用户名: 密码: 验证码:
大豆疫霉转录因子PsCZF1、PsHSF1和PsMAD1的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆疫霉(Phytophthora sojae (Kaufman & Gerdman))已经成为一种非常重要的植物病原菌,由其侵染大豆引起的疫霉根腐病是大豆生产中的毁灭性病害之一。长期以来,由于大豆疫霉缺乏有效的遗传操作系统,对其生长发育和致病性分子机理的研究非常少。随着大豆疫霉全基因组测序的完成和遗传转化系统的逐步建立,大豆疫霉已经成为研究卵菌分子遗传的模式种。转录因子是基因表达调控的关键因子,从研究转录因子的功能入手来解析大豆疫霉生长发育与致病性过程中的分子机制,对了解疫霉菌发育的分子生物学和致病性具有重要意义,可以为寻找新的疫霉杀菌剂作用靶标,设计新的疫病控制策略提供理论依据。
     大豆疫霉C2H2锌指转录因子、热激转录因子(heat shock transcription factor)和MADS-box转录因子的生物信息学分析:转录因子在真菌生长发育和致病性方面有着重要的作用,对开展大豆疫霉转录因子的研究提供了有益的参考。由于对大豆疫霉生长发育和致病性机理缺乏研究,大豆疫霉全基因组测序的完成为全面地分析其转录因子带来了新的机遇。为了系统地研究大豆疫霉生长发育和致病过程中转录因子的功能,本文用已知真菌转录因子对大豆疫霉全基因组进行同源序列搜索,详细分析了C2H2锌指转录因子、热激转录因子和MADS-box转录因子这三类转录因子家族的结构特点和基因组分布情况。通过分析发现,大豆疫霉共有90个C2H2锌指转录因子,20个热激转录因子和1个MADS-box转录因子;C2H2锌指转录因子和热激转录因子在基因组上排列方式是丰富多样的,有随机分布的,也有几个基因成簇排列的。生物信息学分析为后续基因功能研究提供了依据。
     PsCZF1在大豆疫霉生长发育和致病过程中作用的研究:PsCZF1是一个编码C2H2锌指结构的转录因子,该基因在已测序的卵菌中是高度保守的。将PsCZF1的预测启动子与GUS报告基因融合后转化大豆疫霉得到稳定表达GUS的转化子,染色结果显示GUS的活性在卵孢子阶段最高,而且也受到侵染上调表达。为了详细研究PsCZF1的功能,本研究利用基因沉默技术,获得了该基因的沉默突变体。PsCZF1沉默突变体的生长速率与野生型相比下降了约50%,然而在菌丝细胞大小、孢子囊形态等方面与野生型菌株无显著差异。沉默PsCZF1后严重影响了卵孢子形成、游动孢子的产量和休止孢的萌发。接种结果显示PsCZF1沉默突变体降低了对大豆的致病性。结果表明了卵菌特异的C2H2锌指转录因子PsCZF1在大豆疫霉的生长发育和致病性中起着重要的作用。
     大豆疫霉热激转录因子PsHSFl参与应答氧化压力、热激胁迫和致病性:PsHSF1编码的蛋白质含有HSF1DNA结合域。生物信息学分析发现PsHSF1与其有一定同源性的基因成簇排列在基因组上,其他卵菌中找不到序列上高度同源的基因。利用RT-PCR分析PsHSF1在无性生活史阶段的表达情况,结果表明PsHSF1只在休止孢及其萌发阶段表达,而且在萌发阶段表达量显著上调。同时,在过氧化氢胁迫下该基因受诱导表达。本文利用大豆疫霉遗传转化系统和基因沉默技术,获得了PsHSF1基因沉默的突变体。PsHSF1基因沉默突变对过氧化氢和高温处理变得敏感,但是不影响菌丝的正常生长和孢子囊的产生。此外,PsHSF1的沉默显著降低了休止孢的萌发率。致病性测定结果表明,PsHSF1沉默突变体的致病性显著延缓。结果揭示了热激转录因子PsHSF1参与了大豆疫霉抗氧化作用和致病过程。
     大豆疫霉MADS-box转录因子的研究:PsMAD1编码大豆疫霉MADS-boxDNA结合域的基因,该基因在其他疫霉菌中高度保守,系统发育分析揭示了疫霉菌编码MADS-box的基因与动物肌细胞增强因子(myocyte enhancer factor, MEF)家族的亲缘关系更近。利用RT-PCR方法和GUS报告基因,本研究详细分析了PsMAD1在大豆疫霉生活史和侵染过程中的时空表达,结果显示PsMAD1在大豆疫霉无性生活史阶段是组成性表达的,但在产孢菌丝、休止孢和萌发的休止孢时期表达量明显提高,而且PsMAD1受侵染的诱导呈现上调表达趋势。对该基因启动子序列分析找到了两个类似TATA-box的序列和卵菌核心启动子序列。这些结果暗示着PsMAD1作为转录因子可能在大豆疫霉生活史和侵染中发挥着重要的作用。
Phytophthora sojae (Kaufman & Gerdman), an Oomycete causing one of the most destructive diseases on soybean worldwide,has become an important agricultural pathogen. P. sojae has been developed as a model species for the genus, having in place excellent genetic and genomics resources (including genetic maps, BAC libraries,and EST sequences),being established gene-silencing for funcational study, as well as having a well organized community of researchers.Transcription factors are key proteins which regulate gene expression and are of great value for study. Studying the molecular mechanism of transcription factors underlyging growth, development, and pathogenicity of P. sojae will help research to find novel targets of chemical control and provide new sight and good idea for designing comprehensive management of Phytophthora disaeases.
