用户名: 密码: 验证码:
径向四自由度主动电磁轴承系统的自传感运行研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自传感主动电磁轴承系统具有硬件精简、成本低廉、设计简便、执行器和传感器为同一部件等等一系列独特的性能优势,因而成为近年来电磁轴承领域最具革新意义的热门课题之一
     本文在采用恒频电流型PWM开关功率放大器的主动电磁轴承系统平台中,研究了基于PWM信号的电磁轴承自传感技术。从理论分析、仿真研究、实验验证三个方面全方位地对PWM信号这一高频源在自传感技术中的应用进行了深入而细致的研究。在基础理论和关键技术方面获取了一些自主创新的研究成果:
     1.建立了主动电磁轴承系统的电感模型,在忽略磁场饱和、漏磁、磁滞、涡流等非线性因素的条件下,推导出了电磁线圈等效电感和气隙长度的函数关系式,证明气隙长度可以由电磁线圈等效电感的变化来进行估计,该结论是电磁轴承系统实现自传感运行的重要理论基础。
     2.研究了恒频电流型PWM开关功率放大器的拓扑结构与工作原理,使用傅里叶级数的方法对电磁线圈两端的电压信号、电磁线圈中的电流信号进行了谐波分析,推导出了电流高频纹波幅值关于气隙长度和PWM信号占空比的函数关系式。
     3.使用雅可比-安格尔恒等式、第一类贝塞尔函数等数学工具研究了力扰动对电流高频纹波信号的频谱特性影响,理论分析和实验结果表明力扰动通过控制器的反馈作用,使得功率放大器在跟踪动态给定电流信号时产生了时变的占空比。时变的占空比不仅影响着电流纹波高频分量的幅值,而且使其频谱不再单一。电流纹波在开关频率处的谱线周围会出现无数的等间隔边频分量,这些边频分量的频率间隔与电流参考信号的频率相等。各阶边频分量的幅值由第一类贝塞尔函数的值确定。
     4.考虑到电流高频纹波的特殊频谱特性,在帕塞瓦尔定理的基础上详细探讨了解调器中带通滤波器的通带增益、通带带宽等参数对解调器性能的影响,并给出了各参数的选择范围。在此基础上,基于UAF42芯片设计了一款改进型解调器,并通过仿真和实验验证了该解调器的性能。
     5.提出一种采用占空比补偿的电磁轴承自传感技术,通过对DSP28335芯片资源的充分利用,将自传感技术的硬件复杂度降低了一半。将占空比补偿策略所估计得到的转子位移作为反馈信号,成功地实现了四自由度径向电磁轴承系统在0-3000rpm内稳定的自传感运行。
     6.提出一种采用非线性参数估计法的电磁轴承自传感技术,通过嵌入一个与实际系(?)参数相等的电磁轴承等效模型和简单PI控制器,实现了对转子位移的闭环估计。仿真结果表明,相比其他开环位移估计策略该方法能够有效的提高位移提取的精度和带宽。将非(?)性参数估计法估计得到的转子位移作为反馈信号,能够实现四自由度径向电磁轴承系统(?)0-3000rpm内稳定的自传感运行,且性能明显优于占空比补偿法。
Self-sensing active magnetic bearing has a series of unique performance advantages including:integrated hardware, low cost, simple designed, actuator acts as sensor and etc, so it is the most innovative field in the scope of magnetic bearing.
     This dissertation intended to research the self-sensing technology based on the PWM signal on the active magnetic bearing platform which employs fixed frequency current mode power amplifier. The self-sensing technology employing PWM signal as high frequency injection had been thorough and detailed studied with respect to theoretical analysis, simulated research and experimental verifications. Some independent-innovative achievements on the basic theory and key technology are obtained:
     1. The inductor model of the active magnetic bearing was created, and then, the functional relationship between coil equivalent inductance and air gap was obtained under the assumptions that magnetic saturation, flux leakage, hysteresis and eddy current are all ignored. The air gap can be estimated by the variation of the coil inductance, and this conclusion is an important foundation for the self-sensing active magnetic bearing.
