用户名: 密码: 验证码:
新型光催化剂的制备、表征及其光催化活性的调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染和能源问题目前仍是困扰人类可持续发展的难题。半导体光催化技术是利用光照激发半导体产生的导带电子和价带空穴,进行氧化还原降解有机污染物或者分解水获取氢能的高级技术。由于该过程本质是将太阳能转化为化学能,所以半导体光催化技术有望成为解决环境和能源问题的一条有效途径。半导体光催化的核心是研制宽谱响应的长效高效光催化材料。光催化材料的吸收光谱与太阳光谱匹配是充分利用太阳能的前提,而高效使得在动力学上光催化材料的应用成为可能,长效是保证光催化材料的稳定性以使得该技术廉价可行。本文围绕宽谱响应的长效高效光催化材料的研制为中心,结合材料表征手段、密度泛函理论计算和光电化学研究方法,探索光催化活性的调控机制。
     本文研究了几种掺杂TiO_2的晶体结构、能带结构与光催化性能的关系。采用密度泛函理论的Castep代码,计算了未掺杂、氮掺杂、碘掺杂和铂掺杂的二氧化钛的晶体结构和电子能带结构,结果发现氮和碘掺杂TiO_2的带隙中新增三条能带,而铂掺杂TiO_2新增五条能带,新增的能带使其产生了可见光响应性能。价带和导带组成的分析表明,碘掺杂TiO_2的价带以O_(2p)为主,混合了I_(5p)和少量Ti_(3d),导带以Ti_(3d)轨道为主,混合了少量I_(5p)和O_(2p)。铂掺杂TiO_2中Pt_(5d)轨道分裂成两部分,分别参与价带和导带的构成。铂掺杂和碘掺杂TiO_2能带位置负移使得光生空穴具有更强的氧化性。偶极矩计算显示掺杂TiO_2的TiO_6八面体的畸变程度依次为:碘掺杂TiO_2>铂掺杂TiO_2>氮掺杂TiO_2。由于偶极矩产生的内部电场有助于电子和空穴分离,因此铂掺杂和碘掺杂TiO_2具有较高的光催化活性。
     研究了钴氧化物负载的BiVO_4复合光催化材料的制备、结构表征及光催化性能。通过溶液沉淀法制备了大粒径的单斜BiVO_4,通过浸渍法制备了BiVO_4/CoOx复合光催化材料。采用XRD、XPS、DRS、BET、SEM、TEM、FTIR对其材料晶相、化合价态、光学性能、颗粒形貌等进行表征分析。XPS结果表明0.8wt%Co含量300℃退火的复合物中钴以Co_3O_4形式存在;DRS测定BiVO_4的带隙宽度为2.35 eV,而Co负载后光吸收范围延伸到800 nm;SEM和TEM显示20-50 nm的Co_3O_4颗粒分散在不规则的微米级的BiVO_4颗粒表面;BET测定负载前后的比表面积从0.74 m~2g~(-1)增加到1.38 m~2g~(-1)。苯酚降解的光催化性能测试显示300℃退火0.8wt% Co含量的BiVO_4/Co_3O_4具有最高光催化活性,3 h苯酚去除率达到96%。该催化剂具有较好的稳定性,在水溶液中的沉淀性能较好。分析了类p-n纳米异质结构复合物的三种能带位置的光生载流子的迁移规律,认为p型半导体的价带和导带位置均比n型半导体更正时不利于电子和空穴的有效分离。根据能带结构计算和绝对电负性估算了BiVO_4和Co_3O_4的价带和导带组成和位置,结合发光光谱PL结果,确定复合物高效光催化活性的本质是光生载流子的有效分离。采用SDS为模版的水热法制备了h-BiVO_4纳米片。TEM和HTEM结果显示BiVO_4是100 nm左右的沿(010)方向优先增长的纳米片。h-BiVO_4/Co_3O_4复合物光催化反应2h苯酚去除率达到99%。
     比较了BiVO_4与BiVO_4/Co_3O_4复合物半导体电极的光电化学性质。测定了BiVO_4和Co_3O_4的平带电位分别为:-0.3 V vs. NHE(pH=7.0)和+0.54 V vs. NHE(pH=7.0),结果表明p型半导体Co_3O_4的价带和导带均较n型半导体BiVO_4更负。通过刮刀法制备了性能优良的BiVO_4、Co_3O_4和BiVO_4/Co_3O_4复合物压制电极。BiVO_4电极光电分解水的中间产物过氧化物可以作为复合中心降低光电效率,甚至可导致低偏压下电极从n型到p型半导体特征的转化。通过循环伏安还原中间产物可以恢复80%以上的光电活性,通过添加空穴捕集剂碘化钾或表面修饰Co_3O_4组分可以抑制中间产物的生成,提高电极稳定性。BiVO_4和BiVO_4/Co_3O_4电极光电化学性质研究表明后者具有更高的光电效率,并且其光生电子和空穴的表面复合被抑制了。发现添加还原物质如KI或甲醇不能提高复合物的光电效率,表明电子从BiVO_4导带迁移到ITO形成阳极光电流,而空穴则集中在Co_3O_4的价带进行光电氧化水被消耗。在碱性电解质NaOH中BiVO_4的光电效率较中性的Na2SO4更高,稳定性也更高。暗循环伏安表明碱性介质中的过氧化物中间物较少,有其它中间产物生成,空穴氧化水的机制发生变化。
     研究了钒酸铋复合物及混合物光催化材料的光催化性能。制备了Ag、Pt、Cu、Ni、Ru负载BiVO_4的系列复合光催化材料,可见光下的苯酚降解实验表明光催化活性为:BiVO_4/Co_3O_4>Ag-BiVO_4>BiVO_4/NiO_x>Pt-BiVO_4>BiVO_4/RuO_2>BiVO_4/CuO。电解质对BiVO_4/Co_3O_4光催化降解苯酚的抑制作用如下:NO_3~-     研究了用于光致逻辑器件的混合n/p半导体光电极。通过刮刀法制备了BiVO_4/Co_3O_4、TiO_2/Co_3O_4、BiVO_4/CuO、TiO_2/CuO四种不同的混合n/p半导体压制电极,通过随波长变化的光电流性质研究,证实混合n/p型半导体电极实现XOR逻辑功能是一种普遍方法。确定混合n/p半导体光电极具备随波长变化的光电流方向转换特性需要满足的光电化学条件是n型半导体的导带和价带位置比p型半导体更正。通过光电化学、电学和化学上的调控,可以获得满足要求的XOR逻辑操作。
Environment and energy issues are still the bottle neck for the continuable development of human being. Semiconductor photocatalysis is an advanced technology that employing the electrons on conduction band and holes on valence band in photons excitated semiconductor, pollutants can be removed via oxidization or reduction and hydrogen can be obtained via water-splitting. As its essence is to convert solar energy into chemical energy, this technology may become an available approach to settle the environment and energy issues. The focus of semiconductor photocatalysis is to develop photocatalysts with wide wavelength light response, high efficiency and stability. To make the absorption spectrum of photocatalysts match with that of the solar’s is the prerequisite for exploiting solar energy. High efficiency makes its application to be dynamically possible, and high stability ensures the technology to be cheap and feasible. In this paper, we focused on developing photocatalysts with such properties as wide wavelength light response, high efficiency and stability, and integrated the investigation techniques of material characterization, density functional theory (DFT) and photoelectrochemistry, to explore the controllable mechanism of photocatalytic activity.
     The relationship of the crystal structure and energy band structure of doped TiO_2 with photocatalytic performance has been investigated. Based on the DFT, the crystal structure and energy band structure of undoped, N-doped, I-doped and Pt-doped TiO_2 have been calculated by Castep code. The results showed that there are three new energy bands in the band gap of N-doped and I-doped TiO_2, and five ones in that of Pt-doped TiO_2. The new band is the origin of their visible light response. The analysis of the compositions of VB and CB showed that the dominant contribution to VB of I-doped TiO_2 is O_(2p), mixed with some I_(5p) and Ti_(3d), however the dominant contribution to CB is Ti_(3d), as well as mixed with some O_(2p) and I_(5p). The Pt_(5d) orbital in Pt-doped TiO_2 split into two parts which are involved in VB and CB, respectively. The band potentials of I-doped and Pt-doped TiO_2 shift downwards, which indicates that photogenerated holes have stronger oxidative power. The results of the dipole moment calculations showed the distortion of TiO_6 in doped TiO_2 is I-doped > Pt-doped> N-doped. Because the internal dipole moments promote the charge separation, Pt-doped and I-doped TiO_2 exhibited higher photocatalytic activity.
