用户名: 密码: 验证码:
基于海藻酸钠的微胶囊构建技术及其在干态乳酸菌中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,生活水平的不断提高,人们对具有保健功能的健康食品的需求量也越来越大,由此,在功能性食品、保健食品和营养滋补剂领域均占有一席之地的益生菌制剂也越来越受到人们的重视。益生菌是活的微生物,摄入充足的量后,能够对宿主产生一种或多种特殊且经论证的健康益处。乳酸菌作为益生菌的重要成员之一,具有改善肠道菌群结构、消除致癌因子、提高机体免疫力、降低胆固醇等重要生理功效。实际上,大多数的益生菌在进入消化道后对低pH的胃酸、胆汁酸等的抵抗能力较弱,难以有足够的活菌数量到达并定居于肠道发挥作用。微胶囊技术是提高益生菌活性的一种有效方法,将益生菌包埋于保护性结构中,能够增强它们对外界不良环境(干燥脱水、胃酸、胆汁、胰酶等)的抵抗能力,有利于使其顺利通过胃到达肠道发挥益生作用。挤压法是益生菌微胶囊化使用最广泛的一种方法,具有制备条件温和,不会严重影响被包埋菌体活性等优点。
     本文以海藻酸钠、明胶、壳聚糖、羧甲基壳聚糖为壁材,稻麸纤维、微孔淀粉为载体,利用挤压法制备出四类乳酸菌微胶囊,对其性质进行检测,考察微胶囊化对乳酸菌的保护作用,并对影响干态乳酸菌存活性的因素进行了探讨。
     以海藻酸钠为壁材、稻麸纤维为载体,利用挤压法成功的制备出乳酸菌-海藻酸钠微胶囊。结果表明,海藻酸钠的浓度(2%,3%,4%,5%,w/v)对干态乳酸菌的存活性及其在模拟胃肠液中(pH 1.2,pH 6.8)的释放情况影响不明显,以5%作为后续实验中的海藻酸钠浓度;4℃干燥的微胶囊样品有利于菌体活性的保持(相比于25℃);与裸菌相比,微胶囊化及载体(稻麸纤维)的添加有利于提高干态乳酸菌的存活能力;海藻糖作为一种非还原性二糖,能够被乳酸菌利用,但对菌体的生长代谢没有促进作用,作为生长组分和保护剂,海藻糖能够增强菌体对干燥环境的抵抗能力,4℃储存8周后样品中乳酸菌的活菌数量为8.1×10~7 cfu/g;乳酸菌的微胶囊化有利于提高菌体对胃酸的耐受性,在模拟胃液(pH 1.2)中处理2 h后菌体的存活率可达89%;随着储存环境相对湿度的增加(由33%升高到97%),微胶囊样品中乳酸菌的活菌数量减少。
     以海藻酸钠、明胶为壁材,利用挤压法制备乳酸菌-海藻酸钠/明胶微胶囊。微胶囊的粒径大小为1.1±0.2 mm。4℃储存一周后,微胶囊样品中干态乳酸菌的活菌数量最低为107 cfu/g。柠檬酸钠处理样品组与非处理组的表面结构相差较大,前者呈现片状结构,而后者则分布有许多皱褶;随着储存时间的延长,微胶囊样品中的活菌数量呈现下降趋势,柠檬酸钠处理样品组活菌数的下降程度相对较小;随着相对湿度从33%升高到97%,乳酸菌微胶囊的吸湿率明显增大;溶胀介质中的pH和离子强度对不同乳酸菌微胶囊的溶胀性具有基本相同的影响规律。当pH较低(2.4)时,微胶囊很快达到溶胀平衡,随着pH的升高(大于5.2),微球出现先溶胀后溶蚀的现象。随着离子强度从0.01升高到1 mol/l,微胶囊的溶胀率降低;微胶囊中的乳酸菌能够在模拟胃肠液中连续释放,且乳酸菌在模拟肠液中的释放速度和释放量明显大于在模拟胃液中。
     用酸降解法制备不同分子量的壳聚糖(120 kDa,338 kDa,540 kDa和1360 kDa);将脱乙酰化与乙酰化相结合,可以制备得到具有不同脱乙酰度的壳聚糖样品(91.26%,83.34%和65.41%);以海藻酸钠及壳聚糖为壁材、微孔淀粉为载体,利用三种方法制备乳酸菌-海藻酸钠/壳聚糖微胶囊。所有微胶囊均呈现圆形、无粘连的球状结构,粒径为2.1±0.2 mm;所有微胶囊样品的含水量均小于10%;随着相对湿度的增大,各样品的吸湿率明显增大;制备方法对乳酸菌微胶囊在模拟胃肠液中的溶胀性没有明显影响;由于外源交联法制备的微胶囊样品中乳酸菌的活菌数量高且对胃酸的耐受能力强,以其为后续试验中制备乳酸菌-海藻酸钠/壳聚糖微胶囊的方法;随着微孔淀粉添加量的增大(从0.2升高到0.4 g/ml),乳酸菌的存活量呈现增加趋势。在储存过程中,添加量为0.3和0.4 g/ml的样品中乳酸菌的存活量相差不大,确定后续实验中的微孔淀粉用量为0.3 g/ml;利用外源交联法制备乳酸菌-海藻酸钠/壳聚糖微胶囊,考察壳聚糖的分子量、浓度及脱乙酰度对微胶囊在不同pH、离子强度介质中的溶胀性及对乳酸菌存活性的影响,得出壳聚糖的最佳指标为:分子量为120 kDa,浓度为1%(w/v),脱乙酰度为91.26%。通过壳聚糖在浓碱液中与氯乙酸反应,制备得到不同分子量的羧甲基壳聚糖
     (172.7 kDa,490.2 kDa,720.9 kDa和1771.5 kDa);所制备的羧甲基壳聚糖为淡黄色粉末,易溶于水,水溶液的透明度良好。以海藻酸钠、壳聚糖及羧甲基壳聚糖为壁材、微孔淀粉为载体,运用挤压法制备出乳酸菌-海藻酸钠/壳聚糖/羧甲基壳聚糖微胶囊。所有微胶囊的圆整性良好,粒径的大小为2.2±0.1 mm,羧甲基壳聚糖的引入使得微胶囊表面变得光滑、平整;所有微胶囊样品的含水量均小于10%;随着相对湿度的增大(从33%增加到97%),微胶囊的吸湿率明显增大;微胶囊膜通透性实验表明,乳酸菌-海藻酸钠/壳聚糖/羧甲基壳聚糖微胶囊膜为一种选择透过性膜,羧甲基壳聚糖的分子量对膜通透性的影响没有明显的规律性。随着羧甲基壳聚糖浓度的增大,膜的通透能力下降;羧甲基壳聚糖的分子量及浓度对乳酸菌-海藻酸钠/壳聚糖/羧甲基壳聚糖微胶囊在不同pH及离子强度中的溶胀行为影响不明显,且对乳酸菌存活性的影响没有明显的规律性;综上所述,得出制备微胶囊的羧甲基壳聚糖的最佳条件为:分子量为721 kDa,浓度为1%,(w/v);乳酸菌在海藻酸钠/壳聚糖/羧甲基壳聚糖微胶囊内的生长曲线与游离菌体类似,均呈现“S”型;随着相对湿度的升高(从33%升高到97%),乳酸菌-海藻酸钠/壳聚糖/羧甲基壳聚糖微胶囊样品中乳酸菌的活菌数量减少;在固定化乳酸菌的耐受性实验中发现,以海藻酸钠、壳聚糖及羧甲基壳聚糖为壁材制备的三层微胶囊,对乳酸菌有明显的保护作用,大大提高了菌体对胃酸、胆盐的耐受能力。
     当益生元(菊粉和低聚果糖)的添加浓度为0.5,1.5,2.0%(w/v)时,菊粉对乳酸菌的增殖有促进作用,但影响不明显。低聚果糖对乳酸菌的生长没有促进作用。浓度为0.5%(w/v)的菊粉对乳酸菌在干燥过程中有明显的保护作用,且能提高菌体在储存过程中的稳定性;壳寡糖具有良好的微生态学效应,可作为微生态调节剂开发利用。实验发现,壳寡糖作为生长组分,有利于改善干燥菌体的存活情况,在储存第4周,壳寡糖添加组中乳酸菌的最低活菌数为5.6×10~7 cfu/g。作为干燥保护剂,壳寡糖浓度为0.4%时的保护效果最好,在储存第6周,菌体的活菌数量为3.6×10~8 cfu/g;在培养基中加入醋酸钠、柠檬酸钠和磷酸氢二钠等缓冲盐,能够调节培养液的酸碱度,促进菌体的生长,增加菌液中还原糖的产量,有利于提高菌体对渗透压的耐受性;另外,缓冲盐对菌体在干燥过程中的保护效果因菌体的干燥温度而异,当干燥温度为25℃时,保护效果较好;当菌体的干燥温度为25℃时,海藻糖(5%,w/v)和脱脂奶粉(10%,w/v)对菌体在复水过程中的保护效果较为明显。随着复水时间的延长,复水介质(海藻糖和脱脂奶粉)的浓度对菌体活性的恢复影响不大。
     总之,利用生物大分子材料(海藻酸钠、明胶、壳聚糖及羧甲基壳聚糖)对乳酸菌进行微胶囊化,有利于改善乳酸菌在干燥及储存过程中的存活情况,能够提高菌体对低pH的胃酸、胆汁的耐受性,为益生菌作用的发挥提供了前提,具有广阔的应用前景。