     Bioinformatics analysis of C2H2 zinc finger transcription factors, heat shock transcription factors and MADS-box transcription factors in genome of Phytophthora soja:The completion of genome sequencing of P. sojae has provided novel insights and platform to find and study TFs.In order to comprehensively functional study of TFs during growth, development, and pathogenisis, we used known TFs protein sequence from fungi and plants as query sequences with BLAST algorithm to explore genome-wide inventory of three classes of TFs,such as C2H2 zinc finger transcription factors, heat shock transcription factors and MADS-box transcription factors, and analyze motif or domain organization and their distribution in genome in details.The results showed that some genes of the same family often clustered in genome.All these bioinformatics analysis provided a useful clue to characterize TFs in P. sojae.
     PsCZFl gene encoding a C2H2 zinc finger protein is required for growth, development and pathogenesis in Phytophthora sojae:C2H2 zinc finger proteins form one of the largest families of transcriptional regulators in eukaryotes.We identified a Phytophthora sojae C2H2 Zinc Finger (PsCZF1),which was highly conserved in the sequenced oomycete pathogens.In the transformants of P. sojae containing the PsCZF1 promoter fused to theβ-glucuronidase (GUS)reporter gene, GUS activity was highly induced in the P. sojae oospores stage and upregulated by the infection. To elucidate the function, expression of PsCZF1 was silenced by introducing antisense constructs into P sojae. PsCZFl silencing transformants exhibited none alternation in the cell size and morphology of sporangia and hyphae; however, the hyphal growth rate was around 50% reduced in the mutants. PsCZF1-deficient mutants were also impaired in the production of oospores,swimming zoospores and the germinating cysts, indicating that the gene was involved in the various stages of the life cycles.Furthermore, we found PsCZF1-deficient mutants completely lost the virulence on the host soybeans.Our results suggested that this oomycete specific C2H2-type zinc finger protein played the important roles in the growth, development and pathogenesis,therefore, PsCZF1 might be an attractive oomycete-specific target for chemical fungicides screening.
     A heat shock transcription factor PsHSFl is involved in oxidative stress, heat shock and pathogenicity in Phytophthora sojae:Analysis of heat shock transcription factors (HSF) in genome of Phytophthora sojae revealed one gene PsHSF1 encoding HSF, which was clustered together with other highly homologous HSF in P. sojae genome. Bioinformatics analysis showed that there hardly existed high orthologs in other oomycete pathogens.In this paper, RT-PCR was used to analyze expression of PsHSF1 during asexual life stage and oxidative stress mediated with hydrogen peroxidase.These results indicated that PsHSF1 is uniquely expressed in cysts and germinated cysts, and obviously upregulated in latter stage; PsHSF1 also was induced by oxidative stress mediated with hydrogen peroxidase. To elucidate its molecular function, expression of PsHSF1 was silenced by introducing antisense constructs into P. sojae.Silencing of PsHSF1 did not disturb hyphal growth or sporulating, but severely affected hyphal growth on media containing hydrogen peroxidase or inoculated at 30℃. Furthermore, PsHSF1-silenced mutants showed decreased germination ratio.Finally, the pathogenicity of PsHSFl-silenced mutants were depressed. All the results revealed that PsHSFs would play important roles in antioxidative function and pathogenicity in P. sojae.
