用户名: 密码: 验证码:
基于先进控制方法的永磁同步电机性能优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际应用中,对永磁同步电机控制精度的要求越来越高。尤其是在机器人、航空航天、精密电子仪器等对电机性能要求较高的领域,系统的快速性、稳定性和鲁棒性能好坏成为决定永磁同步电机性能优劣的重要指标。传统电机系统通常采用PID控制,其本质上是一种线性控制,若被控对象具有非线性特性或有参变量发生变化,会使得线性常参数的PID控制器无法保持设计时的性能指标;在确定PID参数的过程中,参数整定值是具有一定局域性的优化值,并不是全局最优值。实际电机系统具有非线性、参数时变及建模过程复杂等特点,因此常规PID控制难以从根本上解决动态品质与稳态精度的矛盾。
     永磁同步电机是典型的多变量、参数时变的非线性控制对象。先进控制方法(诸如智能控制、优化算法等)研究应用的发展与深入,为控制复杂的永磁同步电机系统开辟了崭新的途径。由于先进控制方法摆脱了对控制对象模型的依赖,能够在处理不精确性和不确定性问题中有可处理性、鲁棒性,因而将其引入永磁同步电机控制已成为一个必然的趋势。本文根据系统实现目标的不同,选取相应的先进控制方法,并与PID控制相结合,对永磁同步电机各方面性能进行有针对性的优化,最终使其控制精度得到显著的提高。为达到对永磁同步电机进行性能优化的研究目的,文中首先探讨了正弦波永磁同步电机和方波永磁同步电机的运行特点及控制机理,通过建立数学模型,对相应的控制系统进行了整体分析。针对永磁同步电机非线性、强耦合的特点,设计了矢量控制方式下的永磁同步电机闭环反馈控制系统。结合常规PID控制,将模糊控制、遗传算法、神经网络和人工免疫等多种先进控制方法应用于永磁同步电机调速系统、伺服系统和同步传动系统的控制器设计中,以满足不同控制系统对电机动、静态性能的要求以及对调速性能或跟随性能的侧重。实验结果表明,采用先进控制方法的永磁同步电机具有较好的动态性能、抗扰动能力以及较强的鲁棒性能;与传统PID控制相比,系统的控制精度得到了明显提高。研究结果验证了先进控制方法应用于永磁同步电机性能优化的有效性和实用性。
In practical application, the request to control precision of permanent-magnet synchronous-motor (PMSM) is getting higher and higher. Especially in some domains with higher motor performance requirements such as robot, aerospace, precise electronic instrumentation and so on, the rapidity, stability and robustness of system have been important targets that determining PMSM performance. Traditional motor systems usually depend on PID control, which is a kind of linear control in essence. If a plant has nonlinear behaviors or varying parameters, the PID controller with constant parameters is unable to maintain the initial performance index. In the process of tunning PID parameters, the defined parameter values are not global but partial optimums. The actual motor system has many characteristics such as non-linearity, parameter time-variability and complex in modelling et al, therefore a normal PID controller is difficult to resolve the contradiction between dynamic quality and static precision fundamentally.
     The study and application of advanced control strategies (intelligent control, optimization algorithm, etc.) have opened a new door for controlling complex PMSM systems. Advanced control strategies not only can get rid to the dependence on models of plants, but also have processing ability and robustness in processing inaccuracy and uncertainty questions, thus it’s an inevitable tendency to introduce advanced control strategies into PMSM control. According to different goal-realizing systems, responding advanced control strategies are chosen and combined to PID controllers, which will make the PMSM performances in various aspects have pointed optimization, and enable its control precision to obtain remarkable enhancement finally. To guarantee the research goal in performance optimization for PMSM, which has typical dynamic, time-variable and nonlinear characters, this paper is to study a problem about the work characteristics and control mechanisms of sine-wave and square-wave PMSM firstly. By the building of mathematical models, the overall analysis will be carried on to corresponding control system. Aiming at the nonlinearity and highly coupling of PMSM, closed-loop systems with feedback loops are going to be design on the way of vector-control. Combined with normal PID control, several kinds of advanced control strategies, such as fuzzy control, neural network, genetic algorithm, artificial immune algorithm and so on, are applied to controller design for PMSM speed systems, servo systems and synchronous-drive systems so as to satisfy the requests of different control systems on motor dynamic and static performance and follow the stress on speed-regulating or track behavior. Experimental results demonstrate that, compared with traditional PID control, the advanced control strategies bring better dynamic performance, anti-disturbance ability and stronger robustness to PMSM and enhance control precision in its system distinctly. The findings confirmed that advanced control strategies are effective and feasible on performance optimization for PMSM.