     The preparation, characterization and photocatalytic performance of CoOx modified BiVO_4 composite have been studied. The monoclinic BiVO_4 with micron size has been prepared by aqueous precipitation, and BiVO_4/CoOx composite has been prepared by impregnation method. The crystal, valence, morphology and optical properties have been characterized by XRD、XPS、DRS、BET、SEM、TEM、FTIR. XPS showed that Co in the composite calcined at 300 0C with 0.8wt% Cobalt content is present as Co_3O_4. DRS showed that band gap of BiVO_4 is 2.35 eV, and the optical absorption after CoOx modified extended to 800 nm. SEM and TEM showed that 20-50 nm Co_3O_4 particles dispersed on the surface of micron BiVO_4 particles. BET was improved from 0.74 m~2g~(-1) to 1.38 m~2g~(-1) after surface modification. Phenol degradation test showed the highest efficiency is observed when the sample calcined at 300 C with 0.8 wt % cobalt content. Phenol removal efficiency is 96% after 3 h irradiation. The composite photocatalyst exhibits good stability and precipitation performance in aqueous solution. The migration principle of photogenerated carriers in p-n heterojunction nanocomposite with three different kinds of energy band position has been studied. The VB and CB of p type semiconductor more anodic than those of n type one is not favorable for the separation of electrons and holes. The VB and CB of BiVO_4 and Co_3O_4 have been estimated by absolute electronegativity. Combined with the result of PL spectra, the origin of enhanced performance of the composite is the effective separation of charge carriers. Nanosheet of h-BiVO_4 have been prepared by hydrothermal method with SDS as morphology-directing template. TEM and HTEM showed that h-BiVO_4 is 100 nm nanosheet with a preferred (010) surface orientation. The phenol removal efficiency over the h-BiVO_4/Co_3O_4 composite is as high as 99% after 2 h irradiation.
     The photoelectrochemical properties of BiVO_4 and BiVO_4/Co_3O_4 composite electrode have been studied. The flatband potential of BiVO_4 and Co_3O_4 have been determined as -0.3 V vs. NHE(pH=7.0)and +0.54 V vs. NHE(pH=7.0)respectively. The result showed the VB and CB of p type semiconductor Co_3O_4 are more cathodic than that of n type BiVO_4. The pressed electrodes of BiVO_4、Co_3O_4 and BiVO_4/Co_3O_4 have been prepared by doctor blade method. The peroxide intermediates during water photoelectrochemical splitting on BiVO_4 electrode can serve as recombination center and decreased the efficiency, and even lead to the switch of photocurrent direction upon low bias and extending irradiation. By cyclic voltammogram reducing the peroxide species 80% photocurrent can be restored. By adding the holes scavenge KI or modified surface with Co_3O_4, the intermediates can be inhibited and the stability of the electrode can be improved. BiVO_4/Co_3O_4 electrode exhibited better photoelectrochemical performance than BiVO_4, and on the former electrode surface recombination of photogenerated electrons and holes inhibited. Adding reductive such as methanol and KI can not improve the efficiency, which indicates that electrons migrated from CB of BiVO_4 to ITO and produce enhanced anodic photocurrent, and simultaneously holes on the VB of Co_3O_4 can be consumed by oxidizing water. In alkaline electrolyte NaOH, the efficiency and stability of BiVO_4 electrode are improved. The Cyclic voltammogram after irradiation exhibited that peroxide intermediates are less in the alkaline, and other unknown intermediates produced, and the mechanism of water photooxidization by the holes is changed.
     The photocatalytic performance of composite and their mixtures have been studied. Ag, Pt, Cu, Ni, Ru modified BiVO_4 composites have been prepared. Their activity on phenol degradation under visible light irradiation is: BiVO_4/Co_3O_4>Ag-BiVO_4>BiVO_4/NiO_x>Pt-BiVO_4>BiVO_4/RuO_2>BiVO_4/CuO. The effect of electrolytes inhibiting the degradation of phenol over BiVO_4/Co_3O_4 is NO_3~-     The hybrid n/p semiconductor electrode for light driven logic device has been investigated. Four kinds of hybrid n/p semiconductor pressed electrodes of BiVO_4/Co_3O_4、TiO_2/Co_3O_4、BiVO_4/CuO、TiO_2/CuO have been prepared by doctor blade method. By investigating their wavelength dependence photocurrents, it has been established that hybrid n/p semiconductor electrode used for XOR logic is a general approach. The prerequisite on photoelectrochemical properties for wavelength controlled switching of photocurrent direction is that VB and CB of n type semiconductor should be more anodic than those of p type one. Based on well-fitting photoelectrochemical, electrical and chemical properties, the satisfying switch behavior can be achieved.
引文
1. Fujishuma, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238(5358): 37-38.
    2. Carey, J. H.; Lawrence, J.; Tosine, H. M. Photodechlorination of PCBs in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol. 1976, 16(6): 697-701.
    3. Graetzel, M. Photoelectrochemical cells. Nature 2001, 414(6861): 338-344.
    4. Tsuji, I.; Kato, H.; Kudo, A. Photocatalytic hydrogen evolution on ZnS-CuInS2-AgInS2 solid solution photocatalysts with wide visible light absorption bands. Chem. Mater. 2006, 18(7): 1969-1975.
    5. Szaci?owski, K.; Macyk, W.; Stochel, G. Light-Driven OR and XOR Programmable Chemical Logic Gates. J. Am. Chem. Soc. 2006, 128(14): 4550-4551.
    6. Rusina, O.; Macyk, W.; Kisch, H. Photoelectrochemical properties of a dinitrogen-fixing iron titanate thin film. J. Phys. Chem. B 2005, 109(21): 10858- 10862.
    7. Kisch, H.; Lutz, P. Photoreduction of bicarbonate catalyzed by supported cadmium sulfide. Photochem. Photobiol. Sci. 2002, 1(4): 240–245.
    8. Rao, T. N.; Tryk, D. A.; Fujishima, A. Application of TiO2 photocatalysis, in, Bard, A. J.; Stratmann, M.; Licht, S. Encyclopedia of Electrochemistry(Volume 6), Weinheim, Wiley-VCH, 2002: 536-559.
    9. Walker, A. B.; Peter, L. M.; Lobato, K.; etc. Analysis of photovoltage decay transients in dye-sensitized solar cells. J. Phys. Chem. B 2006, 110(50): 25504-25507.
    10. Paz, Y. Preferential photodegradation – why and how? C. R. Chimie 2006, 9(5-6): 774–787.
    11. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 Surfaces: Principles,Mechanisms, and Selected Results. Chem. Rev. 1995, 95(3): 735-758.
    12. Kato, H.; Kudo, A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3(A=Li, Na, and K). J. Phys. Chem. B 2001, 105(19): 4285-4292.
    13. Tang, J. W.; Zou, Z. G.; Ye, J. H. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew. Chem. Int. Ed. 2004, 43(34): 4463 -4466.
    14. Anpo, M. Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV-Visible light irradiation: approaches in realizing high efficiency in the use of visible light. Bull. Chem. Soc. Jpn. 2004, 77(8): 1427-1442.
    15. Litter, M. I. Heterogeneous photocatalysis transition metal ions in photocatalytic systems. Appl. Catal. B: Environ. 1999, 23(2-3): 89-114.
    16. 洪孝挺; 王正鹏; 陆峰等. 可见光响应型非金属掺杂 TiO2 的研究进展. 化工进展 2004, 23(10): 1077-1080.
    17. 籍宏伟; 马万红; 黄应平等. 可见光诱导 TiO2 光催化的研究进展. 科学通报 2003, 48(21): 2199-2204.
    18. Wu, L.; Yu, J. C.; Fu, X. Z. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiati. J. Mol. Catal. A: Chem. 2006, 244(1-2): 25-32.
    19. Ho, W. K.; Yu, J. C.; Lin, J.; etc. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 2004, 20(14): 5865-5869.
    20. Yu, J. C.; Wu, L.; Lin, J.; etc. Microemulsion-mediated solvothermal synthesis of nanosized CdS-sensitized TiO2 crystalline photocatalyst. Chem. Commun. 2003, (13): 1552-1553.
    21. Kumar, A.; Jain, A. K. Photophysics and photochemistry of colloidal CdS–TiO2 coupled semiconductors—photocatalytic oxidation of indole. J. Mol. Catal. A: Chem. 2001, 165(1): 265-273.
    22. Peter, L. M.; Riley, D. J.; Tull, E. J.; etc. Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots. Chem. Commun. 2002, (10): 1030-1031.