     2. Topology and operation principle of the fixed frequency current mode power amplifier were studied. Harmonic analysis on coil voltage and current was carried out using Fourier series. The functional relationship between current ripple amplitude, air gap and PWM duty cycle was obtained.
     3. Jacobi-Angle identity, the first kind of Bessel function and other mathematical tools were employed to research the influence on the frequency characteristic of current ripple from the force disturbance. Theoretical analysis and experimental results showed that time-varying duty cycle is generated when power amplifier tracks the command signal which caused by force feed through. The amplitude of the current ripple and its frequency component are both influenced by the time-varying duty cycle. Infinite side frequency spectrum with the same interval appears around the spectrum component at switching frequency, and the frequency interval equals to the frequency of current reference signal. The amplitude of each side frequency component is given by the first kind of Bessel function.
     4. Considering of the special frequency spectrum characteristics of the current ripple, the effect of pass band gain and pass band width, the main parameters of the band pass filter in the demodulator, on the demodulator's performance was discussed in detail based on the Parseval theorem. The proper range of each parameter was given. An improved demodulator was designed using UAF42, simulation and experiment result verified its performance.
     5. A self-sensing strategy on magnetic bearing by duty cycle compensation was proposed. The hardware complexity was reduced to half by utilizing the on-chip resource of DSP28335. The position estimation from the duty cycle compensation strategy was used as feedback signal, and the four degree of freedom radial active magnetic bearing was steadily suspended within0-3000rpm.
     6. A self-sensing strategy on magnetic bearing using nonlinear parameter estimation was proposed. The closed-loop estimation of the rotor position was achieved by employing a simple PI controller and a magnetic bearing model which has the same parameters to the real one. Simulation results proved that, comparing to other open loop position estimation strategy, this method can greatly improve the accuracy and bandwidth of the estimator. The position estimation from the nonlinear estimator was used as feedback signal, and the four degree of freedom radial active magnetic bearing system achieved satisfactory performance within0-3000rpm, which obviously superior to that of duty cycle compensation strategy.
引文
[1]S. Earnshaw. On the nature of the molecular forces which regulate the constitution of the lumiferous ether[J]. Transactions of the Cambridge Philosophical Society.1842,7:97-112.
    [2]W. Braunbeck. Free suspension of objects by electric and magnetic fields[J]. Zeitschrift fur Physik.1939,112:753-763.
    [3]A. K. Geim, M. D. Simon, M. I. Boamfa, et al. Magnet levitation at your fingertips[J]. Nature. 1999,400(7):323-324.
    [4]M. D. Simon, L. O. Heflinger, S. L. Ridgway. Spin stabilized magnetic levitation[J]. American Journal of Physics.1997,65(4):286.
    [5]M. V. Berry. The Levitron:an adiabatic trap for spins[J]. Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences.1996,452(1948):1207-1220.
    [6]R. Gasch, M. Lang. Levitron-ein Beispiel fur die rein permanentmagnetische Lagerung eines Rotors[J]. ZAMM-Journal of Applied Mathematics and Mechanics.2000,80(2):137-144.
    [7]M. Lang. Levitron-an example of gyroscopic stabilization of a rotor[C]. Proceeding of 8th International Symposium on Magnetic Suspension Technology.2005:177-181.
    [8]H. Kemper. Overhead suspension railway with wheel-less vehicles employing magnetic suspension from iron rails[P]:Germany,643316 and 644302.1937.
    [9]H. Kemper. Suspension by electromagnetic forces:a possibility for a radically new method of transportation[J]. Elektrotechnische Zeitschrift.1938,59:391-395.
    [10]J. W. Beams. High rotation speeds[J]. Journal of Applied Physics.1937,8:795-806.
    [11]F. T. Holmes. Axial magnetic suspension[J]. Review of Scientific Instruments.1937,8: 444-447.
    [12]P. L. Tournier. Magnetic suspension of a model in a wind tunnel[J]. La Recherche Aeronautique.1957,59:21.
    [13]H. Sulza. Totally active magnetic suspension system[P]:French,1186527.1957.
    [14]W. Klimek. A contribution to the measurement technique using electromagnetic suspension[J]. German Aerospace Center Forschungsbericht.1972,72(30):22-30.