引文
1.李钟明,刘卫国,等.稀土永磁电机(第二版)[M].北京:国防工业出版社,2001
    2.许振伟.永磁交流伺服系统及其控制策略研究[D]:[博士学位论文].杭州:浙江大学, 2003
    3. Konrad Urbanski,Krzysztof Zawirski.Adaptive observer of rotor speed and position for PMSM sensorless control system[J].The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2004,23(4):1129—1145
    4.纪志成,薛花,沈艳霞.永磁同步电机调速系统的模糊PI智能控制新方法[J].电工技术学报,2003,18(6):53—58
    5.陈伯时.电力拖动自动控制系统(第3版)[M].机械工业出版社,2003
    6.苏玉鑫,段宝岩.一种新型非线性PID控制器[J].控制与决策,2003,18(1):126—128
    7.陶永华.新型PID控制器及其应用(第2版)[M].北京:机械工业出版社,2002
    8.郑力新,周凯汀,王永初.PID进化设计法[J].仪器仪表学报,2001,22(4):338—341
    9.李晓庆,高春能,纪志成.基于MRFAC的感应电机控制器设计[J].南京理工大学学报, 2005,29(5A):85—89
    10.纪志成,李晓庆,沈艳霞.无刷直流电机的模型参考模糊自适应方法及实验研究[J].电工技术学报,2006,21(1):75—81
    11.焦竹青,屈百达,沈艳霞.一种新型低转矩脉动无刷直流电机设计与控制方式[J].电机与控制应用,2006,33(10):7—10
    12.丛爽.神经网络,模糊系统及其在运动控制中的应用[M].中国科学技术大学出版社, 2001
    13.王小平,曹立明.遗传算法理论,应用与软件实现[M].西安:西安交通大学出版社,2002
    14. (美)A. E. Fitzgerald等.电机学(第六版) [M].北京:电子工业出版社,2004
    15. Bodika N, Cruise R. J, Landy C. F. Design of a PI controller to counteract the effect of coging forces in a permanent magnet synchronous linear motor[C].Proceedings form AFRICON,1999,2:893—896
    16.王伟,张晶涛,柴天佑.PID参数先进整定方法综述[J].自动化学报,2000,26(3):347—355
    17. O’Dwyer A.PI and PID Controller Tuning Rules[M].London:Imperial College Press, 2003
    18. L.Mokrani,R.Abdessemed,A fuzzy self-tuning PI controller for speed control of induction motor drive[J].IEEE Trans. Power Electronics,2003,15(3):785—790
    19. Singh B,Reddy A H N,Murthy S S.Hybrid fuzzy logic proportional plus conventionalIntegral derivative controller for permanent magnet brushless DC motor[J].Proceedings on Industrial Technology,2000:185—191
    20.纪志成,薛花,沈艳霞.永磁同步电机调速系统的模糊PI智能控制新方法[J].电工技术学报,2003,18(6):53—58
    21. Vas Peter.Artificial-intelligence-based electrical machines and drives:Application of fuzzy, neural,fuzzy neural,and genetic-algorithm-based techniques[M].Oxford,New York: Oxford University Press,1999
    22. Johnson J P.Rahman K M, Ehsani M. Application of a clustering adaptive fuzzy logic controller in a brushless DC drive[J].Proceedings on Industrial Electronics,Control and Instrumentation,1997,(3):1001—1005
    23. S.Devasia.Should model-based inverse inputs be used as feed-forward under plant uncertainty[J]. IEEE.Trans. Automat.Contr,2002,47(11):1865—1870
    24. D.Croft,G. Shedd,and S.Devasia.Creep,hysteresis,and vibration compensation for piezoactuators:Atomic force microscopy application[J].ASME J.Dyna.Syst.,Control,2001, 123(35):35—43
    25. Jeon Y S,Mok H S,Choe G H,et al.A new simulation model of PMSM motor with real back EMF waveform[J].Proceeding from Computers in Power Electronics,2000,(16-18): 217—220
    26.杨勇,张建峡,许德志,等.基于电压空间矢量调制的交流调速系统[J].机械与电子,2005, (10):48—50
    27. E.Bayo.A finite-element approach to control the end-point motion of a single-link flexible robot[J].J.Robot.Syst.,1987,4(1):63—75
    28. Byung Soo Moon.Equivalence between fuzzy logic controllers and PI controllers for single input systems[J].Elsevier Science on Fuzzy Sets and Systems,1995,69:105—113
    29.纪志成,李晓庆.基于模型参考模糊自适应方法的永磁同步电机控制器设计[J].中小型电机,2005,32(8):20—25
    30. Zhi W W,Hung Y C,JIn J L.A PID type fuzzy controller with self-tuning scaling factors[J]. Elsevier Science on Fuzzy sets and Systems,2000,11(5):321—326