    23. Kisch, H.; Zang, L.; Lange, C.; etc. Modified, Amorphous Titania-A Hybrid Semiconductor for Detoxification and Current Generation by Visible Light. Angew. Chem. Int. Ed. 1998, 37(21): 3034-3036.
    24. Zang, L.; Lange, C.; Abraham, I.; etc. Amorphous Microporous Titania Modified with Platinum(IV) Chlorides-A New Type of Hybrid Photocatalyst for Visible Light Detoxification. J. Phys. Chem. B 1998, 102(52): 10765-10771.
    25. Zang, L.; Macyk, W.; Lange, C.; Visible-light detoxification and charge generation by transition metal chloride modified titania. Chem. Eur. J. 2000, 6(2): 379-384.
    26. Cho, Y. M.; Choi, W. Y.; Lee, C. H.; etc. Visible Light-Induced Degradation of Carbon Tetrachloride on Dye-Sensitized TiO2. Environ. Sci. Technol. 2001, 35(5): 966-970.
    27. Ye, J. H.; Zou, Z. G. Visible light sensitive photocatalysts In1-xMxTaO4 (M=3d transition-metal) and their activity controlling factors. J. Phys. Chem. Solids 2005, 66(2-4): 266–273.
    28. Kaneko, M.; Okura, I. Photocatalysis: Science and Technology, Kodansha, Springer, 2002: 18.
    29. Fu, H. B.; Pan, C. S.; Yao, W. Q.; etc. Visible-Light-Induced Degradation of Rhodamine B by Nanosized Bi2WO6. J. Phys. Chem. B 2005, 109(47): 22432-22439.
    30. Janczyk, A.; Krakowska, E.; Stochel, G.; etc. Singlet oxygen photogeneration at surface modified titanium dioxide. J. Am. Chem. Soc. 2006, 128(49): 15574-15575.
    31. Nakamura, R.; Tanaka, T.; Nakato, Y. Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes. J. Phys. Chem. B 2004, 108(30): 10617-10620.
    32. Yin, J.; Zou, Z. G.; Ye, J. H. Possible Role of Lattice Dynamics in the Photocatalytic Activity of BaM1/3N2/3O3 (M = Ni, Zn; N=Nb, Ta). J. Phys. Chem. B 2004, 108(26): 8888-8893.
    33. Sato, J.; Kobayashi, H.; Inoue, Y. Photocatalytic activity for water decomposition of indates with octahedrally coordinated d10 configuration. II. roles of geometric and electronic structures. J. Phys. Chem. B 2003, 107(31): 7970-7975.
    34. Sato, J.; Kobayashi, H.; Ikarashi, K.; etc. Photocatalytic Activity for Water Decomposition of RuO2-Dispersed Zn2GeO4 with d10 Configuration. J. Phys. Chem. B 2004, 108(14): 4369-4375.
    35. Nakamura, I.; Negishi, N.; Kutsuna, S.; etc. Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J. Mol. Catal. A: Chem. 2000, 161(1-2): 205-212.
    36. Chang, H.; Kong, K.; Choi, Y. S.; etc. Electronic structures of InTaO4, a promising photocatalyst. Chem. Phys. Lett. 2004, 398(4-6): 449-452.
    37. Asahi, R.; Morikawa, T.; Ohwaki, T.; etc. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293(5528): 269-271.
    38. Iwasaki, M.; Hara, M.; Kawada, H.; etc. Cobalt Ion-Doped TiO2 Photocatalyst Response to Visible Light. J. Colloid Interface Sci. 2000, 224(1): 202-204.
    39. Kim, S.; Hwang, S. J.; Choi, W. Visible Light Active Platinum-Ion-Doped TiO2 Photocatalyst. J. Phys. Chem. B 2005, 109(51): 24260-24267.
    40. Kato, H.; Kudo, A. Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium. J. Phys. Chem. B 2002, 106(19): 5029-5034.
    41. Umebayashi, T.; Yamaki, T.; Itoh, H.; etc. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids 2002, 63(10): 1909-1920.
    42. Khan, S. U. M.; Al-Shahry, M.; Jr. Ingler, B. W. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2. Science 2002, 297(5590): 2243-2245.
    43. Sakthivel, S.; Kisch, H. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angew. Chem. Int. Ed. 2003, 42(40): 4908-4911.
    44. Umebayashi, T.; Yamaki, T.; Itoh, H.; etc. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 2002, 81(3): 454-456.
    45. Hong, X. T.; Wang, Z. P.; Cai, W. M.; etc Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide. Chem. Mater. 2005, 17(6): 1548- 1552.
    46. Ohno, T.; Akiyoshi, M; Umebayashi, T.; etc. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A: Gen. 2004, 265(1): 115-121.
    47. Ohno, T.; Tsubota, T.; Toyofuku, M.; etc. Photocatalytic activity of a TiO2 photocatalyst doped with C4+ and S4+ ions having a rutile phase under visible light. Catal. Lett. 2004, 98(4): 255-258.
    48. Ohno, T.; Tsubota, T.; Nakamura, Y.; etc. Preparation of S, C cation-codoped SrTiO3 and its photocatalytic activity under visible light. Appl. Catal. A: Gen. 2005, 288(1-2): 74-79.
    49. Nukumizu, K.; Nunoshige, J.; Takata, T.; etc. TiNxOyFz as a stable photocatalyst for water oxidation in visible light (<570 nm). Chem. Lett. 2003, 32(2): 196-197.
    50. Valentin, C. D.; Pacchioni, G.; Selloni, A. Origin of the different photoactivity of N-doped anatase and rutile TiO2. Phys. Rev. B 2004, 70(8): 085116 .
    51. Mrowetz, M.; Balcerski, W.; Colussi, A. J.; etc. Oxidative Power of Nitrogen-Doped TiO2 Photocatalysts under Visible Illumination. J. Phys. Chem. B 2004, 108(45): 117269- 17273.
    52. Wang, Z. P.; Cai, W. M.; Hong, X. T.; etc. Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources. Appl. Catal. B: Environ. 2005, 57(3): 223-231.
    53. Zhao, W.; Ma, W. H.; Chen, C. C.; etc. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2- xBx under visible irradiation. J. Am. Chem. Soc. 2004, 126(15): 4782-4783.
    54. Kudo, A.; Kato, H.; Tsuji, I. Strategies for the development of visible-light-driven photocatalysts for water splitting. Chem. Lett. 2004, 33(12): 1534-1539.
    55. Scaife, D. E. Oxide semiconductors in photoelectrochemical conversion of solar energy. Sol. Energy 1980, 25(1): 41-54.
    56. Oshikiri, M.; Boero, M.; Ye, J. H.; etc. Electronic structures of promising photocatalysts InMO4(M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. J. Chem. Phys. 2002, 117(15): 7313-7318.
    57. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; etc. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 2002, 14(11): 2717– 2744.
    58. Matsushima, S.; Obata, K.; Nakamura, H.; etc. First-principles energy band calculation for undoped and N-doped InTaO4 with layered wolframite-type structure. J. Phys. Chem. Solids 2003, 64(12): 2417-2421.
    59. Hitoki, G.; Takata, T.; Kondo, J. N.; etc. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ≤500 nm). Chem. Commun. 2002, (16): 1698-1699.
    60. Hara, M.; Nunoshige, J.; Takata, T.; etc. Unusual enhancement of H2 evolution by Ru on TaON photocatalys under visible light irradiation. Chem. Commun. 2003, (24): 3000-3001.
    61. Kasahara, A.; Nukumizu, K.; Hitoki, G.; etc. Photoreactions on LaTiO2N under Visible Light Irradiation. J. Phys. Chem. A 2002, 106(29): 6750-6753.
    62. Liu, M.Y.; You, W. S.; Lei, Z. B.; etc. Water reduction and oxidation on Pt-Ru/Y2Ta2O5N2 catalyst under visible light irradiation. Chem. Commun. 2004, (19): 2192-2193.
    63. Ishikawa, A.; Takata, T.; Kondo, J. N.; etc. Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ≤650 nm). J. Am. Chem. Soc. 2002, 124(45): 13547-13553.
    64. Ishikawa, A.; Yamada, Y.; Takata, T.; etc. Novel synthesis and photocatalytic activity of oxysulfide Sm2Ti2S2O5. Chem. Mater. 2003, 15(23): 4442-4446.
    65. Lei, Z. B.; You W. S.; Liu M. Y.; etc. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method. Chem. Commun. 2003, (17): 2142-2143.
    66. Yu, X. D.; Qu, X. S.; Guo, Y. H. Photocatalytic dye methyl orange decomposition on ternary sulfide (CdIn2S4) under visible-light Chin. Chem. Lett. 2005, 16(9): 1259- 1262.
