用户名: 密码: 验证码:
摩托车自行车行人碰撞事故形态分析及行人伤害保护的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩托车、自行车、行人与汽车碰撞的研究是目前国内外极为关注的新颖课题。而在我国,摩托车、自行车、行人与汽车碰撞事故的伤亡人数远大于车内乘员伤亡人数,因而在我国开展摩托车、自行车、行人碰撞事故的形态分析及人员伤害保护的研究尤为重要。本文针对我国交通事故的实际特点,对摩托车、自行车、行人碰撞的事故形态和人员伤害保护进行了分析和研究。
     论文通过对碰撞事故损伤流行病学、碰撞生物力学等问题进行了讨论和分析,较系统地研究了摩托车、自行车、行人碰撞主要事故形态的运动学特性、流行病学分布规律和人员伤害的机理等问题。论文中对摩托车、自行车、行人碰撞事故从运动状态、碰撞过程、碰撞速度等方面进行了运动学分析,得出碰撞过程中人员的运动学特性和伤害原因,并以事故数据库为依据,分析了摩托车、自行车、行人碰撞事故的分布特征,得出各因素对碰撞伤害的影响规律。
     论文针对行人与汽车碰撞的特点,利用多刚体力学原理和计算方法分析了碰撞过程中行人的运动状态和响应特点,建立了行人与汽车碰撞的多刚体模型,并利用建立的模型及其相互间的力学关系进行了汽车—行人碰撞的仿真试验,对仿真试验中行人伤害参数的变化进行了分析。结果表明不同的碰撞速度、不同的车辆类型和不同的车辆前部结构参数都将对行人伤害有不同的影响。根据这样的结果,可以帮助人们寻求减小行人伤害的措施和方法,从而为行人碰撞中保护措施的研究提供一定的依据。
     论文基于球体与薄板撞击理论、有限元方法分别建立了头部与汽车发动机罩撞击的数学方程和有限元模型,并利用EEVC行人头部撞击器试验对所建模型进行了试验验证,结果比较吻合一致。接着利用有限元模拟方法和数学计算方法分析了发动机罩板参数的变化对行人头部伤害的影响,得出影响头部伤害的主要发动机罩板结构参数。最后根据其分析结果,提出保护行人头部的具体结构措施,从而为行人头部保护的进一步研究打下坚实的基础。
It is one of the new important aspects to study the collisions between motorcycle, bicycle, pedestrian and vehicles in the world. In our country, there are such inclement facts that the people killed in motorcycle collision, bicycle collision and pedestrian collision are more than the people killed in cars at accident. So it is very important to develop the study and analysis of the accident modalities about motorcycle collision, bicycle collision, pedestion collision and preventing injury.This paper analyses and dicusses the proplems about epidemiological methods on collision accidents and the collision biomechanics, and roundly works over the kinematic characteristics, the epidemiological distributing rules and the human injury mechanism about the collision accidents between motorcycles, bicycles, pedestrians and vehicles.According to the impact characteristics between pedestrian and vehicle, based on the danymic theory of multi-body and mathematical method, this paper analyses the kinematic states and responding characteristics, simutats and amalyses the impact test of vehicle-pedestrian by using the multi-body models of vehicle-pedestrian built. The results are obtained that there are different test results in different velocities, different vehicle types and different vehicle foreparts. These results can lend us to find the measures and methods for reducing pedestrian injuries, and provide the theory basis for the study of protective methods.According to the problem discussed in the paper, the impact theory based on Hertz rule is analysed and expanded to ensure that can be used to solve-the impact problem between a boll and a large deflection plate. Based on all requirements of EEVC, a mathmatic model and a finite element model about the headform and the engine hood are built and validated by the headform impactor tests. Simulate calculations show that the FEA model achieves good agreement with the test results. The values of HIC are calculated under different conditions by simulating the impact between head and engine hood using both mathematic model and FEA model built above. The factors influence HIC and their means to do that are summarized which include the position of impact, the thickness of the hood, curvature radius of the hood, the length of the hood and the material of the hood and so on. Finally, according to the analysises and discusses above, some new structures of hood and new safety equipments are given for reducing and perverting pedestrian head injury.