With the development of economy and the improving of people's living standard, great interest has been focused on developing functional foods that exert a beneficial effect on the host health. Probiotic agents have gained great attention in the food technology field. Probiotics are defined as“live microorganisms which when administered in adequate amounts confer a health benefit on the host”. Lactic acid bacteria, which are among the most important probiotic microorganisms, have many beneficial effects on the human including maintenance of a healthy gut microflora, reducing risk factors for colon cancer, improving the organism immunity, and lowering serum cholesterol. However, studies indicate that the bacteria may not survive in sufficient numbers when incorporated into dairy products as well as during their passage through the gastro-intestinal tract. The low pH of the stomach and bile salts commonly encountered in the GIT are detrimental to their survival. Microencapsulation techniques have been widely utilized to protect probiotics against adverse environmental conditions (drying, gastric acid, bile salts, pancreatic enzyme, etc.). Among the available techniques for immobilizing living cells, the extrusion method has been frequently used, because the preparation process of microcapsules is under mild conditions compared to freeze drying and spray drying.
     In this paper, four kinds of Lactobacillus sp. loaded microcapsules are prepared with the extrusion method, using alginate, gelatin, chitosan and carboxymethyl chitosan as wall material, fibre and microporous starch as carrier. The characteristics of microcapsules are detected. Factors affecting the survival of dried Lactobacillus sp. are also studied.
     Lactobacillus sp. loaded microcapsules are prepared by extrusion technology with fibre and alginate. The survival condition of Lactobacillus sp. and the release profile of encapsulated cells in gastro-intestinal tract exhibit slight difference when the alginate concentration altered from 2% to 5% (w/v) and 5% is used in the succeeding experiments. Drying at 4℃is beneficial to the survival of Lactobacillus sp. compared with 25℃. The immobilization technique and the addition of fibre are much beneficial to the survival of encapsulated Lactobacillus sp.. Trehalose, as a reducing disaccharide, can slightly reduce the acid production of Lactobacillus sp. and has a negative effect on its proliferation. Trehalose can improve the survival ability of Lactobacillus sp. after drying and maintain the live cell numbers over 107 cfu/g after 8 weeks storage at 4℃. The survival rate of microencapsulated Lactobacillus sp. reaches 89% after they are exposed to simulated gastric fluids (pH 1.2) for 2 h. The numbers of viable Lactobacillus sp. decrease with the relative humidity increased from 33% to 97%.
     Lactobacillus sp. loaded microcapsules based on alginate and gelatin have been prepared by extrusion technology. The size of microcapsules is 1.1±0.2 mm and the product can increase the live cell number of Lactobacillus sp. to 107 cfu/g in the dry state after storage at 4℃for 1 week. The surface of microcapsules treated with sodium citrate presents as the form of sheets, while the one without treatment exhibits some rumple. The live cell number of Lactobacillus sp. decreases with the storage time prolonged and microcapsules treated sodium citrate is much beneficial to the survival of Lactobacillus sp.. The moisture absorption rate of microcapsules increases significantly with the relative humidity altered from 33% to 97%. The pH values and ion intensity of solution affect the swelling behavior of alginate/gelatin microcapsules in the same way. The microcapsules swell rapidly and reach its equilibrium at pH 2.4. When the pH is higher than 5.2, the microcapsules become unstable and disintegrate much rapidly. The swelling ratio of microcapsules decreases with the ion intensity increased from 0.01 to 1 mol/l. Cells of Lactobacillus sp. can be continuously released from the microcapsules during gastro-intestinal tract, and the release amounts and speeds of Lactobacillus sp. in simulated intestinal fluid are much higher and faster than that in simulated gastric fluid.
