protein. J Virol, 2001, 75:1551 -1556.
    108. Korzheva N, Mustaev A, Kozlov M, et al. A structural model of transcription elongation. Science, 2000,289:619-625.
    109. Kovacs G R, Parks C L, Vasilakis N. et al. Enhanced genetic rescue of negative-strand RNA viruses: use of an MVA-T7 RNA polyrnerase vector and DNA replication inhibitors. J Virol Methods, 2003, 111:29-36.
    110. Kovacs GR, Parks CL, Vasilakis N. et al. Enhanced genetic rescue of negative-strand RNA viruses: use of an MVA-T7 RNA polymerase vector and DNA replication inhibitors. J Virol Methods, 2003, 111:29-36.
    111. Kozak M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol, 1987, 196, 947-950.
    112. Krishnamurthy S, Huang Zhuhui, Siba K, et al. Recovery of a Virulent strain of Newcastle Disease Virus from cloned cDNA: Expression of a foreign gene results in growth retardation and attenuation. Virology, 2000, 278:168-182
    113.Kuhn R, Luz N, Beck E. Functional analysis of the internal translation initiation site of foot-and-mouth disease virus. J Virol, 1990, 64: 4625-4631.
    114. Kunkel GR, Pederson T. Upstream elements required for efficient transcription of a human U6 RNA gene resemble those of U1 and U2 genes even though a different polymerase is used. Genes Dev, 1988,2:196-204.
    115. Kuo L, Godeke G J, Raamsman M J, et al. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cells pecies barrier. J Virol, 2000, 74(3): 1393-1406.
    116. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol, 1982, 157(1):105-32.
    117. Lai C J, Zhao B, Hori H, et al. Infectious RNA transcribed from stably cloned full-length cDNA of dengue type 4 virus. Proc Natl Acad Sci USA, 1991, 88:5139-5143.
    118. Landick R. Active-site dynamics in RNA polymerases. Cell, 2004, 116(3): 351-353.
    119. Lawson ND, Stillman EA, Whitt MA, et al. Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci USA, 1995, 92:4477-4481.
    120. Lee C, Calvert JG, Welch SK, Yoo D. A DNA-launched reverse genetics system for porcine reproductive and respiratory syndrome virus reveals that homodimerization of the nucleocapsid protein is essential for virus infectivity. Virology, 2005, 331(1):47-62.
    121. Lee C, Hodgins D, Calvert JG, et al. Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication. Virology, 2006, 346(1):238-250.
    122. Lee C, Yoo D. Cysteine residues of the porcine reproductive and respiratory syndrome virus small envelope protein are non-essential for virus infectivity. J Gen Virol, 2005, 86(11): 3091-3096.
    123. Legault P, Li J, Mogridge J, et al. NMR structure of the bacteriophage lambda N peptide/boxB RNA complex: recognition of a GNRA fold by an arginine-rich motif. Cell, 1998, 93:289-299.
    124. Leiser RM, Ziegler-Graff V, Reutenauer A, et al. Agroinfection as an alternative to insects for infecting plants with beet western yellows luteovirus. Proc Natl Acad Sci U S A, 1992, 89(19): 9136-9140.
    125. Levy CC, Schmukler M, Franck JJ, et al. Possible role for poly(A) as an inhibitor of endonuclease activity in eukaryotic cells. Nature, 256, 1975: 340-342.
    126. Li Q, Yafal A G, Lee Y M, et al. Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of these sequences at physiological temperature. J Virol, 1994,68:3965-3970.
    127. Li W, Shi Z, Yu M, et al., Bats are natural reservoirs of SARS-like coronaviruses. Science, 2005, 310:676-678.
    128. Li Z, Chen H, Jiao P, et al. Molecular basis of replication of duck H5N1 influenza viruses in a mammalian mouse model. J Virol, 2005, 79(18):12058-2506.
    129. Li Z, Jiang Y, Jiao P, et al. The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J Virol, 2006, 80(22): 11115-11123.
    130. Loesch-Fries LS, Halk EL, Nelson SE, et al. Human leukocyte interferon does not inhibit alfalfa mosaic virus in protoplasts or tobacco tissue. Virology, 1985, 143(2):626-629.
    131. Logan D, Abu-Ghazaleh R, Blakemore W, et al. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature, 1993, 362: 566-568.
    132. Lowen A C, Noonan C, McLees A, et al. Efficient bunyavirus rescue from cloned cDNA. Virology, 2004,330:493-500.
    133. Lubiniecki A S, Petricciani J C. Recent trends in cell substrate considerations for continuous cell lines. Curr Opin Biotechnol, 2001, 12:317-319.