    67. Kato, H.; Kobayashi, H.; Kudo, A. Role of Ag+ in the Band Structures and Photocatalytic Properties of AgMO3 (M: Ta and Nb) with the Perovskite Structure. J. Phys. Chem. B 2002, 106(48): 12441-12447.
    68. Konta, R.; Kato, H.; Kobayashi, H.; etc. Photophysical properties and photocatalytic activities under visible light irradiation of silver vanadates. Phys. Chem. Chem. Phys. 2003, 5(14): 3061–3065.
    69. Wang, D. F.; Zou, Z. G.; Ye, J. H. A novel series of photocatalysts M2.5VMoO8 (M = Mg, Zn) for O2 evolution under visible light irradiation. Catal. Today 2004, 93-95: 891-894.
    70. Kim, H. G.; Hwang, D. W.; Lee, J. S. An Undoped, Single-Phase Oxide Photocatalyst Working under Visible Light. J. Am. Chem. Soc. 2004, 126(29): 8912-8913.
    71. Kudo, A.; Ueda, K.; Kato, H.; etc. Photocatalytic O2 evolution under visible light irradiation on BiVO4 in aqueous AgNO3 solution. Catal. Lett. 1998, 53(3-4): 229-230.
    72. Kohtani, S.; Makino S.; Kudo A.; etc. Photocatalytic Degradation of 4-n-Nonylphenol under Irradiation from Solar Simulator: Comparison between BiVO4 and TiO2 Photocatalysts. Chem. Lett. 2002, 31(7): 660-661.
    73. Gotic, M.; Music, S.; Ivanda, M.; etc. Synthesis and characterisation of bismuth(III) vanadate. J. Mol. Struct. 2005, 744–747: 535–540.
    74. Zhang, L.; Chen, D. R.; Jiao, X. L. Monoclinic Structured BiVO4 Nanosheets:Hydrothermal Preparation, Formation Mechanism, and Coloristic and Photocatalytic Properties. J. Phys. Chem. B 2006, 110(6): 2668-2673.
    75. Zhou, L.; Wang, W. Z.; Liu, S. W.; etc. A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. J. Mol. Catal. A: Chem. 2006, 252(1-2): 120–124.
    76. Sayama, K.; Nomura, A.; Zou, Z.; etc. Photoelectrochemical decomposition of water on nanocrystalline BiVO4 film electrodes under visible light. Chem. Commun. 2003, (23): 2908-2909.
    77. Neves, M. C.; Trindade, T. Chemical bath deposition of BiVO4. Thin Solid Films 2002, 406(1-2): 93-97.
    78. Kohtani, S.; Koshiko, M.; Kudo, A.; etc. Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Appl. Catal. B: Environ. 2003, 46(3): 573-586.
    79. Kohtani, S.; Hiro, J.; Yamamoto, N.; etc. Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation. Catal. Commun. 2005, 6(3): 185-189.
    80. Kohtani, S.; Tomohiro, M.; Tokumura, K.; etc. Photooxidation reactions of polycyclic aromatic hydrocarbons over pure and Ag-loaded BiVO4 photocatalysts. Appl. Catal. B: Environ. 2005, 58(3-4): 265-272.
    81. Zhang, C.; Zhu, Y. F. Synthesis of Square Bi2WO6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts. Chem. Mater. 2005, 17(13): 3537-3545.
    82. Tang, J. W.; Zou, Z. G.; Ye, J. H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catal. Lett. 2004, 92(1-2): 53-56.
    83. Yao, W. F.; Wang, H.; Xu, X. H.; etc. Photocatalytic property of bismuth titanate Bi2Ti2O7. Appl. Catal. A: Gen. 2004, 259(1): 29-33.
    84. Yao, W. F.; Wang, H.; Xu, X. H.; etc. Synthesis and photocatalytic property of bismuth titanate Bi4Ti3O12. Mater. Lett. 2003, 57(13-14): 1899– 1902.
    85. Yao, W. F.; Xu, X. H.; Wang, H.; etc. Photocatalytic property of perovskite bismuth titanate. Appl. Catal. B: Environ. 2004, 52(2): 109–116.
    86. Yao, W. F.; Wang, H.; Xu, X. H.; etc. Photocatalytic property of bismuth titanate Bi12TiO20 crystals. Appl. Catal. A: Gen. 2003, 243(1): 185–190.
    87. 许效红; 姚伟峰; 张寅等. 钛酸铋系化合物的光催化性能研究. 化学学报 2005, 63(1): 5-10.
    88. Tang, J. W.; Ye, J. H. Photocatalytic and photophysical properties of visible-light-driven photocatalyst ZnBi12O20. Chem. Phys. Lett. 2005, 410(1-3): 104- 107.
    89. Ye, J. H.; Zou, Z. G.; Matsushita, A. A novel series of water splitting photocatalysts NiM2O6 (M = Nb; Ta) active under visible light. Int. J. Hydrogen Energ. 2003, 28(6): 651-655.
    90. Yin, J.; Zou, Z. G.; Ye, J. H. A Novel Series of the New Visible-Light-Driven Photocatalysts MCo1/3Nb2/3O3 (M=Ca, Sr, and Ba) with Special Electronic Structures. J. Phys. Chem. B 2003, 107(21): 4936-4941.
    91. Wang, D. F.; Zou, Z. G.; Ye, J. H. A new spinel-type photocatalyst BaCr2O4 for H2 evolution under UV and visible light irradiation. Chem. Phys. Lett. 2003, 373(1-2):
    191-196.
    92. Tang, J. W.; Zou, Z. G.; Yin, J.; etc. Photocatalytic degradation of methylene blue on CaIn2O4 under visible light irradiation. Chem. Phys. Lett. 2003, 382(1-2): 175-179.
    93. Tang, J. W.; Zou, Z. G.; Katagiri, M.; etc. Photocatalytic degradation of MB on MIn2O4 (M = alkali earth metal) under visible light: effects of crystal and electronic structure on the photocatalytic activity. Catal. Today 2004, 93-95: 855-889.
    94. Tang, J. W.; Zou, Z. G.; Ye, J. H. Effects of Substituting Sr2+ and Ba2+ for Ca2+ on the Structural Properties and Photocatalytic Behaviors of CaIn2O4. Chem. Mater. 2004, 16(9): 1644-1649.
    95. Ye, J. H.; Zou, Z. G.; Arakawa, H.; etc. Correlation of crystal and electronic structureswith photophysical properties of water splitting photocatalysts InMO4 (M = V5+, Nb5+, Ta5+). J. Photochem. Photobio. A: Chem. 2002, 148(1-3): 79–83.
    96. Ye, J. H.; Zou, Z. G.; Oshikiri, M. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. Chem. Phys. Lett. 2002, 356(3-4): 221-226.
    97. Matsumoto, Y. Energy Positions of Oxide Semiconductors and Photocatalysis with Iron Complex Oxides. J. Solid State Chem. 1996, 122(1): 227-234.
    98. Hur, S. G..; Tae, W. K.; Hwang, S. J.; etc. Synthesis of New Visible Light Active Photocatalysts of Ba(In1/3Pb1/3M1/3')O3 (M'=Nb,Ta): A Band Gap Engineering Strategy Based on Electronegativity of a Metal Component. J. Phys. Chem. B 2005, 109(31): 15001-15007.
    99. Wang, D. F.; Zou, Z. G.; Ye, J. H. Photocatalytic H2 evolution over a new visible-light-driven photocatalyst In12NiCr2Ti10O42. Chem. Phys. Lett. 2005, 411(4-6): 285-290.
    100.钱逸泰, 结晶化学导论(第三版), 合肥: 中国科学技术大学出版社, 2005: 236-236.
    101.Kudo, A.; Sekizawa, M. Photocatalytic H2 evolution under visible light irradiation on Zn1-xCuxS solid solution. Catal. Lett. 1999, 58(4): 241-243.
    102.Tsuji, I.; Kato, H.; Kobayashi, H.; etc. Photocatalytic H2 Evolution Reaction from Aqueous Solutions over Band Structure-Controlled (AgIn)xZn2(1-x)S2 Solid Solution Photocatalysts with Visible-Light Response and Their Surface Nanostructures. J. Am. Chem. Soc. 2004, 126(41): 13406-13413.
    103.Youn, H. C.; Baral, S.; Fendler, J. H. Dihexadecyl Phosphate, Vesicle-Stabilized and In Situ Generated Mixed CdS and ZnS Semiconductor Particles. Preparation and Utilization for Photosensitized Charge Separation and Hydrogen Generation. J. Phys. Chem. 1988, 92(22): 6320-6327.