     Chitosans with different molecular weight (120 kDa, 338 kDa, 540 kDa and 1360 kDa) and degree of deacetylation (91.26%,83.34% and 65.41%) are prepared using acid degradation and acetylation methods. Lactobacillus sp. loaded microcapsules based on alginate, chitosan and microporous starch have been prepared by three different methods. All the microcapsules appear as a spherical structure about 2.1±0.2 mm in diameter. The water content of microcapsules is lower than 10%. The moisture absorption rate of microcapsules increases significantly with the relative humidity altered from 33% to 97%. The swelling profile of microcapsules in simulated gastro-intestinal fluid is not affected by preparation methods. The external crosslinking method is chosen for the following experiment because it can protect Lactobacillus sp. against the gastric acidity efficiently and provide the best protection of Lactobacillus sp. against desiccation. The survival condition of microencapsulated Lactobacillus sp. improves with the level of microporous starch increased from 0.2 to 0.4 g/ml. In the process of storage the survival of bacteria has no obvious difference when the microporous starch is added between 0.3 and 0.4 g/ml, the concentration of 0.3 g/ml is selected to use in the succeeding experiments. The chitosan molecular weight of 120 kDa, deacetylation degree of 91.26% and concentration of 1% (w/v) are the optimal condition to prepare Lactobacillus sp. microcapsules.
     Carboxymethyl chitosan with different molecular weight (172.7 kDa,490.2 kDa,720.9 kDa and 1771.5 kDa) are prepared with chitosan and chloroacetic acid in alkaline condition and all the samples are light yellow powder and water soluble. Microcapsules containing Lactobacillus sp. are prepared by extrusion technology with microporous starch, alginate, chitosan and carboxymethyl chitosan. All the microcapsules appear as a spherical structure about 2.2±0.1 mm in diameter. The water content of microcapsules is lower than 10%. With the relative humidity altered from 33% to 97%, the moisture absorption rate of microcapsules increases significantly while the live cell number decreases. The membrane of microcapsules shows permselectivity. The effect of carboxymethyl chitosan molecular weight on the permeability of microcapsules membrane has no regularity. The permeability of microcapsule membrane decreases with the increase of carboxymethyl chitosan concentration. The molecular weight and concentration of carboxymethyl chitosan has little effect on the swelling behavior of microcapsules in different pH and ion intensity condition. The carboxymethyl chitosan molecular weight of 721 kDa and concentration of 1% (w/v) are the optimal condition to prepare microcapsules. Lactobacillus sp. loaded in the microcapsules has the same growth profile (S-type) with the free cells. Results indicate that Lactobacillus sp. immobilized in the microcapsules survive much better under low pH and bile conditions compared with the free cells.
     Factors that influencing the survival of dried Lactobacillus sp. are studied. With the concentration of 0.5, 1.5, 2.0% (w/v), inulin is beneficial to the growth of Lactobacillus sp. while fructo oligosaccharides has no positive effect. Inulin with concentration of 0.5% is found to be the most effective of the prebiotic in retaining the viability of immobilized Lactobacillus sp. under drying conditions. Chitosan oligosaccharide can be developed and utilized as a micro-ecological regulator. As a component of growth medium, chitosan oligosaccharide can improve the live cell number to 5.6×10~7 cfu/g after storage at 4℃for 4 weeks. As the protective additive, chitosan oligosaccharide (0.4%, w/v) can improve the live cell number to 3.6×10~8 cfu/g after storage at 4℃for 6 weeks. The presence of buffer salts (disodium hydrogen phosphate, sodium acetate and sodium citrate) in the growth medium improves the viability of Lactobacillus sp. after dried at 25℃and its resistance to osmolarity. Trehalose and skimmed milk are found to be the most suitable rehydration medium in retaining the viability of microencapsulated Lactobacillus sp. in dry state. With the rehydration time increasing, the concentration of the rehydration medium (trehalose and skimmed milk) has no obvious effect on the recovery of dried Lactobacillus sp..
     In summary, immobilized Lactobacillus sp. with alginate, gelatin, chitosan and carboxymethyl chitosan proves to be very efficient in improving the viability of Lactobacillus sp. in dry state. The microencapsulation method reported in this paper also improves the resistance of Lactobacillus sp. to gastric acid and bile salts and it provides a basis for the broad application of probiotics.
引文
陈海燕,张彬,何勇松.壳寡糖的研究进展和应用前景.饲料营养2007,6:38-41.
    陈凌云,杜予民,肖玲,覃彩芹.羧甲基壳聚糖的取代度及保湿性.应用化学2001,18:5-8.
    葛宇,袁勤生.海藻糖对生物活性物质的保护作用机理研究进展.药物生物技术2002, 9:297-300.
    贾之慎,李奇彪.双突跃电位滴定法测定壳聚糖脱乙酰度.化学世界2001, 5:241-253.
    林丽云,孙恢礼,翁世兵,吴园涛.海洋生物新材料中益生元的开发与应用.现代食品科技2005,21:115-117.
    刘长霞,陈国华,晋治涛,孙明昆,高从. N, O-羧甲基壳聚糖羧化度计算式的修正.北京化工大学学报2004, 31: 14-17
    聂凌鸿,宁正祥.海藻糖的生物保护作用.生命的化学2001,21:206-209.
    舒娜,芮汉明.益生菌的作用机理、存在的问题及其对策.广州食品工业科技2003,19:67-70.
    宋健,陈磊,李效军.微胶囊化技术及应用.化学工业出版社2001.
    田真,高继伟,王宏勇.微生态制剂的作用机理及在畜禽生产中的应用.中国牧业通讯2008,17:6-8.
    许时婴,张晓鸣,夏书芹,张文斌.微胶囊技术--原理与应用.化学工业出版社2006.
    姚卫蓉,姚惠源.多孔淀粉包埋益生菌的工艺研究.广州食品工业科技2004,20:31-34(59).
    Abadias M, TeixidóN, Usall J, Benabarre A, Vi?as I. Viability, efficacy, and storage of freeze-dried biocontrol agent Candida sake using different protective and rehydration media. Journal of Food Protection 2001b, 64(6):856-861.
    Abee T, Wouters JA. Microbial stress response in minimal processing. International Journal of Food Microbiology 1999, 50: 65-91.
    Ainhoa M, Aitziber P, Gorka O, Rosa M H, Maria DC, JoséLuis P. Cell microencapsulation technology : Towards clinical application. Journal of controlledrelease 2008, 132:76-83.
    Akalin AS, Fenderya S, Akbulut N. Viability and activity of bifidobacteria in yoghurt containing fructooligosaccharide during refrigerated storage, International Journal of Food Science and Technology 2004, 39: 613-621.