    [15]V. Gondhalekar, G. Schweitzer. Dynamics and magnetic control of a micro-gravity platform[J]. Report of Mechanics Institute.1984,8:38-42.
    [16]R. C. Fenn, J. R. Downer, V. Gondhalekar, et al. An active magnetic suspension system for space-based microgravity vibration isolation[C]. Proceedings of ASME 1990 Symposium on Active Control for Vibration Isolation and Pointing.1990:49-56.
    [17]C. Gahler, R. Herzog, R. Larsonneur, et al. Application on digital signal processors for industrial magnetic bearings[J]. IEEE Transactions on Control Systems Technology.1994,2(4): 280-289.
    [18]C. Barthod, G. Lemarquand. Degrees of freedom control of a magnetically levitated rotor[J]. IEEE Transactions on Magnetics.1995,31(6):4202-4204.
    [19]F. Matsumura, T. Namerikawa, K. Hagiwara, et al. Application of gain scheduled Hoo robust controller to a magnetic bearing[J]. IEEE Transactions on Control Systems Techonology.1996, 4(5):483-493.
    [20]A. M. Mohamed, F. Matsumura, T. Namerikawa, et al. Q-parameterization control of vibrations in a variable speed magnetic bearing[C]. Proceedings of the 1997 IEEE International Conference on Control Applications.1997:540-546.
    [21]C. R. Knospe, S. J. Fedigan, R. W. Hope, et al. A multitasking DSP implementation of adaptive magnetic bearing control[J]. IEEE Transactions on Control Systems Techonology.1997, 5(2):230-238.
    [22]N. G. Albritton, J. Y. Hung. Nonlinear control with digital signal processors:room for improvement[C]. Proceedings of Industrial Electronics Conference.1997:197-201.
    [23]L. Fittro, R. Knospe, L. Scott, et al. Rotor point compliance minimization via-synthesis[C]. Proceedings of the American Control Conference.1997:1319-1331.
    [24]张建生,谢建华,汪希平,等.DSP在电磁悬浮轴承数字控制系统中的应用[J].自动化仪表,2003,24(10):11-14.
    [25]B. Bona, S. Carabelli, M. Chiaberge, et al. Neuro-fuzzy hardware and DSPs:a promising marriage for control of complex systems[C]. Proceedings of 1st International Conference on Microelectronics for Neural Networks and Fuzzy Systems.1997:113-120.
    [26]H. Maslen, B. Bearnson. Feedback control applications in artificial hearts[J]. IEEE Control Systems Magazine.1998,18(6):26-34.
    [27]L. Fittro, R. Knospe.-control of a hing speed spindle thrust magnetic bearing[C]. Proceedings of the IEEE International Conference on Control Applications.1999:570-575.
    [28]O. T. Cole, S. Keogh, R. Burrows. Adaptive Q control of vibration due to unknown disturbances in rotor magnetic bearing system[C]. Proceedings of the 2000 IEEE International Conference on Control Applications.2000:965-970.
    [29]罗诗旭,汪希平,杨新洲.基于DSP的磁悬浮轴承数字控制系统设计[J].2003,1:6-9.
    [30]黄义,胡业发.基于DSP的磁悬浮轴承数字控制系统的研究与应用[J].武汉理工大学报(信息与管理工程版),2005,27(5):185-188.
    [31]Inst.fuer Mechanik und Mechatronik der TU Wien. Active Magnetic Bearing homepage http://www.mdmt.tuwien.ac.at/forschung/magnetlager/,2004
    [32]ISO Standard 14839-1. Mechanical vibration-Vibrations of rotating machinery equipped with active magnetic bearings-Part 1:Vocabulary,05 2002.
    [33]ISO Standard 14839-2. Mechanical vibration-Vibrations of rotating machinery equipped with active magnetic bearings-Part 2:Eval. Of vibration,05 2004.
    [34]ISO Standard 14839-3. Mechanical vibration-Vibrations of rotating machinery equipped with active magnetic bearings-Part 3:Evaluation of stability margin,012005.