     Study on MADS-box transcription factor of P. sojae:MADS-box transcription factors play important roles in reproductive and vegetative development, and in signal transduction. Previously, in silico exploration in genome of soybean root rot pathogen, P. sojae,a gene PsMADl encoding MADS-box transcription factor has been identified. At the same time, the orthologs of other Phytophthora were identified.Phylogenetic analysis revealed that Phytophthora MADS-box genes are divided into animal subgroup of myocyte enhancer factor clade.Using RT-PCR and GUS reporter gen, this study reveled that PsMAD1 constitutively expressed during life stage, highly upregulated in sporulating hyphae,cysts and germinated cysts, furthermore, it was induced by early infection. Finally, examination of promoter region of PsMADl and its Phytophthora orthologs showed that their promoters contain two TATA-like element and one conserved 19-nt core promoter structure of oomycetes.These results indicated that PsMAD1 may play important roles during asexual life cycles and infection as a putative transcription factor.
引文
1.Abel, S.,and Theologis, A.(1994). Transient transformation of Arabidopsis leaf protoplasts:a versatile experimental system to study gene expression. Plant J 5,421-427.
    2. Adl, S.M., Simpson, A.G, Farmer, M.A., Andersen, R.A., Anderson, O.R., Barta, J.R., Bowser, S.S.,
    Brugerolle, G.,Fensome, R.A., Fredericq, S.,James, T.Y.,Karpov, S.,Kugrens, P., Krug, J., Lane, C.E., Lewis, L.A., Lodge, J.,Lynn, D.H., Mann, D.G, McCourt, R.M., Mendoza, L.,Moestrup, O., Mozley-Standridge, S.E., Nerad, T.A.,Shearer, C.A.,Smirnov, A.V.,Spiegel, F.W.,and Taylor, M.F. (2005).The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52,399-451.
    3.Ah-Fong, A.M., Bormann-Chung, C.A., and Judelson, H.S.(2008). Optimization of transgene-mediated silencing in Phytophthora infestans and its association with small-interfering RNAs. Fungal Genet Biol 45,1197-1205.
    4.Ah Fong, A.M., and Judelson, H.S.(2003). Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Mol Microbiol 50,487-494.
    5. Applah, A.,Jennings, P., and Turner, J. (2004). Phytophthora ramorum:one pathogen and many diseases, an emerging threat to forest ecosystems and ornamental plant life. Mycologist 18, 145-150.
    6. Attardo, G.M., Higgs, S.,Klingler, K.A., Vanlandingham, D.L., and Raikhel, A.S.(2003).RNA interference-mediated knockdown of a GATA factor reveals a link to anautogeny in the mosquito Aedes aegypti. Proc Natl Acad Sci U S A 100,13374-13379.
    7. Avrova, A.O., Venter, E.,Birch, P.R.,and Whisson, S.C. (2003). Profiling and quantifying differential gene transcription in Phytophthora infestans prior to and during the early stages of potato infection. Fungal Genet Biol 40,4-14.
    8.Avrova, A.O., Boevink, P.C.,Young, V.,Grenville-Briggs, L.J.,van West, P., Birch, P.R.,and Whisson, S.C.(2008).A novel Phytophthora infestans haustorium-specific membrane protein is required for infection of potato.Cell Microbiol 10,2271-2284.
    9. Bakthavatsalam, D.,Meijer, H.J.,Noegel, A.A., and Govers, F. (2006). Novel phosphatidylinositol phosphate kinases with a G-protein coupled receptor signature are shared by Dictyostelium and Phytophthora. Trends Microbiol 14,378-382.
    10.Baldauf, S.L.,Roger, A.J.,Wenk-Siefert, I.,and Doolittle, W.F. (2000). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290,972-977.
    11. Bernstein, E., and Allis, C.D.(2005).RNA meets chromatin. Genes Dev 19,1635-1655.
    12. Birch, P.R.J., and Whisson, S.C. (2001). Phytophthora infestans enters the genomics era. Mol. Plant Pathol.2,257.
    13. Blanco, F.A., and Judelson, H.S.(2005).A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56, 638-648.
    14.Bottin, A., Larche, L., Villalba, F.,Gaulin, E., Esquerre-Tugaye, M.T.,and Rickauer, M.(1999). Green fluorescent protein (GFP) as gene expression reporter and vital marker for studying development and microbe-plant interaction in the tobacco pathogen Phythphthora parasitica var. nicotianae. FEMS Microbiol Lett 176,51-56.
    15.Cabrera, E., Pimentel, R., Abad, Z., Pina, J., Hernandez, O., Lleonart, R., and de la Fuente, J. (1995). Transient transformation of shrimp (Penaeus schmitti) embryos by DNA microinjection. Theriogenology 43,180-180.