引文
[1] J.J.Nieboer, J. Wismans et al. Motorcycle Crash Test Modelling. SAE TECHNICAL PAPER SERIES, 933133
    [2] YuQing Wang and Minoru Sakurai. Development and Verification of a Computer Simulation Model of Motorcycle-to-Vehicle Collisions. SAE TECHNICAL PAPER SERIES, 1999-01-0719
    [3] Derwyn M. Severy, Harrison M. Brink, and David M.Blaisdell. Motorcycle Collision Experiments. Paper 700897, University of California, Los Angeles
    [4] C.C Chou, Y.Zhao, etc. Comparative Aralysis of Different Energy Absirning Materials for Interior Head Impact. SAE paper 950332
    [5] Prasad P. An overview of major occupant simulation models. In Mathematical Simulation of Occupant Vehicle Kinematics SAE Publication P146, SAE paper 84085
    [6] Nicholas M.Rogers, John W.Zellner. An overall evaluation of UKDS motorcyclist leg protectors based on ISO13232. SAE paper 98-S10-O-13
    [7] Huston Rl, King TP. An analytical assessment of three-point restraints oin several accident configuration. SAE Paper 880398
    [8] S.J.Han, K.H.Park, H.S.Cho. Development of Airbag Restraint System for a Passenger Car Using Numerical Simulations. SAE paper 945160
    [9] Simon Xunnan He. Advanced Finite Element Analysis in the Structural Design of Airbag Modules. SAE paper 970773
    [10] Henk Helleman, Russ Brantman, and Said Nakhla. Seat and Airbag Design to Mitigate Frontal Crash Lower Limb Injuries. SAE paper 960503
    [11] E. M. Sieveka, S. M. Duma, J. Pellettiere, J. R. Crandall, C. R. Bass, and W. D. Pllkey. Multi-Body Model of Upper Extremity Interaction with Deploying Airbag. SAE paper 970398
    [12] Flaura Koplln Winston, Richard Reed. Air Bags and Children: Results of National Highway Traffic Safety Administration Special Investigation into Actual Crashes. SAE 962438
    [13] Donald F. Huelke, Lawrence W. Schneider, Matthew P. Reed, and Ryan J. Gilbert. Facial, Periorbital and Ocular Injures Related to Steering-Wheel Airbag Deployments. SAE paper 970490
    [14] Kristie L. Johnston, Kathleen Desantis Klinich, and Daniel A. Rhule, Roger A. Saul. Assessing Arm Injury Potential from Deploying Air Bags. SAE paper 970400
    [15] G. S. Nusholtz, D. Wang, E. B. Wylie. Flow and Energy Pattern in Pyrotechnic Airbag Inflator-Canister System. SAE paper 970388
    [16] Guy Nusholtz, E. B. Wylie, Deguan Wang. Air Bag Aspiration Simulation. SAE paper 960499
    [17] Anand S. Tanavde and Krish Gudipaty, Srini Vaidyaraman. Simulation of Seat Integrated Side Airbag Deployment. SAE paper 970127
    [18] Gayle Dalrymple. Effects of Assistive Steering Devices on Air Bag Deployment. SAE paper 960223