    104.Thiel, F. A. The Phase Relations in the Cu, In, S System and the Growth of CuInS2 Crystals from the Melt. J. Electrochem. Soc. 1982, 129(7): 1570-1571.
    105.Tsuji, I.; Kato, H.; Kobayashi, H.; etc. Photocatalytic H2 Evolution under Visible-Light Irradiation over Band-Structure-Controlled (CuIn)xZn2(1-x)S2 Solid Solutions. J. Phys. Chem. B 2005, 109(15): 7323-7329.
    106.Tsuji, I., Kato, H.; Kudo, A. Visible-Light-Induced H2 Evolution from an Aqueous Solution Containing Sulfide and Sulfite over a ZnS–CuInS2–AgInS2 Solid-Solution Photocatalyst. Angew. Chem. Int. Ed. 2005, 44(23): 3565 –3568.
    107.Kudo, A.; Mikami, I. Photocatalytic activities and photophysical properties of Ga2-xInxO3 solid solution. J. Chem. Soc., Faraday Trans. 1998, 94(19): 2929-2932.
    108.Maeda, K.; Takata, T.; Hara, M.; etc. GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting. J. Am. Chem. Soc. 2005, 127(23): 8286-8287.
    109.Maeda, K.; Teramura, K.; Takata, T.; etc. Overall Water Splitting on (Ga1-xZnx)(N1-xOx) Solid Solution Photocatalyst: Relationship between Physical Properties and Photocatalytic Activity. J. Phys. Chem. B 2005, 109(43): 20504-20510.
    110.Teramura, K.; Maeda, K.; Saito, T.; etc. Characterization of Ruthenium Oxide Nanocluster as a Cocatalyst with (Ga1-xZnx)(N1-xOx) for Photocatalytic Overall Water Splitting. J. Phys. Chem. B 2005, 109(46): 21915-21921.
    111.Maeda, K.; Teramura, K.; Lu, D. L.; etc. Characterization of Rh-Cr Mixed-Oxide Nanoparticles Dispersed on (Ga1-xZnx)(N1-xOx) as a Cocatalyst for Visible-Light-Driven Overall Water Splitting. J. Phys. Chem. B 2006, 110(28): 13753-13758.
    112.Maeda, K.; Teramura, K.; Lu, D. L.; etc. Photocatalyst releasing hydrogen from water. Nature 2006, 440(7082): 295.
    113.Maeda, K.; Teramura, K.; Lu, D. L.; etc. Noble-Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting. Angew. Chem. Int. Ed. 2006, 45(46): 7806 –7809.
    114.Khaselev, O.; Turner, J. A. A Monolithic Photovoltaic-Photoelectrochemical Devicefor Hydrogen Production via Water Splitting. Science 1998, 280(5362): 425-427.
    115.Wang, D. F.; Zou, Z. G.; Ye, J. H. Photocatalytic Water Splitting with the Cr-Doped Ba2In2O5/In2O3 Composite Oxide Semiconductors. Chem. Mater. 2005, 17(12): 3255-3261.
    116.Kim, H. G.; Borse, P. H.; Choi, W.; etc. Photocatalytic Nanodiodes for Visible-Light Photocatalysis. Angew. Chem. Int. Ed. 2005, 44(29): 4585 –4589.
    117.Luo, J. H.; Maggard, P. A. Hydrothermal Synthesis and Photocatalytic Activities of SrTiO3-Coated Fe2O3 and BiFeO3. Adv. Mater. 2006, 18(4): 514-517.
    118.Tada, H.; Mitsul, T.; Kiyonaga, T.; etc. All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nature Mater. 2006, 5(10): 782-786.
    119.Kudo, A.; Kato, H. Effect of lanthanide-doping into NaTaO3 photocatalysts for effcient water splitting. Chem. Phys. Lett. 2000, 331(5-6): 373-377.
    120.Zou, Z. G.; Ye, J. H.; Sayama, K.; etc. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414(6864): 625- 627.
    121.Zou, Z. G.; Ye, J. H.; Arakawa, H. Surface Characterization of Nanoparticles of NiOx/In0.9Ni0.1TaO4: Effects on Photocatalytic Activity. J. Phys. Chem. B 2002, 106(51): 13098-13101.
    122.Bessekhouad, Y.; Robert, D.; Weber, J. V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J. Photochem. Photobiol. A: Chem. 2004, 163(3): 569-580.
    123.Sakthivel, S.; Geissen, S. U.; Bahnemann, D. W.; etc. Enhancement of photocatalytic activity by semiconductor heterojunctions: α-Fe2O3, WO3 and CdS deposited on ZnO. J. Photochem. Photobiol. A: Chem. 2002, 148(1-3): 283–293.
    124.Otsuka-Yao-Matsuo, S.; Ueda, M. Visible light-induced photobleaching of methylene blue aqueous solution using (Sr1-xLax)TiO3+δ–TiO2 composite powder. J. Photochem. Photobiol. A: Chem. 2004, 168(1-2): 1-6.
    125.Li, J. L.; Liu, L.; Yu, Y.; etc. Preparation of highly photocatalytic active nano-size TiO2–Cu2O particle composites with a novel electrochemical method. Electrochem. Commun. 2004, 6(9): 940-943.
    126.Senevirathna, M. K. I.; Pitigala, P. K. D. D. P.; Tennakone, K. Water photoreduction with Cu2O quantum dots on TiO2 nano-particles. J. Photochem. Photobiol. A: Chem. 2005, 171(3): 257-259.
    127.马礼敦, 近代 X 射线多晶体衍射—实验技术与数据分析, 北京, 化工出版社, 2004: 299-472.
    128.Barton, D. G.; Shtein, M.; Wilson, R. D.; etc. Structure and electronic properties of solid acids based on tungsten oxide nanostructures. J. Phys. Chem. B 1999, 103(4): 630-640.
    129.吴越, 催化化学(下册), 北京, 科学出版社, 2000: 1290-1418.
    130.Tang, J. W.; Zou, Z. G.; Ye, J. H. Photophysical and Photocatalytic Properties of AgInW2O8. J. Phys. Chem. B 2003, 107(51): 14265-14269.
    131.Jing, L. Q.; Yuan, F. L.; Hou, H. G.; etc. Relationships of surface oxygen vacancies with photoluminescence and photocatalytic performance of ZnO nanoparticles. Sci. Chin. Ser. B Chem. 2005, 48(1): 25-30.
    132.Yashima, M.; Maeda, K.; Teramura, K.; etc. Crystal structure and optical properties of (Ga1-xZnx)(N1-xOx) oxynitride photocatalyst (x = 0.13). Chem. Phys. Lett. 2005, 416(4-6): 225-228.
    133.Yoon, M.; Seo, M.; Jeong, C.; etc. Synthesis of Liposome-Templated Titania Nanodisks: Optical Properties and Photocatalytic Activities. Chem. Mater. 2005, 17(24): 6069-6079.
    134.Choi, W.; Hoffmann, M. R. Novel Photocatalytic Mechanisms for CHCl3, CHBr3, and CCl3CO2- Degradation and the Fate of Photogenerated Trihalomethyl Radicals on TiO2. Environ. Sci. Technol. 1997, 31(1): 89-95.
    135.Macyk, W.; Burgeth, G.; Kisch, H. Photoelectrochemical properties of platinum(IV)chloride surface modified TiO2. Photochem. Photobiol. Sci. 2003, 2(3): 322–328.
    136.Park, H.; Choi, W. Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors. J. Phys. Chem. B 2004, 108(13): 4086-4093.
    137.Kim, S.; Choi, W. Kinetics and Mechanisms of Photocatalytic Degradation of (CH3)nNH4-n+ (0≤n≤4) in TiO2 Suspension: The Role of OH Radicals. Environ. Sci. Technol. 2002, 36(9): 2019-2025.
    138.Kim, S.; Choi, W. Dual Photocatalytic Pathways of Trichloroacetate Degradation on TiO2: Effects of Nanosized Platinum Deposits on Kinetics and Mechanism. J. Phys. Chem. B 2002, 106(51): 13311-13317.
    139.He, J.; Lindstrom, H.; Hagfeldt, A.; etc. Dye-Sensitized Nanostructured p-Type Nickel Oxide Film as a Photocathode for a Solar Cell. J. Phys. Chem. B 1999, 103(42): 8940-8943.
    140.Beranek, R.; Kisch, H. Surface-modified anodic TiO2 films for visible light photocurrent response. Electrochem. Commun. 2007, 9(4): 761–766.
    141.Kay, A.; Cesar, I.; Graetzel M. New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films. J. Am. Chem. Soc. 2006, 128(49): 15714-15721.