    16.Chen, X., Shen, G.,Wang, Y., Zheng, X., and Wang, Y. (2007). Identification of Phytophthora sojae genes upregulated during the early stage of soybean infection. FEMS Microbiol Lett 269,280-288.
    17. Clemens, J.C., Worby, C.A., Simonson-Leff, N., Muda, M., Maehama, T.,Hemmings, B.A., and Dixon, J.E. (2000). Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways.Proc Natl Acad Sci U S A 97,6499-6503.
    18. Cogoni, C. (2001). Homology-dependent gene silencing mechanisms in fungi. Annu Rev Microbiol 55,381-406.
    19. Cogoni, C., and Macino, G. (1999). Homology-dependent gene silencing in plants and fungi:a number of variations on the same theme. Curr Opin Microbiol 2,657-662.
    20. Coleman, B.I., and Duraisingh, M.T. (2008). Transcriptional control and gene silencing in Plasmodium falciparum. Cell Microbiol 10,1935-1946.
    21.Comai, L., and Henikoff, S.(2006).TILLING:practical single-nucleotide mutation discovery. Plant J 45,684-694.
    22. Cottrell, T.R.,and Doering, T.L. (2003). Silence of the strands:RNA interference in eukaryotic pathogens. Trends Microbiol 11,37-43.
    23. Cvitanich, C., and Judelson, H.S.(2003a). Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment. Curr Genet 42,228-235.
    24. Cvitanich, C.,and Judelson, H.S.(2003b). A gene expressed during sexual and asexual sporulation in Phytophthora infestans is a member of the Puf family of translational regulators. Eukaryot Cell 2, 465-473.
    25. De Backer, M.D.,Raponi, M., and Arndt, G.M. (2002).RNA-mediated gene silencing in non-pathogenic and pathogenic fungi. Curr Opin Microbiol 5,323-329.
    26. Ebstrup, T.,Saalbach, G., and Egsgaard, H. (2005). A proteomics study of in vitro cyst germination and appressoria formation in Phytophthora infestans. Proteomics 5,2839-2848.
    27. Erwin, D.C.,and Ribiero, O.K. (1996). Phytophthora Diseases Worldwide. APS Press.
    28. Fabritius, A.L., Cvitanich, C.,and Judelson, H.S.(2002). Stage-specific gene expression during sexual development in Phytophthora infestans.Mol Microbiol 45,1057-1066.
    29. Fire, A.,Xu, S.,Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C.(1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
    30. Fitzgerald, A., Van Kan, J.A.,and Plummer, K.M. (2004). Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats. Fungal Genet Biol 41,963-971.
    31. Fry, W. (2008). Phytophthora infestans:the plant (and R gene) destroyer. Mol. Plant Pathol.9, 385-402.
    32.Fry, W., and Goodwin, S.(1997).Re-emergence of potato and tomato late blight in the United States. Plant Disease 81,1349-1357.
    33.Fulci, V., and Macino, G. (2007). Quelling:post-transcriptional gene silencing guided by small RNAs in Neurospora crassa. Curr Opin Microbiol 10,199-203.
    34. Furner, I.J., Sheikh, M.A., and Collett, C.E.(1998). Gene silencing and homology-dependent gene silencing in Arabidopsis:genetic modifiers and DNA methylation. Genetics 149,651-662.
    35.Garrick, D., Fiering, S., Martin, D.I., and Whitelaw, E.(1998).Repeat-induced gene silencing in mammals. Nat Genet 18,56-59.
    36. Gaulin, E., Jauneau, A.,Villalba, F., Rickauer, M.,Esquerre-Tugaye, M.T., and Bottin, A.(2002). The CBEL glycoprotein of Phytophthora parasitica var-nicotianae is involved in cell wall deposition and adhesion to cellulosic substrates. J Cell Sci 115,4565-4575.
    37. Gaulin, E., Haget, N., Khatib, M., Herbert, C., Rickauer, M., and Bottin, A. (2007). Transgenic sequences are frequently lost in Phytophthora parasitica transformants without reversion of the transgene-induced silenced state. Can J Microbiol 53,152-157.
    38. Gilchrist, E.J., O'Neil, N.J., Rose, A.M., Zetka, M.C.,and Haughn, G.W. (2006). TILLING is an effective reverse genetics technique for Caenorhabditis elegans. BMC Genomics 7,262.
    39.Govers, F., and Gijzen, M. (2006).Phytophthora genomics:the plant destroyers'genome decoded. Mol Plant Microbe Interact 19,1295-1301.