    [19] Dimitrios Kallieris, Andreas Rizzetti, et al. Response and Vulnerability of the Upper Arm Through Side Air Bag Deployment. SAE paper 973323
    [20] 贾书惠.刚体动力学.北京:高等教育出版社.1987
    [21] 周一鸣等.车辆人机工程学.北京:北京理工大学出版社.1999
    [22] 王瑄等.现代汽车安全.北京:人民交通出版社.1998
    [23] 于旭光.汽车碰撞安全性模拟计算的研究.[学位论文].北京:清华大学,1991
    [24] 郭九大.汽车乘员多体系统碰撞动力学仿真研究.[学位论文].长春:吉林工业大学,1996
    [25] 王春雨.应用有限方法研究碰撞过程中车架结构的变形及动态响应.[学位论文].北京:清华大学,1996
    [26] 林逸.带有非完整约束的汽车多刚体系统动力学研究.[学位论文].长春:吉林工业大学,1989
    [27] 钟志华.汽车耐撞性分析的有限元法.汽车工程.1994(4)
    [28] 朱西产等.汽车安全标准中部件碰撞试验项目的计算机仿真.天津汽车.1999(4)
    [29] 刘晓君.实车正面碰撞法规试验的发展趋势.世界汽车.1999(3)
    [30] 许洪国等.推算汽车碰撞速度的两种图解法.汽车工程.1996(5)
    [31] 李宏光.汽车被动安全性的研究.天津汽车.1995(4)
    [32] 杨松涛.汽车安全性能.长春:吉林科学技术出版社.1991
    [33] 朱西产等.多媒体计算机序列图像运动分析系统的研究.汽车工程.1996(1)
    [34] 陈弘.汽车模拟碰撞数据采集处理系统.国外汽车.1995(2)
    [35] 叶盛基等.美国机动车法规.天津:中国汽车技术研究中心.1991
    [36] 王瑄.各国汽车碰撞试验技术浅谈.国外汽车.1993(4)
    [37] 孙立清.汽车-乘员多体系统碰撞的仿真研究.[学位论文].长春:吉林工业大学,1998
    [38] 黄宁军.摩托车安全性研究的开展方式.摩托车技术.2000(10)
    [39] 陆明秋等.汽车撞行人模拟计算研究.汽车工程.1999(3)
    [40] 杨晓光等.高速公路交通事故对策与紧急救援系统的研究.上海公路.1999(2),35~40
    [41] 李江等.基于人工智能的交通事故处理系统的研究.中国公路学报.1999.12(4),64~68
    [42] 孟祥海等.高速公路事故多发点成因分析模型的建立及应用.哈尔滨建筑大学学报.2000.33(2),113~116
    [43] 王郁彭等.交通事故与天气条件的关系.吉林气象.2000.(1),31~34
    [44] 侯德藻等.高速公路事故特征及预防对策.汽车运输.1999(5),36~38
    [45] 吴宝龙.上海当前道路交通事故态势与特性的论析.交通与运输.1999(4),13~15
    [46] 杜心全.对交通事故鉴定中心有关问题的研究.中国人民公安大学学报(自然版),1999(2),36~38
    [47] 邹南昌等.世界部分大城市解决交通问题的重要政策措施.交通与运输.1999(3),6~8
    [48] 彭岳华.如何从制动安全性角度减少交通事故.汽车与安全.1999(3),26~27
    [49] 赵恩棠.国外高速公路交通安全.交通工程.1998(3),30~33
    [50] 王春燕等.道路运输交通事故起因FTA分析.江西交通.1999(5),48~49
    [51] 莫耀祖等.我国道路交通事故态势与宏观治理.中南汽车运输.1999(2),27~29
    [52] 林逸、王望予等.汽车碰撞的二维人体运动学仿真及其在交通安全研究中的应用.中 国公路学报.Vol.8,No.3,1995
    [53] 宗子安.假人碰撞试验的有限元分析.汽车工程.Vol.16,No.3, 1994
    [54] 李一兵等.汽车碰撞事故模拟分析研究.中国汽车工程学会第十届学术年会论文集,C960009
    [55] 周一鸣等.汽车碰撞中人体保护装置的研究.汽车工程.Vol.15,No.1,1993
    [56] 李江等.汽车碰撞事故计算机模拟的研究.中国公路学报.Vol.6,No.3,1993
    [57] 黄存军等.MADYMO混合Ⅲ型假人模型下肢的评估与改进.97'中国汽车工程学会第三届安全技术年会,1997.5
    [58] 贾宏波等.汽车车身碰撞建模影响因素的研究.汽车技术.No.1,1998
    [59] 贾宏波等.车辆典型薄壁结构碰撞模拟研究与参数选择.农业机械学报.Vol.29,No.3,1998
    [60] Clark C. C. And Young W. A. Car Crash Theory and Tests of Airbag Bumper Systems, SAE paper 951056
    [61] Huelke D. C., et al. Non-Head Impact Cervical Spine Injuries in Frontal Car Crashes to Lap-Shoulder Belted Occupants. SAE paper 920560
    [62] Shyu S. et al. Designing Energy Absorbing Steering Wheel Through Element Impact Simulation. SAE paper 931844
    [63] Kazunari Mogami, et al. Frontal Crash Characteristics of Compact Car at a High Speed Collision. SAE 980553