    134. Mah TF, Kuznedelov K, Mushegian A, et al. The alpha subunit of E. coli RNA polymerase activates RNA binding by NusA. Genes Dev, 2000, 14: 2664-2675.
    135. Martin LR, Duke GM, Osorio JE, et al. Mutational analysis of the mengovirus poly(C) tract and surrounding heteropolymeric sequences. J Virol, 1996, 70(3): 2027-2031.
    136. Martin LR, Neal ZN, McBride MS, et al. Mengovirus and encephalomyocarditis virus poly(C) tract lengths can affect virus growth in murine cell culture. J Virol, 2000, 74: 3074-3081.
    137. Matsui T, Segall J, Weil PA, et al. Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J Biol Chem, 1980, 255:11992-11996.
    138.McClure WR. Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem, 1985,54: 171-204.
    139. Merritt EA, Murphy, MEP. Raster3D version 2.0: a program for photorealistic molecular graphics. Acta Cryst, 1994, 50: 869-873.
    140. Meshi T, Ishikawa M, Motoyoshi F, et al. In vitro transcription of infectious RNAs from full-length cDNAs of tobacco mosaic virus. Proc Natl Acad Sci U S A. 1986, 83(14):5043-5047
    141.Milligan J F, Groebe D R, Witherell G W, et al. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res, 1987, 5: 8783-8798.
    142. Mizutani S, Colonno RJ. In vitro synthesis of an infectious RNA from cDNA clones of human rhinovirus type 14. J Virol, 1985, 56(2):628-632.
    143. Moreau P, Hen R, Wasylyk B, et al. The SV40 72 base pair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucleic Acid Res, 1981, 9:6047-6068.
    144. Mori M, Mise K, Kobayashi K, et al. Infectivity of plasmids containing brome mosaic virus cDNA linked to the cauliflower mosaic virus 35S RNA promoter. J Gen Virol, 1991, 72(2): 243-246.
    145. Nam DK, Lee S, Zhou G, et al. Oligo(dT) primer generates a high frequency of truncated cDNAs through internal poly(A) priming during reverse transcription. Proc Natl Acad Sci USA, 2002, 99(9):6152-6156.
    146. Navas S, Seo S H, Chua M M, et al. Murine coronavirus spike protein determines the ability of the virus to replicate in the liver and cause hepatitis. J Virol, 2001, 75: 2452-2457.
    147. Naviaux RK, Cohen SH, Vanden Brink KM, et al. Construction and characterization of two infectious molecular clones of encephalomyocarditis virus. J Virol, 1990, 64(2): 913-917.
    148. Neumann G, Fujii K, Kino Y, et al. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc Natl Acad Sci U S A, 2005, 102(46): 16825-16829.
    149. Neumann G, Kawaoka Y. Reverse genetics of influenza virus. Virology, 2001, 287(2): 243-250.
    150. Neumann G, Watanabe T, Ito H, et al. Generation of influenza A viruses entirely from cloned cDNAs. Proc Natl Acad Sci U S A, 1999, 96(16): 9345-50.
    151. Neumann G, Watanabe T, Kawaoka Y. Plasmid-driven formation of influenza virus-like particles. J Virol, 2000, 74(1): 547-551.
    152. Neumann G, Whitt MA, Kawaoka Y. A decade after the generation of a negative-sense RNA virus from cloned cDNA - what have we learned? J Gen Virol, 2002, 83(11): 2635-1662.
    153. Neumann G, Zobel A, Hobom G. RNA polymerase I-mediated expression of influenza viral RNA molecules. Virology, 1994, 202(1): 477-479.
    154. Nowotny NCR, Bascunana A, Ballagi-Pordany D, et al. Phylogenetic analysis of rabbit haemorrhagic disease and European brown hare syndrome viruses by comparison of sequences from the capsid protein gene. Arch, Virol, 1997, 142:657-673.
    155. Ohad M, Weber I, Frangakis AS, et al. acromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science, 2002, 298:1209-1213.
    156. Panda SK, Ansari IH, Durgapal H, et al. The in vitro-synthesized RNA from a Cdna clone of hepatitis E virus is infectious. 2000, J Virol, 74: 2430-2437.
    157. Parvin JD, Palese P, Honda A, et al. Promoter analysis of influenza virus RNA polymerase. J Virol, 1989, 63(12): 5142-5152.