    40. Grenville-Briggs, L.J.,Anderson, V.L., Fugelstad, J., Avrova, A.O., Bouzenzana, J.,Williams, A., Wawra, S.,Whisson, S.C.,Birch, P.R.,Bulone, V., and van West, P. (2008). Cellulose Synthesis in Phytophthora infestans Is Required for Normal Appressorium Formation and Successful Infection of Potato.Plant Cell 20,720-738.
    41.Grunwald, N.J.,Goss, E.M., and Press, C.M. (2008).Phytophthora ramorum:a pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals. Mol. Plant Pathol.9,729-740.
    42. Hamilton, D.A., Roy, M., Rueda, J., Sindhu, R.K.,Sanford, J., and Mascarenhas, J.P.(1992).
    Dissection of a pollen-specific promoter from maize by transient transformation assays.Plant Mol Biol 18,211-218.
    43.Hammer, T.R., Thines, M., and Spring, O. (2007). Transient expression of gfp in the obligate biotrophic oomycete Plasmopara halstedii using electroporation and a mechanoperforation method. Plant Pathology 56,177-182.
    44. Hausbeck, M., and Lamour, K. (2004). Phytophthora capsici on vegetable crops:Research progress and management challenges. Plant Disease 88,1292-1303.
    45. Henikoff, S., and Comai, L. (2003).Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Biol 54,375-401.
    46. Hua, C., Wang, Y., Zheng, X., Dou, D., Zhang, Z., Govers, F., and Wang, Y. (2008). A Phytophthora sojae G-Protein alpha Subunit Is Involved in Chemotaxis to Soybean Isoflavones.Eukaryot Cell 7, 2133-2140.
    47. Huettel, B.,Kanno, T.,Daxinger, L., Bucher, E., van der Winden, J., Matzke, A.J.,and Matzke, M. (2007). RNA-directed DNA methylation mediated by DRD1 and Pol IVb:a versatile pathway for transcriptional gene silencing in plants.Biochim Biophys Acta 1769,358-374.
    48. Huitema, E., Bos, J.I., Tian, M.,Win, J., Waugh, M.E.,and Kamoun, S.(2004). Linking sequence to phenotype in Phytophthora-plant interactions. Trends Microbiol 12,193-200.
    49.Jiang, R.H., Tripathy, S.,Govers, F., and Tyler, B.M. (2008). RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc Natl Acad Sci U S A 105,4874-4879.
    50.Judelson, H.S.(1993).Intermolecular ligation mediates efficient cotransformation in Phytophthora infestans. Mol Gen Genet 239,241-250.
    51.Judelson, H.S.(1997).The genetics and biology of Phytophthora infestans:modern approaches to a historical challenge. Fungal Genet Biol 22,65-76.
    52.Judelson, H.S.,and Michelmore, R.W.(1991).Transient expression of genes in the oomycete Phytophthora infestans using Bremia lactucae regulatory sequences. Curr Genet 19,453-459.
    53.Judelson, H.S.,and Tani, S. (2007). Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot Cell 6, 1200-1209.
    54.Judelson, H.S.,Tyler, B.M., and Michelmore, R.W. (1991).Transformation of the oomycete pathogen, Phytophthora infestans. Mol Plant Microbe Interact 4,602-607.
    55.Judelson, H.S.,Tyler, B.M., and Michelmore, R.W.(1992). Regulatory sequences for expressing genes in oomycete fungi. Mol Gen Genet 234,138-146.
    56.Judelson, H.S.,Coffey, M.D., Arredondo, F.R.,and Tyler, B.M.(1993).Transformation of the
    oomycete pathogen Phytophthora megasperma f. sp.glycinea occurs by DNA integration into single or multiple chromosomes. Curr Genet 23,211-218.
    57. Judelson, H.S.,Narayan, R.D., Ah-Fong, A.M., and Kim, K.S.(2009). Gene expression changes during asexual sporulation by the late blight agent Phytophthora infestans occur in discrete temporal stages. Mol Genet Genomics 281,193-206.
    58.Judelson, H.S.,Ah-Fong, A.M.,Aux, G., Avrova, A.O., Bruce, C., Cakir, C., da Cunha, L., Grenville-Briggs, L., Latijnhouwers, M., Ligterink, W., Meijer, H.J., Roberts, S.,Thurber, C.S., Whisson, S.C., Birch, P.R., Govers, F., Kamoun, S., van West, P., and Windass, J. (2008). Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol Plant Microbe Interact 21,433-447.
    59.Kadotani, N., Nakayashiki, H., Tosa, Y, and Mayama, S.(2003).RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact 16,769-776.