    31. Takagi T,M Sugeno. Fuzzy identfication of systems and its applications to modeling and control[J].IEEE Transactions on Systems,Man and Cybernetics,1985,15(1):116—132
    32. Tzafestas S G. Fuzzy systems and fuzzy expert control: an overview[J].The knowledge engineering review,1994,9(3):229—268
    33.李三东,薛花,纪志成.基于Matlab永磁同步电机控制系统的仿真建模[J].江南大学学报(自然科学版),2004,3(2):115—120
    34.薛定宇.控制系统仿真与计算机辅助设计[M].北京:机械工业出版社,2005
    35. O’Dwyer A.PI and PID Controller Tuning Rules[M].London:Imperial College Press,2003
    36.李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社,2005
    37. Lin Cheng-jian, Chen Cheng-hung, Saliha Erenturk,et al. A Compensation-based Recurrent Fuzzy Neural Network for Dynamic System Identification[J].European Journal of Operational Research, 2006, 172(2): 696—715
    38.刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004
    39. Hokey Min,Hyun Jeung Ko,Chang Seong Ko.A genetic Algorithm Approach to Developing the Multi-echelon Reverse Logistics Network for Product Returns[J].Omega, 2006,34(1):56—69
    40.焦竹青,屈百达,姜福美,等.基于遗传算法的啤酒发酵温度优化控制[J].自动化仪表. 2007,28(7):6-9
    41.刘娜,韩璞,甄成刚.基于遗传算法的PID参数寻优[J].计算机仿真.2002,19(2):70—73
    42.庄健,王孙安.直流速度伺服电机的自适应遗传算法优化PID控制[J].机床与液压,2003, (4):95—96
    43. Shun-Fa Hwang,Rong-Song He.A Hybrid Real-parameter Genetic Algorithm for Function Optimization[J].Advanced Engineering Informatics,2006,20(1):7—21
    44.焦竹青,屈百达,徐保国.遗传算法在直流伺服系统摩擦补偿中的应用[J].西安交通大学学报.2007,41(8):944—948
    45.胡俊达.基于遗传算法的模糊自适应控制在DTC中的应用[J].电工技术学报2004,16(6):78-84
    46.焦竹青,屈百达,徐保国.基于遗传算法的PMSM调速系统PID参数优化[J].电机与控制应用.2007,34(7):34—37
    47.刘国繁,王迎旭,伍萍辉.新型智能数字PID控制器及其应用[J].电机与控制学报,2006,10(4):415—418
    48.玄光男,程润伟.遗传算法与工程优化[M].北京:清华大学出版社,2004
    49.纪志成,沈艳霞,姜建国.一种新型的无刷直流电机调速系统的模糊PI智能控制[J].电机与控制学报,2003,7(3):248—254
    50.高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2004
    51.闻新.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003
    52.吴微.神经网络计算[M].北京:高等教育出版社, 2003
    53.程启明.基于BP神经网络的PID参数自整定的船舶操纵控制器研究[J].计算机自动测量与控制,2001,9(5):19—20
    54.张永双,康虎.一种BP网络自整定PID控制算法及其在NF6风洞控制中的应用[J].流体力学实验与测量,2003,17(3):80—83
    55.龚菲,王永骥.基于神经网络的PID参数自整定与实时控制[J].华中科技大学学报(自然科学版),2002,30(10):69—71
    56.张琛.直流无刷电动机原理及应用[M].北京:机械工业出版社,2004
    57.陈伯时,陈敏逊.交流调速系统[M].北京:机械工业出版社,1998
    58.谭渊,蔡开龙,谢寿生.基于BP网络的PID控制在滑油压力气动控制中的应用[J].微计算机信息,2006,22(4):106—108
    59.焦竹青,屈百达,徐保国.基于BP神经网络PID控制的BLDCM调速系统[J].微计算机信息.2007,23(2):112—115
    60. Yang Y, Vilathgamuwa D M, Rahaman M A. Implementationof an artificial-neural- network-based on real-time adaptive controller for an interior permanent magnet motor drive[J]. IEEE Trans on Industry Applications, 2003, 39(1): 96—104
    61.纪志成,沈艳霞,姜建国.基于Matlab无刷直流电机系统仿真建模新方法[J].系统仿真学报,2003,15(12):1745—1749
    62.储以微.免疫学与病原生物学[M].上海:复旦大学出版社,2003
    63.王东风,韩璞.基于免疫遗传算法优化的气温系统变参数PID控制系统[J].中国电机工程学报,2003,23(9):212—217
    64. Z Tang,T Yamaguchi,K Tashimaetal. Multiple-valued immune network model and its simulation[A].In Proc 27 the Symp on Multiple-valued Logic.Antigonish,1997,233—238
    65.谈英姿,沈炯,吕振中.免疫优化算法及其前景展望[J].信息与控制,2002,31(5):385—390
    66.张化光,孟祥萍.智能控制基础及应用[M].北京:机械工业出版社,2005
    67. Ginalber L.O.Serra.A multiobjective fuzzy PI controller based on genetic algorithm [C].2003:672—677