    142.Miller, R. J. D.; Mclendon, G. L.; Nozik, A. J.; etc. Surface Electron Transfer Processes, New York, VCH Publishers Inc., 1995: 1-17.
    143.孟胜, 表面上水的第一性原理研究, [博士学位论文], 北京, 中国科学院物理研究所, 2003: 23-29.
    144.黄文娅; 余颖. 可见光化的半导体光催化剂. 化学进展 2005, 17: 243-247.
    145.杨亚辉; 陈启元; 尹周澜等. 光催化分解水的研究进展. 化学进展 2005, 17: 631-642.
    146.付贤智, 光催化学科的前沿与发展趋势, 见: 国家自然科学基金委, 新世纪的物理化学——学科前沿与展望, 北京, 科学出版社, 2004: 148-153.
    147.Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; etc. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95(1): 69-96.
    148.Lee, J. Y.; Park, J.; Cho, J. H. Electronic properties of N- and C-doped TiO2. Appl. Phys. Lett. 2005, 87(1): 011904.
    149.Neumann, B.; Bogdanoff, P.; Tributsch, H.; etc. Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. J. Phys. Chem. B 2005, 109(35): 16579-16586.
    150.Sakthivel, S.; Janczarek, M.; Kisch, H. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J. Phys. Chem. B 2004, 108(50): 19384-19387.
    151.Ihara, T.; Miyoshi, M.; Iriyama, Y.; etc. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B: Environ. 2003, 42(4): 403-409.
    152.Serpone, N. Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 2006, 110(48): 25203-25209.
    153.Kuznetsov, V. N.; Serpone, N. Visible light absorption by various titanium dioxide specimens. J. Phys. Chem. B 2006, 110(50): 25203-25209.
    154.Irie, H.; Watanabe, Y.; Hashimoto, K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem. Lett. 2003, 32(8): 772-773.
    155.Valentin, C. D.; Pacchioni, G.; Selloni, A. Theory of carbon doping of titanium dioxide. Chem. Mater. 2005, 17(26): 6656-6665.
    156.李震宇, 新材料物性的第一性原理研究, [博士学位论文], 合肥, 中国科学技术大学, 2004: 1-10.
    157.郭洪煪, 李静译, Hoffman, R. 固体与表面: 一位化学家关于扩展结构中成键作用的见解, 北京, 化学工业出版社, 1996: 1-55.
    158.Wood, P.; Glasser, F. P. Preparation and properties of pigmentary grade BiVO4 precipitated from aqueous solution. Ceram. Int. 2004, 30(6): 875-882.
    159.Bhattacharva, A. K.; Mallick K. K.; Hartridge A. Phase transition in BiVO4. Mater. Lett. 1997, 30(1): 7-13.
    160.Vinke, I. C.; Diepgrond, J.; Boukamp, B. A.; etc. Bulk and electrochemical properties of BiVO4. Solid State Ion. 1992, 57(1-2): 83-89.
    161.Lu, T.; Steele, B. C. H. Electrical conductivity of polycrystalline BiVO4 samples having the scheelite structure. Solid State Ion. 1986, 21(4): 339-342.
    162.Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121(49): 11459-11467.
    163.Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 2001, 13(12): 4624-4628.
    164.Oshikiri, M.; Boero, M. Water Molecule Adsorption Properties on the BiVO4 (100) Surface. J. Phys. Chem. B 2006, 110(18): 9188-9194.
    165.Yu, J. Q.; Kudo, A. Hydrothermal synthesis of nanofibrous bismuth vanadate. Chem. Lett. 2005, 34(6): 850-851.
    166.Hagelin-Weaver, H. A. E.; Hoflund, G. B.; Minahan, D. M.; etc. Electron energy loss spectroscopic investigation of Co metal, CoO, and Co3O4 before and after Ar+ bombardment. Appl. Surf. Sci. 2004, 235(4): 420–448.
    167.Barrera, E.; Gonzalez, I.; Viveros, T. A new cobalt oxide electrodeposit bath for solar absorbers. Sol. Energy Mater. Sol. Cells 1998, 51(1): 69-82.
    168.Patil, P. S.; Kadam, L. S.; Lokhande, C. D. Preparation and characterization of spray pyrolysed cobalt oxide thin films. Thin Solid Films 1996, 272(1): 29-32.
    169.吴玉琪; 吕功煊; 李树本. CoOx 改性 TiO2 光催化从水析氢光电化学行为研究. 化学学报 2005, 63(8): 671-676.
    170.吴玉琪; 吕功煊; 李树本. CoOx 改性 TiO2 光催化剂的制备、优化及其光催化分解水析氢性能研究. 无机化学学报 2005, 21(3): 309-314.
    171.Kim, M. H. Surface Chemical structures of CoOx/TiO2 catalysts for continuous wettrichloroethylene oxidation. Korean J. Chem. Eng. 2005, 22(6): 839-843.
    172.Liu, H. M.; Nakamura, R.; Nakato, Y. Promoted Photo-oxidation Reactivity of Particulate BiVO4 Photocatalyst Prepared by a Photoassisted Sol-gel Method. J. Electrochem. Soc. 2005, 152(11): G856-G861.
    173.Gulino, A.; Fragala, I. Cobalt hexafluoroacetylacetonate polyether adducts for thin films of cobalt oxides. Inorg. Chim. Acta 2005, 358(15): 4466–4472.
    174.Zhou, L. P.; Xu, J.; Li, X. Q.; etc. Metal oxide nanoparticles from inorganic sources via a simple and general method. Mater. Chem. Phys. 2006, 97(1): 137-142.
    175.Cheng, C. S.; Serizawa, M.; Sakata, H.; etc. Electrical Conductivity of Co3O4 films prepared by chemical vapour deposition. Mater. Chem. Phys. 1998, 53(3): 225-230.
    176.Barreca, D.; Massignan, C.; Daolio, S.; etc. Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt(II) Precursor by Chemical Vapor Deposition. Chem. Mater. 2001, 13(2): 588-593.
    177.Jiu, J.; Ge, Y.; Li, X.; etc. Preparation of Co3O4 nanoparticles by a polymer combustion route. Mater. Lett. 2002, 54(4): 260–263.
    178.Hu, J. S.; Ren L. L.; Guo Y. G.; etc. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew. Chem. Int. Ed. 2005, 44(8): 1269 –1273.
    179.Jing, L. Q.; Xin, B. F.; Yuan, F. L.; etc. Deactivation and regeneration of ZnO and TiO2 nanoparticles in the gas phase photocatalytic oxidation of n-C7H16 or SO2. Appl. Catal. A: Gen. 2004, 275(1-2): 49-54.
    180.Trari, M.; Bouguelia, A.; Bessekhouad, Y. p-Type CuYO2 as hydrogen photocathode. Sol. Energy Mater. Sol. Cells 2006, 90(2): 190-202.
    181.Heller, A. Conversion of Sunlight into Electrical Power and Photoassisted Electrolysis of Water in Photoelectrochemical Cells. Acc. Chem. Res. 1981, 14(5): 154-162.
    182.Li, D.; Haneda, H.; Ohashi, N.; etc. Synthesis of nanosized nitrogen-containing MOx–ZnO (M = W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition. Catal.Today 2004, 93-95: 895-901.
    183.Kim, Y. I.; Atherton, S. J.; Brigham, E. S.; etc. Sensitized layered metal oxide semiconductor particles for photochemical hydrogen evolution from nonsacrificial electron donors. J. Phys. Chem. 1993, 97(45): 11802-11810.
    184.Butler, M. A.; Ginley, D. S. Prediction of Flatband Potentials at Semiconductor- Electrolyte Interfaces from Atomic Electronegativities. J. Electrochem. Soc. 1978, 125(2): 228-232.
    185.Xu, Y.; Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Miner. 2000, 85(3-4): 543-556.
    186.Sayama, K.; Nomura, A.; Arai, T.; etc. Photoelectrochemical Decomposition of Water into H2 and O2 on Porous BiVO4 Thin-Film Electrodes under Visible Light and Significant Effect of Ag Ion Treatment. J. Phys. Chem. B 2006, 110(23): 11352- 11360.
    187.杨剑, 一维半导体纳米材料溶剂热合成机制探讨, [博士学位论文], 合肥, 中国科学技术大学, 2001: 15-20.
    188.Byrappa, K.; Yoshimura, M. Handbook of Hydrothermal Technology: A Technology for Crystal Growth and Materials Processing, New Jersey, Noyes, 2001: 27-43.
    189.Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 2004, 104(9): 3893- 3946.
    190.Burda, C.; Chen, X.; Narayanan, R.; etc. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105(4): 1025-1102.