    [35]ISO Standard 14839-4. Mechanical vibration-Vibrations of rotating machinery equipped with active magnetic bearings-Part 4:Technical guidelines, system design (Draft),09 2006.
    [36]张祖明.磁力轴承的运转稳定性分析[J].机械设计,1984,3:35-42.
    [37]张祖明.采用超导磁体的磁力轴承研究[J].低温与超导,1984,4:75-82.
    [38]张祖明,温诗铸.关于直流控制式磁力轴承的控制稳定性分析[J].1985,4:19-24.
    [39]陈易新,杨恒明,胡业发,等.轴向磁力轴承控制系统的计算机辅助分析[J].机床与液压,1988,3:8-15.
    [40]陈易新,胡业发,杨恒明,等.机床主轴可控磁力轴承的结构分析与设计[J].机床与液压,1988,3:2-7.
    [41]杨泉林.状态反馈去耦原理在磁悬浮轴承设计中的应用[J].自动化学报,1988,14(2):88-95.
    [42]刘雪冬,刘泉,胡业发.磁悬浮轴承转子位置无传感器自动检测的研究[J].武汉理工大学学报,2003,25(1):62-64.
    [43]胡业发,周祖德,库少平,等.磁悬浮硬盘转子控制系统中时序电路测试技术[J].测试技术学报,2003,17(1):83-86.
    [44]刘明尧,胡业发,周祖德.磁悬浮硬盘转子机电耦合动力学分析[J].机电工程,2005,22(6):56-59.
    [45]王晓光,胡业发,江征风,等.磁悬浮硬盘驱动器及其静电防护设计[J].机械设计与制造,2005,3:43-45.
    [46]吴华春,胡业发,魏莉,等.磁悬浮磨削主轴综合试验研究[J].机械设计,2008,25(10):40-42.
    [47]宋春生,胡业发,周祖德.磁悬浮支承双层隔振系统的半主动模糊隔振控制[J].振动与冲击,2009,28(9):30-38.
    [48]汪希平.磁轴承系统的参数设计与应用研究[D].西安:西安交通大学,1994.
    [49]杨鹏辉.磁轴承系统控制器和功率放大器的研究与设计[D].西安:西安交通大学,1994.
    [50]郝金平.数字式磁轴承控制器的研究[D].西安:西安交通大学,1997.
    [51]刘祖军.基于DSP技术的磁轴承数字控制的研究[D].西安:西安交通大学,2001.
    [52]谢振宇.磁轴承系统及其工业应用[D].西安交通大学,2000.
    [53]陈立群.磁轴承精度控制及其应用研究[D].西安:西安交通大学,1999.
    [54]张刚.磁悬浮轴承-转子系统的机电耦合动力学研究[D].西安:西安交通大学,1999.
    [55]杨静,虞烈,谢敬.永磁偏置磁轴承动特性研究[J].中国电机工程学报,2005,25(5):122-125.
    [56]杨静,虞烈,沈钺.圆锥形磁轴承动力学模型与控制研究[J].系统仿真学报,2003,15(2):283-286.
    [57]杨作兴,赵雷,赵鸿宾.磁轴承MPW开关功率放大器的研究[J].电力电子技术,2000,19(5):23-25.
    [58]赵雷,刘晋春,张士义.可控磁悬浮轴承刚度的提高与大范围稳定性[J].组合机床与自动化加工技术,1996,7:24-27.
    [59]赵雷,张士义,刘晋春.可控磁悬浮径向轴承结构内部干扰因素分析及抑制干扰的对策[J].机械设计,1996,13(11):18-20.
    [60]赵雷,张士义.径向磁悬浮轴承结构特性研究及其模型的建立[J].机床与液压,1996,5:35-37.
    [61]赵雷,从华.可控磁悬浮轴承刚度与阻尼特性研究[J].清华大学学报,1999,39(4):96-99.
    [62]祁庆中,赵雷,赵鸿宾.非线性系统三维频域分析法及其在磁轴承中的应用[J].清华大学学报,1998,38(6):5-7.
    [63]何钦象,张华容.高速电磁主轴回转精度的分析[J].机械科学与技术,1999,18(4):609-611.