    Almeida PF, Almeida AJ. Cross-linked alginate–gelatin beads: a new matrix for controlled release of pindolol. Journal of Controlled Release 2004, 97:431-439.
    Anal AK, Singh H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science & Technology 2007, 18:240-251.
    Anal AK, Stevens WF. Chitosan-alginate multilayer beads for controlled release of ampicillin. International Journal of Pharmaceutics 2005, 290:45-54.
    Ananta E, Volkert M, Knorr D. Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International Dairy Journal 2005, 15:399-409.
    Anjani K, Kailasapathy K, Phillips M. Microencapsulation of enzymes for potential application in acceleration of cheese ripening. International Dairy Journal 2007, 17:79-86.
    Armuzzi A, Cremonini F, Ojetti V, Bartolozzi F, Canducci F, Candelli M, Santarelli L, Cammarota G, De Lorenzo A, Pola P, Gasbarrini G, Gasbarrini A. Effect of Lactobacillus GG supplementation on antibiotic-associated gastrointestinal side effects during Helicobacter pylori eradication therapy: a pilot study. Digestion 2001, 63:1-7.
    Aryana KJ, McGrew P. Quality attributes of yogurt with Lactobacillus casei and various prebiotics. LWT– Food Science and Technology 2007, 40:1808-1814.
    Augustin MA. The role of encapsulation in the development of functional dairy foods. Journal of Dairy Technology 2003, 58:156-160.
    Azarmi S, Tao X, Chen H, Wang Z, Finlay WH, L?benberg R, Roa WH. Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. International journal of pharmaceutics 2006, 319:155-161.
    Baati L, Fabre-Gea C, Auriol D, Blanc PJ. Study of the cryotolerance of Lactobacillus acidophilus: Effect of culture and freezing conditions on the viability and cellularprotein levels. International Journal of Food Microbiology 2000, 59:241-247.
    Bajpai SK, Saxena SK, Sharma S. Swelling behavior of barium ions-crosslinked bipolymeric sodium alginate-carboxymethyl guar gum blend beads. Reactive and Functional Polymers 2006, 66:659-666.
    Bajpai SK, Sharma S. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. Reactive and Functional Polymers 2004, 59:129-140.
    Balcázar JL, de Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz JL. The role of probiotics in aquaculture. Veterinary Microbiology 2006, 114:173-186.
    Bayles DO, Wilkinson BJ. Osmoprotectants and cryoprotectants for Listeria monocytogenes. Letters in Applied Microbiology 2000, 30:23-27.
    Beal C, Fonseca F, Corrieu G. Resistance to freezing and storage of Streptococcus thermophilus is related to membrane fatty acid composition. Journal of Dairy Science 2001, 84:2347-2356.
    Beney L, Gervais P. Influence of the fluidity of the membrane in response of microorganisms to environmental stresses. Applied Microbiology and Biotechnology 2001, 57:34-42.
    Bolourtchian N, Karimi K, Aboofazeli R. Preparation and characterization of ibuprofen microspheres. Journal of microencapsulation 2005, 22:529-538.
    Boyazoglu J, Morand-Fehr P. Mediterranean dairy sheep and goat products and their quality: A critical review. Small Ruminant Research 2001, 40:1-11.
    Brashears MM, Gilliland SE. Survival during frozen and subsequent refrigerated storage of Lactobacillus acidophilus cells as influenced by the growth phase. Journal of Dairy Science 1995, 78: 2326-2335.
    Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Advanced drug delivery reviews 2002, 54:631-651.
    Bruno A, Lankaputhra WEV, Shah NP. Growth, viability and activity of Bifidobacterium spp. in skim milk containing prebiotics. Journal of Food Science 2002, 67:2740-2744.
    Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P. Effect of variousgrowth media upon survival during storage of freeze-dried Enterococcus faecalis and Enterococcus durans. Journal of Applied Microbiology 2003a, 94:947-952.
    Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P. Effect of different sugars added to the growth and drying medium upon thermotolerance and survival during storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. Biotechnology Progress 2003e, 20: 248-254.
    Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P. Protective effect of sorbitol and monosodium glutamate during storage of freeze-dried lactic acid bacteria. Le Lait 2003c, 83:203-210.
    Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P. Survival of freeze-dried Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants. Biotechnology Letters 2002, 24 (19):1587–1591.
    Carvalho AS, Silva J, Ho P, Teixera P, Malcata FX, Gibbs P. Relevant factors for the preparation of freeze-dried lactic acid bacteria. International Dairy Journal 2004, 14(10): 835-847.
    Cerrutti P, Segovia de Huergo M, Galvagno M, Schebor C, del Pilar Buera M. Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices. Applied Microbiology and Biotechnology 2000, 54:575-580.
    Chan ES, Zhang Z. Bioencapsulation by compression coating of probiotic bacteria for their protection in an acidic medium. Process Biochemistry 2005, 40(10): 3346-3351.
    Chandan RC. Enhancing Market Value of Milk by Adding Cultures. Journal of Dairy Science 1999, 82:2245-2256.
    Chandramouli V, Kailasapathy K, Peiris P, Jones M. An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. Journal of Microbiological Methods 2004, 56 (1): 27-35.
    Chapman SR, Rowe RC, Newton JM. Characterization of the sphericitv of particles by the one plane critical stability. Journal of Pharmacy and Pharmacology 1988, 20:503-505.
    Charalampopoulos D, Wang R, Pandiella SS, Webb C. Application of cereals and cereal components in functional foods: A review. International Journal of Food Microbiology 2002, 79 (1): 131-141.
    Chavez BE, Ledeboer AM. Drying of probiotics: Optimization of formulation and process to enhance storage survival. Drying Technology 2007, 25 (7):1193-1201.
    Chen KN, Chen MJ, Liu JR, Lin CW, Chiu HY. Optimization of incorporated prebiotics as coating materials for probiotic microencapsulation. Journal of Food Science 2005, 70:260-266.
    Chen XG, Park HJ. Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions. Carbohydrate polymers 2003, 53: 355-359.
    Chen XG, Wang Z, Liu WS, Park HJ. The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts. Biomaterials 2002, 23(23):4609-4614.
    Chen XG, Zheng L, Wang Z, Lee CR, Park HJ. Molecular affinity and permeability of different molecular weight chitosan membranes. Journal of Agriculture and Food Chemistry 2002, 50:5915-5918.
    Chervaux C, Ehrlich SD, Maguin E. Physiological study of Lactobacillus delbruekii subsp. bulgaricus strains in a novel chemically defined medium. Applied and Environmental Microbiology 2000, 66(12):5306-5311.