    191.Testino, A.; Bellobono, I. R.; Buscaglia, V.; etc. Optimizing the Photocatalytic Properties of Hydrothermal TiO2 by the Control of Phase Composition and Particle Morphology. A Systematic Approach. J. Am. Chem. Soc. 2007, 129(12): 3564-3575.
    192.Wu, J. M. Photodegradation of Rhodamine B in Water Assisted by Titania Nanorod Thin Films Subjected to Various Thermal Treatments. Environ. Sci. Technol. 2007,41(5): 1723-1728.
    193.Yu, J. Q.; Kudo, A. Hydrothermal synthesis and photocatalytic property of 2-dimensional bismuth molybdate nanoplates. Chem. Lett. 2005, 34(11): 1528-1529.
    194.Kudo, A. Development of photocatalyst materials for water splitting. Int.. J. Hydrogen Energy 2006, 31(2): 197-202.
    195.Kisch, H. Semiconductor Photocatalysis for Organic Syntheses. Adv. Photochem. 2001, 26: 93-143.
    196.Furtado, L. F. O.; Alexiou, A. D. P.; Goncalves, L.; etc. TiO2-Based Light-Driven XOR/INH Logic Gates. Angew. Chem. Int. Ed. 2006, 45(19): 3143 –3146.
    197.Jiang, D. L.; Zhang, S. Q.; Zhao, H. J. Photocatalytic Degradation Characteristics of Different Organic Compounds at TiO2 Nanoporous Film Electrodes with Mixed Anatase/Rutile Phases. Environ. Sci. Technol. 2007, 41(1): 303-308.
    198.Beranek, R.; Kisch, H. Surface-modified anodic TiO2 films for visible light photocurrent response. Electrochem. Commun. 2007, 9(:4) 761–766.
    199.Beranek, R.; Neumann, B.; Sakthivel, S.; etc. Exploring the electronic structure of nitrogen-modified TiO2 photocatalysts through photocurrent and surface photovoltage studies. Chem. Phys. 2007, 339(1-3): 11-19.
    200.Long, M. C.; Cai, W. M.; Cai, J.; etc. Efficient Photocatalytic Degradation of Phenol over Co3O4/BiVO4 Composite under Visible Light Irradiation. J. Phys. Chem. B 2006, 110(41): 20211-20216.
    201.Rajeshwar, K. Fundamentals of Semiconductor Electrochemistry and Photoelectrochemistry, in, Bard, A. J.; Stratmann, M.; Licht, S. Encyclopedia of Electrochemistry(Volume 6), Weinheim, Wiley-VCH, 2002: 1-51.
    202.Morrison, S. R. Electrochemistry at semiconductor and oxidized metal electrodes. New York, Plenum Press, 1980: 51-78, 154-155.
    203.Rajeshwar, K. Electron Transfer at Semicoductor-Electrolyte Interfaces. in, Balzani, V. Electron Transfer in Chemistry 4: Catalysis of Electron Transfer HeterogeneousSystems and Gas-phase Systems. Weinheim, Wiley-VCH, 2001: 279-352.
    204.Tsujiko, A.; Itoh, H.; Kisumi, T.; etc. Observation of Cathodic Photocurrents at Nanocrystalline TiO2 Film Electrodes, Caused by Enhanced Oxygen Reduction in Alkaline Solutions. J. Phys. Chem. B 2002, 106(23): 5878-5885.
    205.Huenig, S.; Gross, J.; Lier, E. F.; etc. Two-step redox systems. XII. Synthesis and polarography of quarternary salts of phenanthrolines, 2,7-diazapyrene, and diazoniapentaphenes. Liebigs Ann. Chem. 1973: 339-358.
    206.Pleskov, Y. V.; Mazin, V. M.; Evstefeeva, Y. E.; etc. Photoelectrochemical Determination of the Flatband Potential of Boron-Doped Diamond. Electrochem. Solid-State Lett. 2000, 3(3): 141-143.
    207.Khan, S. U. M.; Akikusa, J. Photoelectrochemical Splitting of Water at Nanocrystalline n-Fe2O3 Thin-Film Electrodes. J. Phys. Chem. B 1999, 103(34): 7184-7189.
    208.Roy, A. M.; De, G. C.; Sasmal, N.; etc. Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement. Int. J. Hydrogen Energy 1995, 20(8): 627-630.
    209.Bolts, J. M.; Wrighton, M. S. Correlation of Photocurrent-Voltage Curves with Flat-Band Potential for Stable Photoelectrodes for the Photoelectrolysis of Water. J. Phys. Chem. 1976, 80(24): 2641–2645.
    210.Boschloo, G.; Fitzmaurice, D. Spectroelectrochemical Investigation of Surface States in Nanostructured TiO2 Electrodes. J. Phys. Chem. B 1999, 103(12): 2228-2231.
    211.O'Regan, B.; Graetzel, M.; Fitzmaurice, D. Optical electrochemistry 1: steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode. Chem. Phys. Lett. 1991, 183(1-2): 89-93.
    212.Kisch, H.; Burgeth, G.; Macyk, W. Visible Light Photocatalysis by a Titania Transition Metal Complex. Adv. Inorg. Chem. 2004, 56: 241-159.
    213.Hirota, K.; Tryk, D. A.; Yamamoto, T.; etc. Photoelectrochemical reduction of CO2 ina high-pressure CO2 + methanol medium at p-type semiconductor electrodes. J. Phys. Chem. B 1998, 102(49): 9834-9843.
    214.Bard, A. J.; Fox, M. A. Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Acc. Chem. Res. 1995, 28(3): 141-145.
    215.Bard, A. J.; Wrighton, M. S. Thermodynamic potential for the anodic dissolution of n-type semiconductors. J. Electrochem. Soc. 1977, 124(11): 1706-1710.
    216.Hardee, K. L.; Bard, A. J. Semiconductor electrodes X. Photoelectrochemical behavior of several polycrystalline metal oxide electrodes in aqueous solutions. J. Electrochem. Soc. 1977, 124(2): 215-224.
    217.Ulmann, M.; de Tacconi, N. R.; Augustynski, J. Behavior of Surface Peroxo Species in the Photoreactions at TiO2. J. Phys. Chem. 1986, 90(24): 6523-6530.
    218.Szacilowski, K.; Macyk, W.; Stochel, G. Synthesis, structure and photoelectrochemical properties of the TiO2–Prussian blue nanocomposite. J. Mater. Chem. 2006, 16(47): 4603–4611.
    219.Hebda, M.; Stochel, G.; Szaci?owski, K.; etc. Optoelectronic Switches Based on Wide Band Gap Semiconductors. J. Phys. Chem. B 2006, 110(31): 15275-15283.
    220.Peter, L. M. Dynamic Aspects of Semiconductor Photoelectrochemistry. Chem. Rev. 1990, 90(5): 753-769.
    221.Wardman, P. Reduction Potentials of One-electron Couples Involving Free Radicals in Aqueous Solution. J. Phys. Chem. Ref. Data 1989, 18(4): 1637-1775.
    222.Santato, C.; Ulmann, M.; Augustynski, J. Photoelectrochemical Properties of Nanostructured Tungsten Trioxide Films. J. Phys. Chem. B 2001, 105(5): 936-940.
    223.Bocca, C.; Cerisola, G.; Magnone, E.; etc. Oxygen evolution on Co3O4 and Li-doped Co3O4 coated electrodes in an alkaline solution. Int. J. Hydrogen Energy 1999, 24(8): 699-707.
    224.Svegl, F.; Orel, B.; Grabec-Svegl, I.; etc. Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol–gel route. Electrochim.Acta 2000, 45(25-26): 4359–4371.
    225.Brunschwig, B. S.; Chou, M. H.; Creutz, Q.; etc. Mechanisms of water oxidation to oxygen: cobalt(IV) as an intermediate in the aquocobalt(II)-catalyzed reaction. J. Am. Chem. Soc. 1983, 105(14): 4832-4833.
    226.Behl, W. K.; Toni, J. E. Anodic oxidation of cobalt in potassium hydroxide electrolytes. J. Electroanal. Chem. 1971, 31: 63-75.
    227.Nakamura, R.; Nakato, Y. Primary intermediates of oxygen photoevolution reaction on TiO2 (Rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements. J. Am. Chem. Soc. 2004, 126(4): 1290-1298.
    228.Imanishi, A.; Okamura, T.; Ohashi, N.; etc. Mechanism of water photooxidation reaction at atomically flat TiO2 (Rutile) (110) and (100) Surfaces: dependence on solution pH. J. Am. Chem. Soc. 2007, 129(37): 11569-11578.