    [64]张剀,赵雷.电磁力超前控制在磁悬浮飞轮中的应用[J].机械工程学报,2004,40(7):175-179.
    [65]张剀,张小章.磁轴承不平衡控制技术的研究进展[J].机械工程学报,2010,21(8):897-903.
    [66]徐龙祥,朱熀秋,曾学明,等.基于DSP的混合磁悬浮轴承数字控制器的设计与实现[J].数据采集与处理,2000,15(2):213-216.
    [67]朱熀秋,徐龙祥.基于DSP的主动磁轴承数字控制器的设计与实现[J].电子技术应用,2001,27(7):30-32.
    [68]曾学明.磁轴承电控系统研究[D].南京:南京航空航天大学,2002.
    [69]朱熀秋,徐龙祥.主动磁轴承控制器的应用研究[J].电气自动化,2001,4:12-14.
    [70]牟鸿,徐龙祥.主动磁轴承不平衡补偿的研究[J].轴承,2002,11:10-13.
    [71]朱熀秋,徐龙祥.径向四自由度主动磁悬浮轴承控制器研究与探讨[J].应用科学学报,2002,20(1):55-60.
    [72]黄飞,徐龙祥.高速离心干燥机用磁轴承控制系统的开发[J].轴承,2003,10:1-3.
    [73]徐龙祥,曾学明.基于DSP的混合磁悬浮轴承数字控制器的设计与实现[J].数据采集与处理,2000,15(2):213-216.
    [74]李冰,邓智泉.无轴承异步电机的最大径向力有限元分析[J].中小型电机,2003,30(3):20-24.
    [75]李冰,邓智泉,严仰光.一种新颖的永磁偏置三自由度磁轴承[J].南京航空航天大学学报,2003,35(1):81-85.
    [76]臧晓敏,王晓琳,仇志坚,等.磁轴承开关功放中电流三态调制技术的研究[J].中国电机工程学报,2004,24(9):167-172.
    [77]王军,徐龙祥.无传感器磁轴承转子位置检测与研究[J].机械工程与自动化,2005,2:71-76.
    [78]王军,徐龙祥.软开关技术在磁悬浮轴承功率放大器中的应用[J].电工技术学报,2009,24(6):85-90.
    [79]王军,徐龙祥.磁悬浮轴承并联谐振直流环节开关功率放大器[J].中国电机工程学报,2009,29(12):87-92.
    [80]徐龙祥,王军.磁悬浮轴承开关功率放大器等效数学模型[J].电工技术学报,2010,25(4):53-64.
    [81]汪希平,张直明,于良,等.电磁轴承在透平膨胀机中的应用研究进展[J].中国机械工程,2000,11(4):379-381.
    [82]吴明贵,汪希平,吴国庆,等.基于DSP的磁悬浮轴承数字控制器[J].上海大学学报(自然科学版),2005,11(3):247-250.
    [83]吴明贵,汪希平,张爱林,等.数控技术在磁轴承应用中的研究[J].微计算机信息,2005,21(3):2-5.
    [84]钱婧,汪希平,谢建华,等.智能磁力轴承实现中的静态设计方法[J].上海大学学报(自然科学版),2006,12(6):562-566.
    [85]吴国庆,张钢,张建生,等.基于DSP的主动磁轴承电主轴控制系统研究[J].电机与控制学报,2006,10(2):118-120.
    [86]楚云凌,汪希平,雷永锋,等.电磁轴承系统中信息存储与接口技术的智能化方法[J].轴承,2007,9(3):4-14.
    [87]万金贵,汪希平,江鹏,等.磁悬浮支承转子系统动力学特性计算与分析[J].应用力学学报,2008,25(3):405-411.
    [88]万金贵,汪希平,李文鹏,等.径向磁力轴承的结构分析与优化设计方法[J].武汉理工大学学报(信息与管理工程版),2010,32(1):62-65.
    [89]万金贵,汪希平,高琪,等.基于ANSYS的磁悬浮轴承转子系统的动力学特性研究[J].轴承,2010(6):1-5.
    [90]吴国庆,周井玲,汪希平,等.电磁轴承系统的位移刚度和电流刚度特性研究[J].机械强度,2009,31(5):727-730.