    Ciper M, Bodmeier R. Modified conventional hard gelatin capsules as fast disintegrating dosage form in the oral cavity. European journal of pharmaceutics and biopharmaceutics 2006, 62:178-184.
    Conrad PB, Miller DP, Cielenski PR, de Pablo PP. Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices, Cryobiology 2000, 41:17-24.
    Coppa GV, Zampini L, Galeazzi T, Gabrielli O. Prebiotics in human milk: A review, Digestive and Liver Disease 2006, 38:S291-S294.
    Corcoran BM, Ross RP, Fitzgerald GF, Dockery P, Stanton C. Enhanced survival of GroESL-overproducing Lactobacillus paracasei NFBC 338 under stressful conditions induced by drying. Applied and Environmental Microbiology 2006, 72: 5104-5107.
    Costa E, Usall J, Teixido N, Torres R, Vinas I. Effect of package and storage conditions on viability and efficacy of the freeze-dried biocontrol agent Pantoea agglomerans strain CPA-2. Journal of Applied Microbiology 2002, 92(5):873-878.
    Crowe JH, Crowe LM, Tablin F. The trehalose myth revisited: Introduction to a symposium on stabilization of cells in the dry state. Cryobiology 2001, 43(2): 89-105.
    Crowe JH, Tablin F, Wolkers WF, Gousset K, Tsvetkova NM, Ricker J. Stabilization of membranes in human platelets freeze-dried with trehalose. Chemistry and Physics of Lipids 2003, 122 (1-2): 41-52.
    Darvall JGL. Preservation of microorganisms. Culture 2000, 21:1-5.
    Degeest B, Vaningelgem F, de Vuyst L. Microbial physiology, fermentation kinetics, and process engineering of heteropolysaccharide production by lactic acid bacteria. International Dairy Journal 2001b, 11:747-757.
    Desai AR, Powell IB, Shah NP. Survival and activity of probiotic lactobacilli in skim milk containing prebiotics. Journal of food science 2004. 69(3):57-60.
    Doleyres Y, Lacroix C. Technologies with free and immobilized cells for probiotic bifidobacteria production and protection. International Dairy Journal 2005, 15: 973-988.
    Donkor ON, Nilmini SLI, Stolic P, Vasiljevic T, Shah NP. Survival and activity of selected probiotic organisms in set-type yoghurt during cold storage. International Dairy Journal 2007, 17:657-665.
    Douglas LC, Sanders ME. Probiotics and prebiotics in dietetics practice. Journal of the American Dietetic Association 2008, 108:510-521.
    Drisko JA, Giles CK, Bischoff BJ. Probiotics in health maintenance and disease prevention. Alternative Medicine Review 2003, 8:143–155.
    Eslami A, Hosseini SG, Asadi V. The effect of microencapsulation with nitrocellulose on thermal properties of sodium azide particles. Progress in Organic Coatings Coat 2009, doi:10.1016/j.porgcoat.2008.12.004
    Falagas ME, Betsi GI, Athanasiou S. Probiotics for the treatment of women with bacterial vaginosis. Clinical Microbiology & Infection 2007, 13:657-664.
    Falagas ME, Betsi GI, Tokas T, Athanasiou S. Probiotics for prevention of recurrent urinary tract infections in women: a review of the evidence from microbiological and clinical studies. Drugs 2006, 66:1253-1261.
    Fernandez A, Torres-Giner S, Lagaron JM. Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocolloids 2009, 23:1427-1432.
    Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J, d’Enfert C. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology 2001, 147:1851-1862.
    Fonseca F, Beal C, Corrieu G. Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage. Journal of Dairy Research 2000, 67:83-90.
    Fonseca F, Beal C, Corrieu G. Operating conditions that affect the resistance of lactic acid bacteria to freezing and frozen storage. Cryobiology, 2001, 43:189-198.
    Fuller, R. Probiotics in man and animals. Journal of Applied Bacteriology 1989, 66:365-378.
    Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 2007, 40 (9): 1107-1121.
    Gilliland SE, Rich CN. Stability during frozen and subsequent refrigerated storage of Lactobacillus acidophilus grown at different pH. Journal of Dairy Science 1989, 73:1187-1192.
    Gilliland SE. Probiotics and prebiotics. In: Marth EH and Steele JL, Editors. Applied dairy microbiology, Marcel Dekker, New York 2001:327-343.
    Gómez Zavaglia A, Tymczyszyn E, De Antoni G, Aníbal Disalvo E. Action of trehalose on the preservation of Lactobacillus delbrueckii ssp. bulgaricus by heat and osmotic dehydration. Journal of applied microbiology 2003, 95:1315-1320.
    Grajek W, Olejnik A, Sip A. Probiotics, prebiotics and antioxidants as functional foods. Acta Biochimica Polonica 2005, 52: 665-671.
    Green JL, Angell CA. Phase relations and vitrification in saccharide water solutions and the trehalose anomaly. The Journal of Physical Chemistry 1989, 93(8):2880-2882.
    Gupta KC, Ravi Kumar MNV. Drug release behavior of beads and microgranules of chitosan. Biomaterials 2000, 21:1115-1119.
    Hamoudi L, Goulet J, Ratti C. Effect of Protective Agents on the Viability of Geotrichum candidum during Freeze-Drying and Storage. Journal of food science 2007, 72(2): M45-M49.
    Heidebach T, F?rst P, Kulozik U. Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocolloids 2009, doi:10.1016/j.foodhyd.2009.01.006.
    Hirano S, Noishiki Y, Kinugawa J. Chitin and chitosan for use as novel biomedical material. Polymeric Materials Science and Engineering 1985, 53:649-653.
    Homayouni A, Azizi A, Ehsani MR, Yarmand MS, Razavi SH. Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry 2008, 111:50-55.
    Hong K, Park S. Preparation of poly(l-lactide) microcapsules for for fragrant fiber and their characteristics.Polymer 2000, 41:4567-4572.
    Hsiao HC, Lian WC, Chou CC. Effect of packaging condition and temperature on viability of microencapsulated bifidobacteria during storage. Journal of the Science of Food and Agriculture 2004, 84:134-139.
    Hsu CK, Liao JW, Chung YC, Hsieh CP, Chan YC. Xylooligosaccharides and fructooligosaccharides affect the intestinal microbiota and precancerous colonic lesion development in rats. Journal of Nutrition 2004, 134:1523-1528.
    Hubalek Z. Protectants used in the cryopreservation of microorganisms. Cryobiology 2003, 46:205-229.
    International Dairy Federation. General standard of identity for fermented milks. International Dairy Federation standard 163. Brussels, Belgium: International Dairy Federation; 1992.