    229.Gao, R. M.; Stark, J.; Bahnemann, D. W.; etc. Quantum yields of hydroxyl radicals in illuminated TiO2 nanocrystallite layers. J. Photochem. Photobio. A: Chem. 2002, 148(1-3): 387–391.
    230.Chen, Y. X.; Yang, S. Y.; Wang, K.; etc. Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. J. Photochem. Photobio. A: Chem. 2005, 172(1): 47-54.
    231.Vione, D.; Minero, C.; Maurino, V.; etc. Degradation of phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst. Appl. Catal. B: Environ. 2005, 58(1-2): 79–88.
    232.Chhor, K.; Bocquet, J. F.; Colbeau-Justin, C. Comparative studies of phenol and salicylic acid photocatalytic degradation: influence of adsorbed oxygen. Mater. Chem. Phys. 2004, 86(1): 123–131.
    233.Cermenati, L.; Pichat, P.; Guillard, C.; etc. Probing the TiO2 Photocatalytic Mechanisms in Water Purification by Use of Quinoline, Photo-Fenton Generated OH Radicals and Superoxide Dismutase. J. Phys. Chem. B 1997, 101(14): 2650-2658.
    234.Ilisz, I.; Laszlo, Z.; Dombi, A. Investigation of the photodecomposition of phenol in near-UVirradiated aqueous TiO2 suspensions. I: Effect of charge-trapping species on the degradation kinetics. Appl. Catal. A: Gen. 1999, 180(1-2): 25-33.
    235.Sobczynski, A.; Duczmal, ?.; Zmudzinski, W. Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. J. Mol. Catal. A: Chem. 2004, 213(2): 225–230.
    236.Serpone, N.; Borgarello, E.; Graetzel, M. Visible Light Induced Generation of Hydrogen from H2S in Mixed Semiconductor Dispersions; Improved Efficiency through Inter-particle Electron Transfer. J. Chem. Soc. Chem. Commun. 1984: 342-344.
    237.Serpone, N.; Maruthamuthu, P.; Pichat, P.; etc. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. J. Photochem. Photobio. A: Chem. 1995, 85(3): 247-255.
    238.Robert, D. Photosensitization of TiO2 by MxOy and MxSy nanoparticles for heterogeneous photocatalysis applications. Catal. Today 2007, 122(1-2): 20–26.
    239.Zang, L.; Kisch, H. Room Temperature Oxidation of Carbon Monoxide Catalyzed by Hydrous Ruthenium Dioxide. Angew. Chem. Int. Ed. 2000, 39(21): 3921-3922.
    240.Macyk, W.; Kisch, H. Photosensitization of Crystalline and Amorphous Titanium Dioxide by Platinum(IV) Chloride Surface Complexes. Chem. Eur. J. 2001, 7(9): 1862-1867.
    241.Wang, K.; Zhang, J.; Lou, L.; etc. UV or visible light induced photodegradation of AO7 on TiO2 particles: the influence of inorganic anions. J. Photochem. Photobio. A: Chem. 2004, 165(1-3): 201–207.
    242.Singh, H. K.; Saquib, M.; Haque, M. M.; etc. Titanium dioxide mediated photocatalysed degradation of phenoxyacetic acid and 2, 4, 5- trichlorophenoxyacetic acid, in aqueous suspensions. J. Mol. Catal. A: Chem. 2007, 264(1-2): 66–72.
    243.Herrmann, J. M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal. Today 1999, 53(1): 115-129.
    244.Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders. J. Phys. Chem. B 2003, 107(23): 5483-5486.
    245.Bao, N. Z.; Feng, X.; Yang, Z. H.; etc. Highly Efficient Liquid-Phase Photooxidation of an Azo Dye Methyl Orange over Novel Nanostructured Porous Titanate-Based Fiber of Self-Supported Radially Aligned H2Ti8O17·1.5H2O Nanorods. Environ. Sci. Technol. 2004, 38(9): 2729-2736.
    246.Chen, C. C.; Zhao, W.; Lei, P.; etc. Photosensitized Degradation of Dyes in Polyoxometalate Solutions Versus TiO2 Dispersions under Visible-Light Irradiation: Mechanistic Implications. Chem. Eur. J. 2004, 10(8): 1956-1965.
    247.Chen, C. C.; Zhao, W.; Li, J.;etc. Formation and Identification of Intermediates in the Visible-Light-Assisted Photodegradation of Sulforhodamine-B Dye in Aqueous TiO2 Dispersion EnViron. Sci. Technol. 2002, 36(16): 3604-3611.
    248.王正鹏. 非金属掺杂改性纳米二氧化钛的制备及可见光下光催化降解苯酚的研究, [博士学位论文], 上海, 上海交通大学, 2005: 44-50.
    249.Tryba, B.; Morawski, A. W.; Inagaki, M.; etc. The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2, Fe-TiO2 and Fe-C-TiO2 photocatalysts. Appl. Catal. B: Environ. 2006, 65(1-2), 86–92.
    250.Ilisz, I.; Dombi, A. Investigation of the photodecomposition of phenol in near-UVirradiated aqueous TiO2 suspensions. II. Effect of charge-trapping species on product distribution. Applied Catalysis A: General 1999, 180(1-2): 35-45.
    251.Guo, Z.; Ma, R.; Li, G. Degradation of phenol by nanomaterial TiO2 in wastewater. Chem. Engineer. J. 2006, 119(1): 55–59.
    252.Ball, P. Chemistry meets computing. Nature 2000, 406(6792): 118-120.
    253.Adleman, L. M. Molecular computation of solutions to combinatorial problems.Science 1994, 266(5187): 1021-1024.
    254.Magri, D. C.; Vance, T. P.; de Silva, A. P. From complexation to computation: Recent progress in molecular logic. Inorg. Chim. Acta 2007, 360(3): 751–764.
    255.Raymo, F. M.; Giordani, S. All-optical processing with molecular switches. Proc. Natl. Acad. Sci. U. S. A. 2002, 99(8): 4941-4944.
    256.Biancardo, M.; Bignozzi, C.; Doyle, H.; etc. A potential and ion switched molecular photonic logic gate. Chem. Commun. 2005, (31): 3918-3920.
    257.Macyk, W.; Stochel, G.; Szaci?owski, K. Photosensitization and the photocurrent switching effect in nanocrystalline titanium dioxide functionalized with iron(II) complexes: a comparative study. Chem. Eur. J. 2007, 13(20): 5676–5687.
    258.Gaweda, S.; Stochel, G.; Szaci?owski, K. Bioinspired nanodevice based on the folic acid/titanium dioxide system. Chem. Asian J. 2007, 2(5): 580–590.
    259.Yasutomi, S.; Morita, T.; Imanishi, Y.; etc. A molecular photodiode system that can switch photocurrent direction. Science 2004, 304(5679): 1944-1947.
    260.Matsui, J.; Mitsuishi, M.; Aoki, A.; etc. Molecular optical gating devices based on polymer nanosheets assemblies. J. Am. Chem. Soc. 2004, 126(12): 3708-3709.
    261.Beranek, R. A Hybrid Semiconductor Electrode for Wavelength-Controlled Switching of the Photocurrent Direction. Angew. Chem. Int. Ed. 2007 (In press)
    262.Wang, C. Y.; Pagel, R.; Bahnemann, D. W.; etc. Quantum yield of formaldehyde formation in the presence of colloidal TiO2-based photocatalysts: effect of intermittent illumination, platinization, and deoxygenation. J. Phys. Chem. B 2004, 108(37): 14082-14092.
    263.Liu, D.; Kamat, P. V. Electrochemical rectification in CdSe + TiO2 coupled semiconductor films. J. Electroanal. Chem. 1993, 347(1-2): 451-456.
    264.Chiang, H. J.; Shyuu, J. M.; Wang, C. M. Photodegradation of chlorinated organic wastes with n-TiO2 promoted by p-CuO. J. Chin. Chem. Soc. 1996, 43(1): 21-27.
    265.Yamada, H.; Imahori, H.; Fukuzumi, S. Photocurrent generation using gold electrodesmodified with self-assembled monolayers of a fullerene-porphyrin dyad. J. Mater. Chem. 2002, 12(7): 2034-2040.
    266.Jing, L. Q.; Sun, X. J.; Shang, J.; etc. Review of surface photovoltage spectra of nanosized semiconductor and its applications in heterogeneous photocatalysis. Sol. Energy Mater. Sol. Cells 2003, 79(2): 133–151.
    267.Silva, A. P.; McClenaghan, N. D. Proof-of-Principle of Molecular-Scale Arithmetic. J. Am. Chem. Soc. 2000, 122(16): 3965-3966.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700