    68. R.Sehab,M.Remy and Ch.Renotte.An Approach to Design Fuzzy PI Supervisor for a Nonli-near System[C].2001:894—899
    69. Yanan Zhao,Emmanuel G.Collins Jr.Fuzzy PI Control Design for an IndustrialWeigh Belt Feeder[J].IEEE Transactions on Fuzzy Systems,2003,11(6):311—318
    70.陈娅冰.基于FPGA无刷直流电机模糊PI控制器设计与实现学[D]:[硕士学位论文].无锡:江南大学,2005
    71. Petr Pivornka.Comparative Analysis of Fuzzy PI/PD/PID Controller Based on ClassicalPID Controller Approach[C].2002:541—546
    72.于善谦,王洪海,朱乃硕,等.免疫学导论[M].北京:高等教育出版社,1999
    73. K Takaahashi,T Yamada.Application of an immune feedback mechanism to control systems[J]. JESM Int J,Saries C,1998,41(2):184—191
    74. Kim D H.Tuning of PID controller using gain/phasemargin and immune algorithm[C]. 2005 IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications. Piscataway,USA:IEEE, 2005: 69—74
    75. Xu Changbo,Liu Congcong,Bi Zhenf u,et al.PID self-tuning immune fuzzy control of steam temperature control system in fossil fired power plant[C].Proceedings of the 6th World Congress on Intelligent Control and Automation. Piscataway,USA:IEEE,2006: 3973—3977
    76.谈英姿,沈炯,吕振中.免疫PID控制器在汽温控制系统中的应用研究[J].中国电机工程学报,2002,22(10):148—152
    77.漆安慎,杜禅荣.免疫系统的非线性模型[M].上海:科学技术出版社,1998
    78.何勇华,付兴武,等.模糊控制的微型制冷系统[J].微计算机信息,2005,21(2):13—15
    79.万宗顺,石金华.模糊免疫PID控制在铁芯卷绕纠偏中的应用[J].微计算机信息,2006, 22(2):66—68
    80.高宪文,赵亚平.焦炉模糊免疫自适应PID控制的应用研究[J].控制与决策,2005,20(12): 1346—1349
    81.李连升.现代雷达伺服控制[M].北京:国防工业出版社,1987
    82.陈伯时.电力拖动自动控制系统(第3版)[M].北京:机械工业出版社,2003
    83.刘福才,张学莲.多级电机传动系统同步控制理论与应用研究[J].控制工程,2002,9(4): 87—89.
    84.成玲,何勇.印染机械多电机同步控制系统[J].纺织学报,2005,26(1):97—99
    85.张承慧,石庆升,程金.一种多电机同步传动模糊神经网络控制器的设计[J].控制与决策,22(1):30—34
    86. Vas Peter.Artificial-intelligence-based electrical machines and drives:Application of fuzzy, neural,fuzzy neural,and genetic-algorithm-based techniques[M].Oxford New York: Oxford University Press,1999
    87. Turl G,Summer M.A multi-induction-motor drive strategy operating in the sensorless mode[C].36th IAS Annual Meeting.Chicago,2001,1:1232—1239
    88. Chen C S,Shieh Y S.Cross-coupled control design of bi-axis feed drive servo mechanism based on multi-tasking real time kernel[C].Proc of the 2004 IEEE Int Confon ControlApplications.Taipei,2004:57—62
    89. Shih Y T, Chen C S, Lee A C. A novel cross coupling control design for bi-axis motion[J]. Int J of Machine Tool and Manufacture, 2002, 42(1):1539—1548
    90.赵锡龄,焦云婷.单神经元自适应控制PSD在再热汽温控制中的应用[J].中国电机工程学报,2001,21(2):93—96
    91.丁军,徐用懋.单神经元自适应PID控制器及其应用[J].控制工程,2004,11(1):27—30,42
    92.西佳军,孙斌.永磁同步电机单神经元自适应PID控制[J].电力自动化设备,2003,23(10): 59—61
    93. PINTO J O,BOSE B K,DASLIVAL E B.A stator-flux-oriented vector-controlled induction motor drive with space-vector PWM and flux-vector synthesis by neural networks[J].Industry Appliaction,2001,37(5):1308—1318
    94. BLASKO V.Analysis of a hybrid PWM based on modified space-vector and triangle comparison methods[J].IEEE Transactions on Industry Applications,1997,33(3): 756—764
    95. SIDNEY R Bowes.The relationship between space-vector modulation and regular-sample PWM[J].IEEE Transactions on Industry Applications,1997,44(5):670—679

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700