    60. Kamoun, S.(2003). Molecular genetics of pathogenic oomycetes. Eukaryot Cell 2,191-199.
    61. Kamoun, S.,and Smart, C.(2005). Late blight of potato and tomato in the genomics era. Plant Disease 89,692-699.
    62. Kamoun, S., van West, P., Vleeshouwers, V.G, de Groot, K.E., and Govers, F.(1998). Resistance of nicotiana benthamiana to phytophthora infestans is mediated by the recognition of the elicitor protein INF1.Plant Cell 10,1413-1426.
    63.Kawasaki, H., and Taira, K. (2004). Induction of DNA methylation and gene silencing by short interfering RNAs in human cells. Nature 431,211-217.
    64. Kim, D., and Rossi, J. (2008). RNAi mechanisms and applications. Biotechniques 44,613-616.
    65.Kim, K.S.,and Judelson, H.S.(2003).Sporangium-specific gene expression in the oomycete phytopathogen Phytophthora infestans. Eukaryot Cell 2,1376-1385.
    66.Kim, S.S., Shin, D.I.,and Park, H.S. (2007). Transient beta-glucuronidase expression in lily (Lilium longflorum L.) pollen via wounding-assisted Agrobacterium-mediated transformation. Biotechnol Lett 29,965-969.
    67. Kramer, R.,Freytag, S.,and Schmelzer, E.(1997).In vitro formation of infection structures of Phytophthora infestans is associated with synthesis of stage specific polypeptides. Eur J Plant Pathol 103,43-53.
    68.Kucharek, T.,and Mitchell, D. (2000).Diseases of agronomic and vegetable crops caused by Pythium. Plant pathology fact sheet PP53.Gainesville:Institute of Food and Agriculture Service.
    69.Lamour, K.H., Win, J.,and Kamoun, S.(2007).Oomycete genomics:new insights and future directions. FEMS Microbiol Lett 274,1-8.
    70. Lamour, K.H.,Finley, L., Hurtado-Gonzales, O., Gobena, D., Tierney, M.,and Meijer, H.J. (2006).
    Targeted gene mutation in Phytophthora spp.Mol Plant Microbe Interact 19,1359-1367.
    71. Latijnhouwers, M., and Govers, F. (2003). A Phytophthora infestans G-protein beta subunit is involved in sporangium formation. Eukaryot Cell 2,971-977.
    72. Latijnhouwers, M., de Wit, P.J., and Govers, F. (2003). Oomycetes and fungi:similar weaponry to attack plants. Trends Microbiol 11,462-469.
    73.Latijnhouwers, M., Ligterink, W., Vleeshouwers, V.G., van West, P., and Govers, F. (2004). A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans. Mol Microbiol 51,925-936.
    74. Li, L.,Wright, S.J., Krystofova, S.,Park, G., and Borkovich, K.A. (2007). Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol 61,423-452.
    75. Li, Y.-h., Tremblay, F., and Seguin, A.(1994). Transient transformation of pollen and embryogenic tissues of white spruce (Picea glauca (Moench.) Voss) resulting from microprojectile bombardment. Plant Cell Rep 13,661-665.
    76. Maria Laxalt, A., Latijnhouwers, M.,van Hulten, M., and Govers, F. (2002). Differential expression of G protein alpha and beta subunit genes during development of Phytophthora infestans. Fungal Genet Biol 36,137-146.
    77. Martienssen, R.(1996). Epigenetic phenomena:paramutation and gene silencing in plants. Curr Biol 6,810-813.
    78.Martienssen, R., Zaratiegui, M.,and Goto, D. (2005).RNA interference and heterochromatin in the fission yeast Schizosaccharomyces pombe. Trends Genet.21,450-456.
    79. Martienssen, R.A.,and Richards, E.J.(1995).DNA methylation in eukaryotes. Curr Opin Genet Dev 5,234-242.
    80. Matzke, A.J.,Neuhuber, F., Park, Y.D., Ambros, P.F., and Matzke, M.A.(1994). Homology-dependent gene silencing in transgenic plants:epistatic silencing loci contain multiple copies of methylated transgenes. Mol Gen Genet 244,219-229.
    81.Matzke, M.A., and Birchler, J.A.(2005).RNAi-mediated pathways in the nucleus. Nat Rev Genet 6, 24-35.
    82. Matzke, M.A., Aufsatz, W., Kanno, T., Mette, M.F., and Matzke, A.J. (2002). Homology-dependent gene silencing and host defense in plants. Adv Genet 46,235-275.
    83.McDonald, T., Brown, D.,Keller, N.P., and Hammond, T.M. (2005). RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant Microbe Interact 18,539-545.