    [64] Low Tah Chuan, et al. Dynamic Response and Mathematical Model of the Side Impact Dummy. SAE paper 902321
    [65] Yang Jikuan, et al. Computer Simulation of Shearing and Bending Response of the Knee Joint to a Lateral Impact. SAE paper 952727
    [66] Dimasl Frank P. Computer Analysis of Head Impact Response under Car Crash Loads. SAE paper 952718
    [67] Nakagawa Ken, et al. Crash Simulation of a Passenger Car. SAE paper 900464
    [68] Hou Jianfu, et al. Optimization of Driver-side Airbag and Resteaint System by Occupant Dynamic Simulation. SAE paper 952703
    [69] Seyer K. Development of a New Australian Design Rule for Frontal Impact Protection. SAE 933117 O'conner Christopher S, et al. Development of a Model of a three-Year-Old Child Dummy used in Air Bag Applications. SAE paper 922517
    [70] Jimmy Robinson. Crash Data Presentation Leveraging Existing Data Storage. SAE paper 980217
    [71] Makoto. Approaches to the Crash Safety in Vehicle Development. Sino-Japanese Seminar on Auto Safety Technology, Oct. 15~21, 2000, Tianjin
    [72] Koji Mizuno. Car Frontal Impact and Pedestrian Protection Test Procedures. Sino-Japanese Seminar on Auto Safety Technology, Oct. 15~21, 2000, Tianjin
    [73] 大前晴雄.日本汽车安全法规现状.Sino-Japanese Seminar on Auto Safety Technology, Oct. 15~21, 2000, Tianjin
    [74] Xichan zhu. Status quo and Classification of China Auto Standards. Sino-Japanese Seminar on Auto Safety Technology.Oct. 15-21.2000.Tianiin
    [75] 李一兵.道路交通事故现状及事故再现研究.Sino-Japarlese Seminar on Auto Safety Technology, Oct. 15~21, 2000, Tianjin
    [76] Cavanaugh J. M, et al. An Evaluation of TTI and ASA in SID Side Impact Sled Tests. SAE paper 942225
    [77] Mani A. and Krishnaswamy P., et al. Challenges in Crash Simulation due to Emerging Safety Stanards. SAE paper 930209
    [78] 杨松涛.汽车安全性能.长春:吉林科学技术出版社.1991
    [79] 公安部交通管理局.全国道路交通事故统计资料汇编.北京:群众出版社,1995
    [80] 李勤.1999年全国道路交通事故综述.汽车与安全.2000(3)
    [81] 黄宁军.汽车安全带、安全气囊系统匹配技术的研究.[学位论文]武汉理工大学,2001
    [82] 华翔.汽车碰撞试验数据后处理系统的研究与开发.[学位论文]武汉理工大学,2001
    [83] 舒华等.汽车SRS气囊系统.北京:北京理工大学出版社.1998
    [84] 朱西产.实车碰撞试验方法和评价指标.世界汽车.1998(5)
    [85] 洪嘉振等.多刚体系统撞击动力学.力学学报.Vol.21,No.4,1989
    [86] 袁清珂.机械系统运动学/动力学分析软件.汽车工程.1990(8)
    [87] G.W.特里卡等著,丁美修,王秉玉译.减少交通事故—一项全球性的挑战.上海:上海科学技术出版社,1993
    [88] H. A. Lupker, et al. Advaneces in MADYMO Crash Srmu Iations. SAE paper 910879
    [89] Charles E. Strother, Ronald L. Woolley, et al. Crash Energy in Accident Reconstruction. SAE paper 860371
    [90] Wooley R. The " IMPAC " Computer Program for Accident Reconstruction. SAE paper 850254
    [91] 黄世霖等.汽车被动安全性试验研究.汽车工程.1992(4)
    [92] 许洪国.汽车事故工程.北京:人民交通出版社.2004.