    Irianto A, Austin B. Probiotics in aquaculture. Journal of Fish Diseases: 2002,25:633-642.
    Ishibashi N, Shimamura S. Bifidobacteria: research and development in Japan. Food Technology 1993, 46:126-135.
    Ishibashi N, Tatematsu T, Shimamura S, Tomita M, Okonogi S. Effect of water activity on the viability of freeze-dried bifidobacteria. In: Fundamentals and applications of freeze-drying to biology materials, drugs and foodstuffs, International Institute of Refrigeration, Paris, 1985, 227-234.
    Jeon YJ, Shahidi F, Kim SK. Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Reviews International 2000, 16:159-176.
    Kaur IP, Chopra K, Saini A. Probiotics: Potential pharmaceutical applications. European Journal of Pharmaceutical Sciences 2002, 15 (1):1-9.
    Kesarcodi-Watson A, Kaspar H, Lategan MJ, Gibson L. Probiotics in aquaculture: The need, principles and mechanisms of action and screening processes. Aquaculture 2008, 274:1-14.
    Kets EP, Galinski EA, de Wit M, de Bont JA, Heipieper HJ. Mannitol, a novel bacterial compatible solute in Pseudomonas putida. Journal of Bacteriology 1996a, 178(23):6665-6670.
    Kets EPW, de Bont JAM. Protective effect of betaine on survival of Lactobacillus plantarum subjected to drying. FEMS Microbiology Letters. 1994, 116:251-256.
    Kets EPW, Teunissen PJM, de Bont JAM. Effect of compatible solutes on survival of lactic acid bacteria subjected to drying. Applied and Environmental Microbiology 1996b, 62(1):259-261.
    Kim SJ, Cho SY, Kim SH, Song OJ, Shin IS, Cha DS, Park HJ. Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. LWT - Food Science and Technology 2008, 41:493-500.
    Kim SK, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydrate Polymers 2005, 62:357-368.
    Kim WS, Dunn NW. Identification of a cold shock gene in lactic acid bacteria and the effect of cold shock on cryotolerance. Current Microbiology 1997, 35:59-63.
    Kim WT, Chung H, Shin IS, Yam KL, Chung D. Characterization of calcium alginate and chitosan-treated calcium alginate gel beads entrapping allyl isothiocyanate. Carbohydrate Polymers 2008, 71 (4): 566-573.
    Krasaekoopt W, Bhandari B, Deeth HC. Survival of probiotics encapsulated in chitosan-coated alginate beads in yoghurt from UHT- and conventionally treated milk during storage. LWT - Food Science and Technology 2006, 39:177-183.
    Lee HW, Park YS, Jung JS, Shin WS. Chitosan oligosaccharides, dp 2–8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe 2002, 8:319-324.
    Lee KY, Heo TR. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salt solution. Applied and Environmental Microbiology 2000, 66(2):869-873.
    Lee YK, Salminen S. The coming of age of probiotics. Trends in Food Science and Technology 1997, 6:241-245.
    Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM. Trehalose and sucrose protect both membrane and proteins in intact bacteria during drying. Applied and Environmental Microbiology 1995, 61 (10): 3592–3597.
    Li XY, Jin LJ, Uzonna JE, Li SY, Liu JJ, Li HQ, Lu YN, Zhen YH, Xu YP. Chitosan-alginate microcapsules for oral delivery of egg yolk immunoglobulin (IgY): In vivo evaluation in a pig model of enteric colibacillosis. Veterinary Immunology and Immunopathology 2009, 129:132-136.
    Lian WC, Hsiao HC, Chou CC. Survival of bifidobacteria after spray-drying. International Journal of Food Microbiology 2002, 74:79-86(8).
    Lilley DM, Stillwell RH. Probiotics: growth promoting factors produced by microorganisms. Science 1965, 147:747-748.
    Liu XD, Xue WM, Liu Q, Yu WT, Fu YL, Xiong X, Ma XJ, Yuan Q. Swelling behaviour of alginate-chitosan microcapsules prepared by external gelation or internal gelation technology. Carbohydrate Polymers 2004, 56:459-464.
    Looijesteijn PJ, Trapet L, de Vries E, Abee T, Hugenholtz J. Physiological function of exopolysaccharides produced by Lactococcus lactis. International Journal of FoodMicrobiology 2001, 64:71-80.
    Lopez-Rubio A, Gavara R, Lagaron JM. Bioactive packaging: turning foods into healthier foods through biomaterials. Trends in Food Science & Technology 2006, 17:567-575.
    Lucke A, Fustella E, Teszmar J, Gazzaniga A, Gopferich A. The effect of poly(ethylene glycol)–poly(D,L-lactic acid) diblock copolymers on peptide acylation. Journal of Controlled Release 2002, 80:157-168.
    Macfarlane GT, Cummings JH. Probiotics, infection and immunity. Current Opinion in Infectious Diseases 2002, 15:501-506.
    Machluf M, Orsola A, Atala A. Controlled release of therapeutic agents: slow delivery and cell encapsulation [J]. World journal of urology 2000, 18(1):80-83.
    Mandal S, Puniya AK, Singh K. Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. International Dairy Journal 2006, 16: 1190-1195.
    Marteau P, Shanahan F. Basic aspects and pharmacology of probiotics: an overiew of pharmacolinetics, mechanisms of action and side effects. Best Practice & Research Clinical Gastroenterology 2003, 17 (5):725-740.
    Mattila-Sandholm T, Myll?rinen P, Crittenden R, Mogensen G, Fondén R, Saarela M. Technological challenges for future probiotic foods, International Dairy Journal 2002, 12:173-182.
    Meng XC, Stanton C, Fitzgerald GF, Daly C, Ross RP. Anhydrobiotics: The challenges of drying probiotic cultures. Food chemistry 2008, 106(4): 1406-1416 .
    Metchnikoff E. Lactic acid as inhibiting intestinal putrefaction. In the prolongation of life: Optimistic studies. London: Heinemann W. 1907, 161-183.
    Morch YA, Donati I, Strand BL, Skjak-Braek G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 2006, 7:1471-1480.
    Morgan CA, Herman N, White PA, Vesey G. Preservation of microorganisms by drying: A review. Journal of Microbiological Methods 2006, 66:183-193.
    Morita RY. Thioploca: methylotroph and significance in the food chain. Advances of Microbial Ecology 1982( 6) :171- 198.
    Mu L, Teo MM, Ning HZ, Tan CS, Feng SS. Novel powder formulations for controlled delivery of poorly soluble anticancer drug: application and investigation of TPGS and PEG in spray-dried particulate system. Journal of Controlled Release 2005, 103(3):565-575.