    [91]万金贵,汪希平,李文鹏,等.电磁轴承支承的透平膨胀机转子系统模态分析[J].机械工程学报,2010,46(19):86-92.
    [92]陈帝伊,刘淑琴,马孝义.径向磁悬浮电主轴系统设计研究[J].动力学与控制学报,2009,7(4):358-362.
    [93]边忠国,刘淑琴.位移传感器在磁悬浮电主轴中安装结构的改进[J].制造技术与机床,2007(6):29-31.
    [94]杨晟,刘淑琴,关勇.轴流式磁悬浮人工心脏泵驱动电机的研究[J].中国机械工程,2010,21(8):893-896.
    [95]蔡晓峰.磁轴承开关功率放大器的设计与研究[D].浙江:浙江大学,2004.
    [96]王金堂.磁轴承数字控制系统的设计研究[D].浙江:浙江大学,2005.
    [97]杜芳芳.磁轴承功率放大器的设计和研究[D].浙江:浙江大学,2005.
    [98]左斌.主动电磁轴承-转子系统控制器的设计[D].浙江:浙江大学,2010.
    [99]周丹.电磁轴承用功率放大器关键技术研究[D].浙江:浙江大学,2011.
    [100]蒋科坚.主动电磁轴承-转子系统振动控制技术[D].浙江:浙江大学,2011.
    [101]C. S. Zhu, Z. W. Mao. A PWM based switching power amplifier for active magnetic bearings[C]. Proceedings of the 8th International Conference on Electrical Machines and Systems.2005:1563-1568.
    [102]M. Brunet, B. Wagner. Innovation:Self-sensing technology, simplified mechanical design [EB/OL]. In S2M News,5, December 2005.
    [103]T. Mizuno, H. Nimiki, K. Araki. Counter-interfaced digital control of self-sensing magnetic suspension systems with hysteresis amplifiers [J]. JSME international journal. Series C, Mechanical systems, machine elements and manufacturing.1999,42(1):71-78.
    [104]E. H. Maslen, D. T. Montie, T. Iwasaki. Robustness limitations in self-sensing magnetic bearings[J]. ASME Journal of Dynamic Systems, Measurement, and Control.2006,128(2): 197-203.
    [105]K. S. Peterson, R. H. Middleton, J. S. Freudenberg. Fundamental limitations in self-sensing magnetic bearings when modeled as linear periodic systems[C]. Proceedings of the American Controls Conference.2006:4552-4557.
    [106]D. C. Meeker, E. H. Maslen, M. D. Noh. Augmented circuit model for magnetic bearings including eddy currents, fringing, and leakage[J]. IEEE Transactions on Magnetics.1996,32(4): 3219-3227.
    [107]L. Li, T. Shinshi, A. Shimokohbe. State feedback control for active magnetic bearings based on current change rate alone[J]. IEEE Transactions on Magnetics.2004,40(6):3512-3517.
    [108]M. D. Noh, E. H. Maslen. Self-sensing magnetic bearings using parameter estimation[J]. IEEE Transactions on Instrumentation and Measurement.1997,46(1):45-50.
    [109]R. Mahmoodian. Formal parameter estimation for self-sensing magnetic bearings[D]. University of Virginia,2007.
    [110]J. P. Lyons, S. R. Macminn, M. A. Preston. Flux-current methods for SRM rotor position estimation[C]. Proceedings of IEEE industry Application Society Annual Meeting.1991: 482-487.
    [111]N. Skricka, R. Markert. Compensation of disturbances on self-sensing magnetic bearings caused by saturation and coordinate coupling[C]. Proceedings of the 7th International Symposium on Magnetic Bearings.2000:
    [112]D. T. Montie. Performance limitations and self-sensing magnetic bearings[D]. Virginia: University of Virginia,2003.
    [113]K. K. Sivadasan. Analysis of self-sensing active magnetic bearings working on inductance measurement principle[J]. IEEE Transactions on Magnetics.1996,32(2):329-334.
    [114]G. Schweitzer, E. H. Maslen. Magnetic Bearings:Theory, Design, and Application to Rotating Machinery[M]. Berlin:Springer-verlag,2009.