    [93] European Experimental Vehicles Committee. Proposals for Methods to Evaluate Pedestrian Protection for Passenger Cars. EEVC Working Group 10 Report. 1994:1~50.
    [94] 佐佐木彰.步行者保护试验关规格作成及规制动向.自动车技术.1999,53(11):54~59
    [95] 秋山朗彦.步行者保护目的车体构造步行者—开发.自动车技术.1999,53(11):60~64.
    [96] Cavanaugh J.M, Walilko T.J, Malhotra A, Zhu Y, King A. I. Biomechanical response and Injury Tolerance of the Thorax in Twelve Sled Side Impacts. SAE 902307. 34th Stapp Car Crash Conference Proceedings, Warrendale PA, 1990. 23~38
    [97] Hirotoshi Ishikawa, et al. Computer Simulation of Impact Response of the Human Body in Car-Pedestrian Accidents.SAE 933129. 37th Stapp Car Crash Conference Proceedings, Warrendale PA, 1993.253~248
    [98] J. Wismans, R. Happee. Pedestrian Protection Full-body Simulations. VDA Technical Congress. 1999, (1):21~29
    [99] European Expermental Vehicles Committee. Improved test methods to Evaluate Pedestrian Protection Afforded by Passenger Cars. EEVC Working Group 17 Report. 1998: 1~90
    [100] Miike Dickise. Development of Passenger Car to Minimizes Pedestrian Injuries. SAE 960091.30th Stapp Car Crash Conference Proceedings, Warrendale PA, 1996.325~339
    [101] Tetsuo Maki, Toshiyuki Asai. Development of Pedestrian Protection Technologies for ASV. JSAE Review. 2002, 23(2):353~356
    [102] Susan W, Enouen. The Development of Experimental Head Impact Procedures for Simulating Pedestrian Head Injury, SAE 932307. 37th Stapp Car Crash Conference Proceedings, Warrendale PA, 1993. 233~245
    [103] Thomas F, Macl A, Johu F.W. Pedestrian Head Impact Against the Central Hood of Motor Vehicles-Test Procedure and Results. SAE 902315. SAE 902315. 34th Stapp Car Crash Conference Proceedings, Warrendale PA, 1990. 123~136
    [104] Minoru S, Kzushige K, Hirotoshi I. Experimental Consideration on Head Form Impact Test for Pedstrian Protection. JSAE Review. 2000, (11): 89~93
    [105] Koji M, Janusz K, Toshiki A. Influences of Vehicle Shape on Injuries in Vehicle~Pedestrian Impact. JSAE Convention Proceedings. 1999, 30(4):55~60
    [106] Koji M, Hideli Y, Janusz K. Relation Between Head and Impact Location in Car-Pedestrian Impacts. JSAE Ed. Conference of Vehicle Technology. 1999, 20(2):67~72
    [107] Atsuhiro S, Hirotoshi I and Robert K. Computer Simulation of Impact Test for Pedestrian Protection. Vehicle Tehnology. 1998, 52(4): 37~42
    [108] Yasuki M, Tetsuo M, Toshiyuki A, Miaki T. Development of FEM Models of Imp Actors for Pedestrian Impact Test. JSAE Ed. Spring Convention Proceedings. 1999, 13 (8):9~12
    [109] 陆秋明,黄世霖.汽车撞击行人研究模拟计算研究.汽车工程.1999,21(3):129~133
    [110] Goldsmith W. The Theory an Physical Behavior of Colliding. Composite Structures. 1960, 12(5):12~18
    [111] Moon. F. C. Theoretical Analysis Impact in Composite Plates. Solids Structures. 1995, 25(10): 123~131
    [112] Sun, S. Chattopadhyay. Dynamic Response of Anisotropic Laminated plates Under Initial Stress to Impact of a Mass. Journal of Applied Mechanics. 1975, 120(2):693~701
    [113] Sang-Min Lee, Jae-Seung Cheon, Yong-Taek Im. Experimental and numerical study of the impact behavior of SMC plates. Composite Structures. 1999, 47(5):551~561