    158. Paul AV. Possible unifying mechanism of picornavirus genome replication. In Molecular Biology of the Picomavirus [M]. USA: Washington, 2002, 227-246.
    159. Paule MR, White RJ. Survey and summary: transcription by RNA polymerases I and III. Nucleic Acids Res, 2000, 28:1283-1298.
    160. Peeters B, de Wind N, Hooisma M, et al. Pseudorabies virus envelope glycoproteins gp50 and gII are essential for virus entry, but only gII is involved in membrane fusion. J Virol, 1992, 66: 894-905.
    161. Peeters BP, de Leeuw OS, Koch G, et al. Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinant for virulence. J Virol, 1999, 73(6): 5001-5009.
    162. Perez M, de la Torre J C. Characterization of the genomic promoter of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol, 2003, 77(2): 1184-1194.
    163. Perez M, Sanchez A, Cubitt B, et al. A reverse genetics system for Borna disease virus. J Gen Virol, 2003,84:3099-3104.
    164. Perrotta AT, Been MD. The self-cleaving domain from the genomic RNA of hepatitis delta virus: sequence requirements and the effects of denaturant. Nucleic Acids Res, 1990, 18(23): 6821 -6827.
    165. Pettersson R F, Melin L. Synthesis, assembly, and intracellular transport of Bunyaviridae membrane proteins [M]. //Elliott R M. The Bunyaviridae. New York: Plenum Press, 1996: 159-188.
    166. Racaniello V R, Baltimore D. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science, 1981, 214: 916-919.
    167. Rappuoli R . Reverse vaccinology, a genome-based approach to vaccine development. Vaccine, 2001, 19(17-19):2688-2691.
    168. Rebel J M, Leendertse C H, Dekker A, et al. Construction of a full-length infectious cDNA clone of swine vesicular disease virus strain NET/1/92 and analysis of new antigenic variants derived from it. J Gen Virol, 2000, 81:2763-2769.
    169. Rezaian MA, Williams RH, Gordon KH, et al. Nucleotide sequence of cucumber-mosaic-virus RNA 2 reveals a translation product significantly homologous to corresponding proteins of other viruses. Eur J Biochem. 1984, 143(2): 277-284.
    170. Rice CM, Grakoui R, Galler R. Transcription of infectious yellow fever RNA from full-length cDNA templates produced by in vitro ligation. Nature New Biology, 1989, 1:285-296.
    171. Rieder E, Bunch T, Brown F, et al. Genetically engineered foot-and-mouth disease viruses with poly(C) tracts of two nucleotides are virulent in mice. J Virol, 1993, 67: 5139-5145.
    172. Rizzo TM, Palukaitis P. Construction of full-length cDNA clones of cucumber mosaic virus RNAs 1, 2 and 3: generation of infectious RNA transcripts. Mol Gen Genet, 1990, 222(2-3):249-256.
    173.Roeder RG, Rutter WJ. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms. Nature, 1969, 224:234-237.
    174. Roos RP, Stein S, Ohara Y, et al. Infectious cDNA clones of the DA strain of Theiler's murine encephalomyelitis virus. J Virol, 1989, 63: 5492-5496.
    175. Root-Bernstein RS. Vaccination markers: designing unique antigens to be added to vaccines to differentiate between natural infection and vaccination. Vaccine, 2005, 23(17-18): 2057-2059.
    176. Sachs AB, Sarnow P, Hentze MW. Starting at the beginning, middle, and end: translation initiation in eukaryotes . Cell, 1997, 89(6):831-838.
    177. Sanchez AB, de la Torre JC. Rescue of the prototypic Arenavirus LCMV entirely from plasmid. Virology, 2006, 350(2):370-380.
    178. Sarnow P, Bernstein JD, Baltimore D. A poliovirus temperature-sensitive RNA synthesis mutant located in a noncoding region of the genome. Proc Nat Acad Sci USA, 1986, 83(3): 571-575.
    179. Sarnow P. Role of 3'-end sequences in infectivity of poliovirus transcripts made in vitro. J Virol, 1989,63:467-470.
    180. Savoca R, Schwab C, Bosshard HR. Epitope mapping employing immobilized synthetic peptides. How specific is the reactivity of these peptides with antiserum raised against the parent protein? J Immunol Methods, 1991, 141: 245-252.
    181. Schneider H, Spielhofer, Kaelin PK, et al. Rescue of measles virus using a replication-deficient vaccinia-T7 vector. J Virol Methods, 1997, 64:57-64.