    [115]任双艳,边春元,刘杰.自检测磁轴承系统转子位置检测方法的研究[J].机械科学与技术,2008,27(6):815-818.
    [116]叶建民.自检测电磁轴承转子的位移检测研究[J].科技创业,2008,12:196-197.
    [117]王军,徐龙祥.磁悬浮轴承转子位移自检测系统研究[J].传感器技术,2005,24(3):27-29.
    [118]王军,徐龙祥.无传感器磁轴承转子位置检测研究[J].机械工程与自动化,2005,1:71-73.
    [119]王军,徐龙祥.无传感器磁轴承转子位置自检测原理研究[J].传感器世界,2004,10(11):22-24.
    [120]王军.无传感器磁悬浮轴承的研究[D].南京航空航天大学,2005.
    [121]J. Yim, J. Kim, S. Sul, et al. Sensorless position control of active magnetic bearings based on high frequency signal injection method[C]. Applied Power Electronics Conference and Exposition,2003. APEC'03. Eighteenth Annual IEEE.2003:83-88.
    [122]J. Yim, S. Sul, H. Ahn, et al. Sensorless position control of active magnetic bearings based on high frequency signal injection with digital signal processing[C]. Applied Power Electronics Conference and Exposition,2004. APEC'04. Nineteenth Annual IEEE.2004:1351-1354.
    [123]P. Garcia, J. M. Guerrero, I. El-Sayed, et al. Carrier signal injection alternatives for sensor less control of active magnetic bearings[C]. Proceeding of 1st Symposium on Sensorless Control for Electrical Drives.2010:78-85.
    [124]K. Matsuda, Y. Okada. Self-sensing magnetic bearing using the principle of differential transformer[C]. Proceeding of 5th International Symposium on Magnetic Bearings.1996:
    [125]李益民,陈芳,章婷,等.互感式自检测磁悬浮轴承系统的检测原理研究[J].机械,2002,29(6):58-63.
    [126]董瑞.主动磁力轴承转子位置检测及功率放大器的研究[D].武汉:武汉理工大学,2006.
    [127]段开波.用于磁悬浮轴承系统的差动变压器式位移传感器[D].南京:南京航空航天大学,1999.
    [128]范东浩.磁悬浮轴承差动变压器式自检测原理的研究[D].南京:南京航空航天大学,2006.
    [129]金超武.差动变压器式传感器在磁悬浮轴承中应用研究[D].南京:南京航空航天大学,2006.
    [130]D. Vischer. Sensorlose und spannungsgesteuerte magnetlager[D]. Zurich:Swiss Federal Institute of Technology,1988.
    [131]T. Mizuno, H. Bleuler, C. Gahler, et al. Toward parctical appliactions of self-sensing magnetic bearings[C]. Proceedings of 3rd International Symposium on Magnetic Bearings.1992: 301-306.
    [132]H. Bleuler. A Survey of Magnetic Levitation and Magnetic Bearing Types[J]. JSME international journal. Ser.3, Vibration, control engineering, engineering for industry.1992,35(3): 335-342.
    [133]D. Vischer, H. Bleuler. Self-sensing active magnetic levitation[J]. IEEE Transaction on Magnetic.1993,29:1276-1281.
    [134]D. Vischer, H. Bleuler. A new approach to sensorless and voltage controlled AMBs based on network theory concepts[C]. Proceedings of the 2nd International Symposium on Magnetic Bearings.1990:301-306.
    [135]L. Kucera. Robustness of self-sensing magnetic bearing[C]. Proceedings of MAG'97 Industrial Conference and Exhibition on Magnetic Bearings.1997:261-270.
    [136]T. Mizuno, H. Bleuler. Self-sensing magnetic bearing control system design using the geometric approach[J]. Control Engineering Practice.1995,3(7):925-932.
    [137]N. Morse, R. Smith, B. Paden, et al. Position sensed and self-sensing magnetic bearing configurations and associated robustness limitations[C]. Proceedings of the IEEE Conference on Decision and Control Including the Symposium on Adaptive Processes.1998:2599-2604.