    [114] J. Qiu, Z.C.Feng. Parameter dependence of the impact dynamics of thinplates. Computers and Structures. 2000, 75(5):491~506
    [115] Jung-Kyu Kim, Ki-Weon Kang. An analysis of impact force in plain-weave glass/epoxy composite plates subjected to transverse impact. Composites Science and Technology. 2001, 61 (1):135~143
    [116] 祝颜知,冯紫良,程楠.文克尔粘弹性地基上弹性地基板的解析解.强度与环境.2001(2):42~50
    [117] 姬亦工,王复明,栾茂田.粘弹性层状地基上板的动力响应及其参数识别方法.工程力学.2002,19(1):60~65
    [118] V. I. Fabrikant, T.S. Sankar. On Contact Problemsin an Inhomogeneous Half-Space. Into.J.Solids Structure. 1984, 20(10): 159~164
    [119] 王心田,洪善桃,翁智远.在冲击荷载作用下弹塑性薄板的非线性动力响应.固体力学学报.1985,(3):281~294
    [120] 胡振东,洪善桃,洪景丰.冲击载荷作用下大挠度圆板的弹塑性动力分析.振动与冲击.1995,(1):18~22
    [121] P. Mahajan, A. Dutta. Adaptive computation of impact force under low velocity impact, Computers and Structures. 1999, (2): 229~241
    [122] NHTSA: Problem Determination-Vehicle/pedestrian Accident in Japan. IRCOBI conference. 1990, (2): 283~291
    [123] Atsuhiro Konosu, Hirotoshi Ishikawa, Robert Kant. Development of Computer Simulation Models for Pedestrian Subsystem Impact Tests. JSAE Review. 2000, (21): 109~115
    [124] 安波,李兵仓.颅脑撞击伤时脑组织内动态应力场的数值模拟.生物医学工程学杂志.2001,18(1):16~18
    [125] 水野幸治,相羽俊樹.车体形状步行者伤害及影响.自动车技术.1999,22(5):122~130
    [126] Atsuhiro Konosu. Reconstruction Analysis for Car-pedestrian Accidents using a Computer Simulation Model. JSAE Review. 2002, 23(3): 357~363
    [127] D. MOHAN, J. Kajzer. Impact Modelling Studies for a Three-wheeled Scooter Taxi. Accid. Anal. And Prev., Vol 29, No. 2, 1997
    [128] S. Anlearath, P. V. Giannoudis. Injury patterns associated with mortality of following motorcycle crashes. J. care Injured 33 (2002) 473~477
    [129] Atsuhiro Konosu, Hirotoshi Ishikawa. Development of computer simulation modds for pedestrian subsystem impact tests. JSAE Review 21 (2000)
    [130] Atsuhiro Konosu. Reconstruction analysis for car-pedestrian accidents using a computer simulation model. JSAE Review 23(2002)
    [131] Foret-Bruno J-Y, Faverjon G, Le Coz J-Y(1998). Injury Pattern of Pedestrians Hit by Cars of Recent Desing, Proco. Of the 16th International Technical Conference on the Enhanced Safety of Vehicles (ESV), paper 98-S10-O-02, Windsor, Ontario, Canada, pp 2122-2130
    [132] Liu X and Yang JK(2001). Development of Child Pedestrian Mathematical Models and Evaluation with Reconstruction of Car-Child Pedestrian Accidents, (to be published in IRCOBI2001)
    [133] YANG J(1997). Injury Biomechanics Car-Pedestrian Collisions: Development, Validation and Application of Human-Body Mathematical Models, Doctoral Thesis, Chalmers University of Technology, Gothenburg, Sweden.
    [134] Yang JK, Lovsund P, Cavallero C and Bonnoit J(2000). A Human-Body 3D Mathematical Model for Simulation of Car-Pedestrian Impacts, J. Crash Pevention and Injury Control, Vol. 2(2), pp. 131-149
    [135] J. Wismans. Injury Biomechanics. Published by Eindhoven University of Technology, The Netheland. 2001.
    [136] 饶寿期.有限元法和边界元法基础.北京:北京航空航天大学出版社,1990。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700