    Murga MLF, Cabrera GM, Font de Valdez G, Disalvo A, Seides AM. Influence of growth temperature on cryotolerance and lipid composition of Lactobacillus acidophilus. Journal of Applied Microbiology 2000, 88:342-348.
    Muthukumarasamy P, Holley RA. Survival of Escherichia coli O157:H7 in dry fermented sausages containing micro-encapsulated probiotic lactic acid bacteria. Food Microbiology 2007, 24: 82-88.
    Nazzaro F, Fratianni F, Coppola R, Sada A, Orlando P. Fermentative ability of alginate-prebiotic encapsulated Lactobacillus acidophilus and survival under simulated gastrointestinal conditions. Journal of Functional Foods 2009, doi:10.1016/j.jff.2009.02.001.
    Nystrom T, Flardh K, Kjellberg S. Response to multiple– nutrient starvation in marine vibrio sp. Strain CCDG, 15956. The Journal of Bacteriology 1990, 172:7058- 7092.
    Oliveira R, Perego P, Converti A, Oliveira M. Growth and acidification performance of probiotics in pure culture and co-culture with Streptococcus thermophilus: The effect of inulin. LWT - Food Science and Technology 2009, 42(5):1015-1021.
    Ong L, Henriksson A, Shah NP. Development of probiotic cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid. International Dairy Journal 2006, 16:446-456.
    Ouwehand AC, Salminen SJ. The health effects of cultured milk products with viable and non-viable bacteria. International Dairy Journal 1998, 8:749-758.
    Ozer B, Kirmaci HA, ?enel E, Atamer M, Hayalo?lu A. Improving the viability of Bifidobacterium bifidum BB-12 and Lactobacillus acidophilus LA-5 in white-brined cheese by microencapsulation. International Dairy Journal 2009, 19:22-29.
    Palmfeldt J, Hahn-Hagerdal B. Influence of culture pH on survival of Lactobacillus reuteri subjected to freeze-drying. International Journal of Food Microbiology 2000, 55:235-238.
    Parker RB. Probiotics, the other half of the antibiotic story. Animal Nutrition and Health 1974, 29: 4-8.
    Peter G, Reichart O. The effect of growth phase, cryoprotectants and freezing rates on the survival of selected micro-organisms during freezing and thawing. Acta Alimentaria 2001, 30:89-97.
    Pichereau V, Hartke A, Auffray Y. Starvation and osmotic stress induced multiresistances: Influence of extracellular compounds. International Journal of Food Microbiology. 2000, 55(1–3):19-25.
    Pimentel-González DJ, Campos-Montiel RG, Lobato-Calleros C, Pedroza-Islas R, Vernon-Carter EJ. Encapsulation of Lactobacillus rhamnosus in double emulsions formulated with sweet whey as emulsifier and survival in simulated gastrointestinal conditions. Food Research International 2009, 42:292-297.
    Polk A, Amsden B, De Yao K, Peng T, Goosen MF. Controlled release of albumin from chitosan-alginate microcapsules. Journal of pharmaceutical sciences 1994, 83(2):178-185.
    Poncelet D, Newfled RJ. Shear breakage of nylon membrane microcapsules in a turbine reactor. Biotechnology and Bioengineering, 1989, 33:95-103.
    Rastall RA, Maitin V. Genetic engineering: threat or opportunity for the dairy industry. International Journal of Dairy Technology 2002, 55: 161-165.
    Ray B, Jezeski JJ, Busta FF. Effect of Rehydration on Recovery, Repair, and Growth of Injured Freeze-Dried Salmonella anatumt. Applied Microbiology 1971, 22(2):184-189.
    Reid G, Kim SO, K?hler GA. Selecting testing and understanding probiotic microorganisms. FEMS Immunology & Medical Microbiology 2006, 46:149-157.
    Reid G, Sanders ME, Gaskins HR, Gibson GR, Mercenier A, Rastall R, Roberfroid M, Rowland I, Cherbut C, Klaenhammer TR. New scientific paradigms for probiotics and prebiotics. Journal of Clinical Gastroenterology 2003, 37:105-118.
    Roberfroid MB. Prebiotics and synbiotics: concepts and nutritional properties. The British Journal of Nutrition 1998, 80:S197-S202.
    Rodríguez-Huezo ME, Durán-Lugo R, Prado-Barragán LA, Cruz-Sosa F, Lobato-Calleros C, Alvarez-Ramírez J, Vernon-Carter EJ. Preselection of protective colloids for enhanced viability of Bifidobacterium bifidum following spray-drying and storage, and evaluation of aguamiel as thermoprotective prebiotic. Food Research International 2007, 40:1299-1306.
    Romano AH, Conway T. Evolution of carbohydrate metabolic pathways. Research in Microbiology 1996, 147 (6–7): 448-455.
    Roopa BS, Bhattacharya S. Alginate gels: I. Characterization of textural attributes. Journal of Food Engineering 2008, 85:123-131.
    Roslev P, King GM. Aerobic and anaerobic starvation metabolism in methanotrophic bacteria. Applied and environmental microbiology 1995, 61:1563-1570.
    Ross RP, Stanton C, Hill C, Fitzgerald GF, Coffey A. Novel cultures for cheese improvement. Trends in food science & technology 2000, 11:96-104.
    Ruas-Madiedo P, Hugenholtz J, Zoon P. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. International Dairy Journal 2002, 12:163-171.
    Saarela M, Mogensen G, Fondén R, Matto J, Mattila-Sandholm T. Probiotic bacteria: safety, functional and technological properties. Journal of Biotechnology 2000, 84:197-215.
    Saarela MH. Probiotic technology Maintaining viability and stability. Agro Food Industry hi-tech 2007, 18(4):19-21.
    Salminen S, Ouwehand AC, Isolauri E. Clinical applications of probiotic bacteria. International Dairy Journal 1998, 8:563-572.
    Saulnier DM, Spinler JK, Gibson GR, Versalovic J. Mechanisms of probiosis and prebiosis: considerations for enhanced functional foods. Current opinion in biotechnology 2009, doi: 10.1016/j.copbio.2009.01.002.
    Schmidt G, Zink R. Basic features of stress response in three species of bifidobacteria: B. longum, B. adolescentis, and B. breve. International Journal of FoodMicrobiology 2000, 55:41-45.
    Schoug A, Olsson J, Carlfors J, Schnürer J, H?kansson S. Freeze-drying of Lactobacillus coryniformis Si3-effects of sucrose concentration, cell density, and freezing rate on cell survival and thermophysical properties. Cryobiology 2006, 53:119-127.