    84. McLeod, A., Smart, C.D., and Fry, W.E. (2004).Core promoter structure in the oomycete Phytophthora infestans. Eukaryot Cell 3,91-99.
    85.McLeod, A., Fry, B.A.,Zuluaga, A.P., Myers, K.L., and Fry, W.E. (2008). Toward improvements of
    oomycete transformation protocols. J Eukaryot Microbiol 55,103-109.
    86. Meijer, H.J., and Govers, F. (2006). Genomewide analysis of phospholipid signaling genes in Phytophthora spp.:novelties and a missing link. Mol Plant Microbe Interact 19,1337-1347.
    87. Mette, M.F., Aufsatz, W., van der Winden, J., Matzke, M.A., and Matzke, A.J. (2000). Transcriptional silencing and promoter methylation triggered by double-stranded RNA. EMBO J 19, 5194-5201.
    88. Meyer, P.(1996). Repeat-induced gene silencing:common mechanisms in plants and fungi. Biol Chem Hoppe Seyler 377,87-95.
    89. Meyer, P., and Saedler, H.(1996). Homology-Dependent Gene Silencing in Plants. Annu Rev Plant Physiol Plant Mol Biol 47,23-48.
    90.Mitchell, H.J.,Kovac, K.A.,and Hardham, A.R. (2002). Characterisation of Phytophthora nicotianae zoospore and cyst membrane proteins. Mycol Res 106,1211-1223.
    91.Moens, C.B.,Donn, T.M.,Wolf-Saxon, E.R., and Ma, T.P. (2008). Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 7,454-459.
    92. Mort-Bontemps, M., and Fevre, M.(1997). Transformation of the Oomycete Saprolegnia monoica to hygromycin-B resistance. Curr Genet 31,272-275.
    93. Mouyna, I., Henry, C.,Doering, T.L., and Latge, J.P. (2004). Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus. FEMS Microbiol Lett 237,317-324.
    94. Moy, P.,Qutob, D.,Chapman, B.P.,Atkinson, I., and Gijzen, M. (2004). Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Mol Plant Microbe Interact 17, 1051-1062.
    95.Muramoto, T., Suzuki, K.,Shimizu, H.,Kohara, Y,Kohriki, E., Obara, S.,Tanaka, Y.,and Urushihara, H. (2003).Construction of a gamete-enriched gene pool and RNAi-mediated functional analysis in Dictyostelium discoideum.Mech Dev 120,965-975.
    96. Nakayashiki, H.,Hanada, S.,Nguyen, B.Q.,Kadotani, N.,Tosa, Y.,and Mayama, S. (2005). RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet Biol 42,275-283.
    97.Ohrt, T.,Merkle, D.,Birkenfeld, K., Echeverri, C.J., and Schwille, P. (2006). In situ fluorescence analysis demonstrates active siRNA exclusion from the nucleus by Exportin 5. Nucleic Acids Res 34,1369-1380.
    98.Perry, J.A., Wang, T.L., Welham, T.J.,Gardner, S.,Pike, J.M., Yoshida, S.,and Parniske, M. (2003). A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131,866-871.
    99. Prakob, W.,and Judelson, H.S.(2007). Gene expression during oosporogenesis in heterothallic and homothallic Phytophthora. Fungal Genet Biol 44,726-739.
    100.Rappleye, C.A., Engle, J.T., and Goldman, W.E. (2004). RNA interference in Histoplasma capsulatum demonstrates a role for alpha-(1,3)-glucan in virulence. Mol Microbiol 53,153-165.
    101.Rizzo, D.M., Garbelotto, M., and Hansen, E.M. (2005). Phytophthora ramorum:integrative research and management of an emerging pathogen in California and Oregon forests.Annu Rev Phytopathol 43,309-335.
    102.Romano, N., and Macino, G.(1992).Quelling:transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6,3343-3353.
    103.Savidor,A.,Donahoo,R.S.,Hurtado-Gonzales,O.,Land,M.L.,Shah,M.B.,Lamour, K.H., and McDonald, W.H. (2008). Cross-species global proteomics reveals conserved and unique processes in Phytophthora sojae and Phytophthora ramorum.Mol Cell Proteomics 7,1501-1516.
    104.Schiermeier, Q. (2001).Russia needs help to fend off potato famine, researchers warn. Nature 410, 1011-1011.
    105. Schillberg, S.,Tiburzy, R., and Fischer, R. (2000). Transient transformation of the rust fungus Puccinia graminis f. sp. tritici. Mol Gen Genet 262,911-915.