    182. Schneider U, Schwemmle M, Staeheli P. Genome trimming: a unique strategy for replication control employed by Borna disease virus. Proc Natl Acad Sci U S A. 2005, 102(9):3441-3446.
    183. Schnell M J, Mebatsion T, Conzelmann KK. Infectious rabies viruses from cloned cDNA . EMBO J, 1994,13:4195-4203.
    184. Shilatifard A, Conaway R C, Conaway JW. The RNA polymerase II elongation complex. Annu Rev Biochem, 2003, 72:693-715.
    185. Siebenlist U, Simpson RB, Gilbert W. E. coli RNA polymerase interacts homologously with two different promoters. Cell, 1980, 20:269-281.
    186. Smale ST, Kadonaga JT. The RNA polymerase II core promoter. Annu Rev Biochem, 2003, 72: 449-479.
    187. Smeen K, Brown EG. The influenza virus variant A/FM/1/47-MA possesses single amino acid replacements in the hemagglutinin, controlling virulence, and in the Martrix protein, controlling virulence as well as growth. J Virol, 1994, 68: 530-534.
    188. Smith G L, Vanderplasschen A, Law M. The formation and function of extracellular enveloped vaccinia virus. J Gen Virol, 2002, 83: 2915-2931.
    189. Spector DH, Baltimore D. Requirement of 3'-terminal poly (adenylic acid) for the infectivity of poliovirus RNA. Proc Nat Acad Sci USA, 1974, 71: 2983-2987.
    190. Sriburi R, Keelapang P, Duangchinda T, et al. Construction of infectious dengue 2 virus cDNA clones using high copy number plasmid. J Virol Meth, 2001, 92:71-82.
    191. Stein SB, Zhang L, Roos R P. Influence of Theiler's murine encephalomyelitis virus 5'untranslated region on translation and neurovirulence . J Virol, 1992, 66(7):4508-4517.
    192. Sumiyoshi H, Hoke CH, Trent DW, et al. Infectious Japanese encephalitis virus RNA can be synthesized from in vitro-ligated cDNA templates. J Virol, 1992, 6:5425-5431.
    193. Susan E, Witko, Cheryl S, et al. An efficient helper-virus-free method for rescue of recombinant paramyxoviruses and rhadoviruses from a cell line suitable for vaccine development. J Virol Methods, 2006, 135:91-101.
    194. Takahiro H, Akihiro I, Takako shiraki-Iida, et al. An Improved method for recovery of F-defective Sendai virus expressing foreign genes from cloned cDNA. J Virol Methods, 2000, 104: 125-133
    195. Tangy F, McAllister A, Brahic M. Molecular cloning of the complete genome of strain GDVII of Theiler's virus and production of infectious transcripts. J Virol, 1989, 63: 1101 - 1106.
    196. Taniguchi T, Palmieri M, Weissmann C. QB DNA-containing hybrid plasmids giving rise to QB phage formation in the bacterial host. Nature, 1978, 274(5668): 223-228.
    197. Telan C, Alan G P. Localization of binding site for encephalomyocarditis virus RNA polymerase in the 3'-noncoding region of the viral RNA. Nucleic Acids Res, 1995, 23(3):377-382.
    198. Temiakov D, Mentesana D, Ma K, et al. The specificity loop of T7 RNA polymerase interacts first with the promoter and then with the elongating transcript, suggesting a mechanism for promoter clearance. Proc Natl Acad Sci USA, 2000, 97: 14109-14114.
    199. van der Werf S, Bradley J, Wimmer E, et al. Synthesis of infectious poliovirus RNA by purified T7 RNA polymerase. Proc Natl Acad Sci U S A, 1986, 83(8):2330-2334.
    200. van Gennip H G P, van Rijn P A, Widjojoatmodjo M N, et al. Recovery of infectious classical swine fever virus (CSFV) from full-length genomic cDNA clones by a swine kidney cell line expressing bacteriophage T7 RNA polymerase. Journal of Virological Methods, 1999, 78: 117-128.
    201. Van Hoecke C, Comberbach M, De Grave D , et al. Evaluation of the safety, reactogenicity and immunogenicity of three recombinant outer surface protein (OspA) lyme vaccines in healthy adults. Vaccine, 1996, 14(17-18): 1620-1626.
    202. Vassilev V B, Collet M S, Donis R. In vivo rescue of infectious bovine viral diarrhoea virus by transfection of plasmid DNA into cells infected with vaccinia virus expressing T7 RNA polymerase [C]. Edwards S, Paton D J, Wensvoort G. Proceedings of the Third ESVV Symposium on Pestivirus Infections. Weybridge: Central Veterinary Laboratory, 1996: 1-7.