    [138]N. M. Thibeault, R. Smith. Robustness comparison of a magnetic bearing system in various measurement configurations[C]. Proceedings of the American Control Conference.2000: 3002-3003.
    [139]M. Mirishita, H. Ito. The self-gap-detecting electromagnetic suspension system with robust stability against variation of levitation mass[C]. Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion.2006:1178-1183.
    [140]E. H. Maslen. Self-sensing for active magnetic bearings:overview and status[C]. Proceeding of 10th International Symposium on Magnetic Bearings.2006:10-15.
    [141]Y. Okada, K. Matsuda, B. Nagai. Sensorless magnetic levitation control by measuring the PWM carrier frequency component[C]. Proceedings of the 3rd International Symposium on Magnetic Bearings.1992:176-183.
    [142]M. D. Noh. Self-sensing Magnetic Bearings Driven by a Switching Power Amplifier[D]. Virgina:University of Virgina,1996.
    [143]M. D. Noh, E. H. Maslen. Position estimation in magnetic bearings using inductance measurements [C]. Proceedings of Magnetic Bearings Industrial Conference.1995:249-256.
    [144]D. T. Montie, E. H. Maslen. Experimental self-sensing results for a magnetic bearing[C]. Proceedings of the 7th International Symposium on Magnetic Bearings.2000:171-176.
    [145]A. Schamass. A self-sensing active magnetic bearing:Modulation approach[D]. Lausanne: Swiss Federal Institute of Technology in Lausanne,2003.
    [146]A. Schammass, R. Herzog, P. Buhler, et al. New results for self-sensing active magnetic bearings using modulation approach[J]. IEEE Transactions on Control Systems Technology. 2005,13(4):509-516.
    [147]T. Mizuno, Y. Hirasawa. Self-sensing magnetic suspension using a hysteresis amplifier with a two-quadrant drive[C]. Proceedings of the 6th International Symposium on Magnetic Suspension Technology.2001:76-80.
    [148]T. Mizuno, H. Namiki, K. Araki. Self-sensing operations of frequency feedback magnetic bearings[C]. Proceedings of the 5th International Symposium on Magnetic Bearings.1996: 119-123.
    [149]T. Mizuno, H. Bleuler, H. Tanaka, et al. An industrial application of position sensorless active magnetic bearings[J]. Transactions of the Institute of Electrical Engineering of Japan. 1996,117(5):124-133.
    [150]T. Mizuno, K. Araki, H. Bleuler. On the stability of controllers for self-sensing magnetic bearings[C]. Proceedings of the SICE Annual Conferece.1995:1599-1604.
    [151]T. Yoshida, Y. Kuroba, K. Ohniwa, et al. Self-sensing active magnetic bearings using a new PWM equipped with a bias voltage source[J]. European Power Electronics and Drives Journal. 2005,15(2):19-24.
    [152]T. Yoshida, K. Ohniwa. A PWM amplifier for self-sensing active magnetic bearings with low-sensitivity to cable length[J]. Transactions of the Institute of Electrical Engineers of Japan. 2003,123-D(10):1206-1212.
    [153]E. H. Maslen, T. Iwasaki, R. Mahmoodian. Formal parameter estimation for self-sensing[C]. Proceedings of the 10th International Symposium on Magnetic Bearings.2006:529-536.
    [154]E. O. Ranft, G. van Schoor, C. P. du Rand. Self-sensing for electromagnetic actuators. Part 1:A coupled reluctance network model approach[J]. Sensors and Actuators A:Physical.2011, 172(2011):400-409.
    [155]E. O. Ranft, G. van Schoor, C. P. du Rand. Self-sensing for electromagnetic actuators. Part 2:Position estimation[J]. Sensors and Actuators A:Physical.2011,172(2011):410-419.
    [156]虞烈.可控磁悬浮转子系统[M].北京:科学出版社,2003.
    [157]江征风,胡业发,周祖德.磁力轴承的基础理论与应用[M].北京:机械工业出版社,2006.
    [158]张德魁,赵雷,赵鸿宾.电流响应速度及力响应速度对磁轴承系统性能的影响[J].清华大学学报(自然科学版),2001,41(6):23-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700