    Schwab C, Vogel R, G?nzle MG. Influence of oligosaccharides on the viability and membrane properties of Lactobacillus reuteri TMW1.106 during freeze-drying. Cryobiology 2007, 55(2):108-114.
    Sendra E, Fayos P, Lario Y, Fernández-López J, Sayas-BarberáE, Pérez-Alvarez JA. Incorporation of citrus fibers in fermented milk containing probiotic bacteria. 2008, 25:13-21.
    Senel S, Mcclure SJ. Potential applications of chitosan in veterinary medicine. Advanced drug delivery reviews 2004, 56(10):1467-1480.
    Shanahan F. Probiotics in inflammatory bowel disease-therapeutic rationale and role. Advanced Drug Delivery Reviews 2004, 56:809-818.
    Shigemasa Y, Matsuura H, Sashiwa H, Saimoto H. Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. International Journal of Biological Macromolecules 1996, 18(3): 237-242.
    Shima M, Matsuo T, Yamashita M, Adachi S. Protection of Lactobacillus acidophilus from bile salts in a model intestinal juice by incorporation into the inner-water phase of a W/O/W emulsion. Food Hydrocolloids 2009, 23:281-285.
    Shu B, Yu W, Zhao Y, Liu X. Study on microencapsulation of lycopene by spray-drying. Journal of Food Engineering 2004, 76:664-669.
    Simonin H, Beney L, Gervais P. Sequence of occurring damages in yeast plasma membrane during dehydration and rehydration: Mechanisms of cell death. Biochimica et biophysica acta 2007, 1768(6):1600-1610.
    Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, Dhawan S. Chitosan microspheres as a potential carrier for drugs. International journal of pharmaceutics 2004, 274(1-2):1-33.
    Smidsrod O, Skjak-Braek G. Alginate as immobilization matrix for cells. Trends inBiotechnology 1990, 8(3):71-78.
    Stanton C, Coakley M, Murphy JJ, Fitzgerald GF, Devery R, Ross RP. Development of dairy-based functional foods. Science Des Aliments 2002, 22:439-447.
    Sultana K, Godward G, Reynolds N, Arumugaswamy R, Peiris P, Kailasapathy K. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology 2000, 62(1-2):47-55.
    Sun LP, Du YM, Fan LH, Chen X, Yang JH. Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap. Polymer 2006, 47:1796-1804.
    Sunny-Roberts EO, Knorr D. The protective effect of monosodium glutamate on survival of Lactobacillus rhamnosus GG and Lactobacillus rhamnosus E-97800 (E800) strains during spray-drying and storage in trehalose-containing powders. International Dairy Journal 2009, 19:209-214.
    Tang ZR, Yin YL, Nyachoti CM, Huang RL, Li TJ, Yang C, Yang XJ, Gong J, Peng J, Qi DS, Xing JJ, Sun ZH, Fan MZ. Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin-like growth factor-I mRNA expression in early-weaned piglets. Domestic animal endocrinology 2005, 28(4):430-441.
    Tanghe A, Teunissen A, Van Dijck P, Thevelein JM. Identification of genes responsible for improved cryoresistance in fermenting yeast cells. International Journal of Food Microbiology 2000, 55: 259-262.
    Tavakol M, Vasheghani-Farahani E, Dolatabadi-Farahani T, Hashemi-Najafabadi S. Sulfasalazine release from alginate-N, O-carboxymethyl chitosan gel beads coated by chitosan. Carbohydrate Polymers 2009, doi:10.1016/j.carbpol.2009.01.005.
    Torino MI, Taranto MP, Sesma F, Font de Valdez G. Heterofermentative pattern and exopolysaccharide production by Lactobacillus helveticus ATCC 15807 in response to environmental pH. Journal of Applied Microbiology 2001, 91:846-852.
    Tsen JH, Lin YP, Huang HY, King VA. Studies on the fermentation of tomato juice by using k-carrageenan immobilized Lactobacillus acidophilus. Journal of FoodProcessing and Preservation 2008, 32:178-189.
    Tymczyszyn EE, Gómez-Zavaglia A, Disalvo EA. Effect of sugars and growth media on the dehydration of Lactobacillus delbrueckii ssp. Bulgaricus. Journal of Applied Microbiology 2007, 102:845-851.
    Valot P, Baba M, Nedelec JM, Sintes-Zydowicz N. Effects of process parameters on the properties of biocompatible Ibuprofen-loaded microcapsules. International Journal of Pharmaceutics 2009, 369:53-63.
    van Santvoort HC, Besselink MG, Timmerman HM, van Minnen LP, Akkermans LM, Gooszen HG. Probiotics in surgery. Surgery 2008, 143:1-7.
    Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agents in aquaculture. Microbiology and Molecular Biology Reviews 2000, 64:655-671.
    Wan Y, Creber KAM, Peppley B, Bui VT. Ionic conductivity of chitosan membranes. Polymer 2003, 44:1057-1065.
    Wang W,Bo SQ,Li SQ,Qin W. Determination of the Mark-Houwink equation for chitosans with different degrees of deacetvlation. International journal of biological macromolecules 1991, 13:281-285.
    Wang Y. Prebiotics: Present and future in food science and technology. Food Research International 2009, 42(1):8-12.
    Wang YC, Yu RC, Chou CC. Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage. International Journal of Food Microbiology 2004, 93:209-217.
    Won YW, Kim YH. Recombinant human gelatin nanoparticles as a protein drug carrier. Journal of Controlled Release 2008, 127(2):154-161.
    Working group report. Guidelines for the Evaluation of Probiotics in Food, Joint Food and Agriculture Organisation of the United Nations and The World Health Organisation. 2007.
    Xue XT, Li L, He JX. The performances of carboxymethyl chitosan in wash-off reactive dyeings. Carbohydrate Polymers 2009, 75:203-207.
    Yanahira S, Morita M, Aoe S, et al. Effect of Lactit loligo-saccharides on the intestinalmicroflora in rats. Journal of Nutritional Science and Vitaminology 1995:41-83.
    Yang H, Hon MH. The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchemical Journal 2009, doi: 10.1016/j.microc. 2009.02.001.
    Young S, Wong M, Tabata Y, Mikos AG. Gelatin as a delivery vehicle for the controlled release of bioactive molecules. Journal of Controlled Release 2005, 109:256-274.
    Zayed G, Roos YH. Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Process Biochemistry 2004, 39:1081-1086.
    Zuccotti GV, Meneghin F, Raimondi C, Dilillo D, Agostoni C, Riva E, Giovannini M. Probiotics in clinical practice: an overview. The Journal of International Medical Research 2008, 36:1A-53A.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700