    203. Vennema H, Rijnbrand R, Heijnen L, et al. Enhancement of the vaccinia virus/phage T7 RNA polymerase expression system using encephalomyocarditis virus 5'-untranslated region sequences. Gene, 1991, 108(2): 201-209.
    204. Verver J, Goldbach R, Garcia JA, et al. In vitro expression of a full-length DNA copy of cowpea mosaic virus B RNA: identification of the B RNA encoded 24-kd protein as a viral protease. EMBO J, 1987, 6(3):549-554.
    205. Viry M, Serghini MA, Hans F, et al. Biologically active transcripts from cloned cDNA of genomic grapevine fanleaf nepovirus RNAs. J Gen Virol, 1993, 74 (2):169-174.
    206. Vladimir Yamshchikov, Vasiliy Mishin, and Fabio Cominelli. A New Strategy in design of (+) RNA Virus Infectious Clones Enabling Their Stable Propagation in E. coli. Virology, 2001, 281:272-280.
    207. Volchkov VE, Volchkova VA, Muhlberger E, et al. Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science, 2001, 291: 1965-1969.
    208. Ward G, Rieder E, Mason PW. Plasmid DNA encoding replicating foot-and-mouth disease virus genomes induces antiviral immune responses in swine. J Virol, 1997, 71(10): 7442-7447.
    209. Weber H, Haeckel P, Pfitzner AJ. A cDNA clone of tomato mosaic virus is infectious in plants. J Virol, 1992, 66(6): 3909-3912.
    210. Weil PA, Luse DS, Segall J, et al. Selective and accurate initiation of transcription at the Ad2 major late promoter in a soluble system dependant on purified RNA polymerase II and DNA. Cell, 1979,18:469-484.
    211. Weiland J J, Dreher T W. Infectious TYMV RNA from cloned cDNA: effects in vitro and in vivo of point substitutions in the initiation codons of two extensively overlapping ORFs. Nucleic Acids Res, 1989,17(12): 4675-4687.
    212. Weiss SB, Gladstone L. A mammalian system for the incorporation of cytidine triphosphate into ribonucleic acid. J Am Chem Soc, 1959, 81:4118-4119.
    213. Welling GW, Weijer WJ, van der Zee R, Welling-Wester S. Prediction of sequential antigenic regions of proteins. FEBS Lett, 1985, 188: 215-219.
    214. Westrop GD, Wareham KA, Evans DMA, et al. Genetic basis of attenuation of the Sabin type 3 oral poliovirus vaccine. J Virol, 1989, 63: 1338-1344.
    215. Whelan S P, Ball L A, Barr J N, et al. Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc Natl Acad Sci U S A, 1995, 92: 8388-8392.
    216. Woychik NA, Hampsey M. The RNA polymerase II machinery: structure illuminates function. Cell, 2002, 108,453-463.
    217. Yamaya J, Yoshioka M, Meshi T, et al. Expression of tobacco mosaic virus RNA in transgenic plants. Mol Gen Genet, 1988, 211(3): 520-525.
    218. Yee JK, Friedmann T, Burns JC. Generation of high-titer pseudotyped retroviralvectors with very broad host range. Methods Cell Biol, 1994, 43:99-112.
    219. Zhang G, Haydon D T, Knowles NJ, et al. Molecular evolution of swine vesicular disease virus. J Gen Virol, 1999, 80:639-651.
    220. Zhang G, Wilsden G, Knowles N J, et al. Complete nucleotide sequence of a coxsackie B5 virus and its relationship to swine vesicular disease virus. Journal of General Virology, 1993, 74:845-853.
    221. Zheng HX, Liu XT, Xie QG, et al. Infective viruses produced from full-length complementary DNA of swine vesicular disease viruses HK/70 strain. Chin Sci Bull, 2006, 51: 2072-2078.
    222. Zibert A, Maass G, Strebel K, et al. Infectious foot-and-mouth disease virus derived from a cloned full-length cDNA. J Virol, 1990, 64: 2467-2473.
    223. Zimmermann A, Botta A, Arnold G, et al. The poly(C) region affects progression of encephalomyocarditis virus infection in Langerhans' islets but not in the myocardium. J Virol, 1997, 71(5): 4145-4149.
    224. Zimmermann A, Nelsen-Salz B, Kruppenbacher JP, et al. The complete nucleotide sequence and construction of an infectious cDNA clone of a highly virulent Encephalomyocarditis virus. Virology, 1994, 203: 366-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700