    106.Selker, E.U. (2002). Repeat-induced gene silencing in fungi. Adv Genet 46,439-450.
    107. Shepherd, S.J., van West, P., and Gow, N.A. (2003).Proteomic analysis of asexual development of Phytophthora palmivora. Mycol Res 107,395-400.
    108.Si-Ammour, A., Mauch-Mani, B.,and Mauch, F. (2003).Quantification of induced resistance against Phytophthora species expressing GFP as a vital marker:beta-aminobutyric acid but not BTH protects potato and Arabidopsis from infection. Mol Plant Pathol 4,237-248.
    109.Slusarenko, A., and Schlaich, N. (2003).Downy mildew of Arabidopsis thaliana caused by Hyaloperonospora parasitica (formerly Peronospora parasitica). Mol. Plant Pathol.4,159-170.
    110. Sontheimer, E.J. (2005). Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 6,127-138.
    111.Tabara, H., Grishok, A., and Mello, C.C.(1998). RNAi in C. elegans:soaking in the genome sequence. Science 282,430-431.
    112.Taira, K. (2006).Induction of DNA methylation and gene silencing by short interfering RNAs in human cells.Nature 441,1176.
    113.Tanguay, P., Bozza, S.,and Breuil, C. (2006). Assessing RNAi frequency and efficiency in Ophiostoma floccosum and O. piceae.Fungal Genet Biol 43,804-812.
    114. Tani, S.,Yatzkan, E.,and Judelson, H.S.(2004). Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans. Mol Plant Microbe Interact 17,330-337.
    115.Teixeira, F.K., Heredia, F., Sarazin, A., Roudier, F.,Boccara, M.,Ciaudo, C., Cruaud, C.,Poulain, J., Berdasco, M.,Fraga, M.F., Voinnet, O.,Wincker, P., Esteller, M., and Colot, V. (2009).A Role for
    RNAi in the Selective Correction of DNA Methylation Defects. Science.
    116. Till, B.J., Zerr, T., Comai, L.,and Henikoff, S. (2006). A protocol for TILLING and Ecotilling in plants and animals. Nat Protoc 1,2465-2477.
    117.Till, B.J., Reynolds, S.H., Greene, E.A.,Codomo, C.A.,Enns, L.C., Johnson, J.E., Burtner, C., Odden, A.R., Young, K., Taylor, N.E.,Henikoff, J.G, Comai, L.,and Henikoff, S.(2003). Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13, 524-530.
    118.Torto-Alalibo, T., Tian, M., Gajendran, K., Waugh, M.E., van West, P., and Kamoun, S.(2005). Expressed sequence tags from the oomycete fish pathogen Saprolegnia parasitica reveal putative virulence factors. BMC Microbiol 5,46.
    119.Torto-Alalibo, T.A., Tripathy, S.,Smith, B.M., Arredondo, F.D., Zhou, L., Li, H.,Chibucos, M.C., Qutob, D., Gijzen, M., Mao, C.,Sobral, B.W., Waugh, M.E., Mitchell, T.K., Dean, R.A., and Tyler, B.M. (2007). Expressed sequence tags from phytophthora sojae reveal genes specific to development and infection. Mol Plant Microbe Interact 20,781-793.
    120.Tyler, B.M. (2002). Molecular basis of recognition between phytophthora pathogens and their hosts. Annu Rev Phytopathol 40,137-167.
    121. Tyler, B.M. (2007). Phytophthora sojae:root rot pathogen of soybean and model oomycete. Mol Plant Pathol 8,1-8.
    122.Tyler, B.M.,Tripathy, S.,Zhang, X.,Dehal, P., Jiang, R.H., Aerts, A., Arredondo, F.D., Baxter, L., Bensasson, D., Beynon, J.L., Chapman, J., Damasceno, C.M., Dorrance, A.E.,Dou, D., Dickerman, A.W., Dubchak, I.L., Garbelotto, M.,Gijzen, M., Gordon, S.G.,Govers, F., Grunwald, N.J., Huang, W., Ivors, K.L., Jones, R.W., Kamoun, S.,Krampis, K., Lamour, K.H., Lee, M.K., McDonald, W.H., Medina, M., Meijer, H.J., Nordberg, E.K.,Maclean, D.J., Ospina-Giraldo, M.D.,Morris, P.F., Phuntumart, V., Putnam, N.H., Rash, S.,Rose, J.K., Sakihama, Y,Salamov, A.A., Savidor, A., Scheuring, C.F., Smith, B.M.,Sobral, B.W.,Terry, A., Torto-Alalibo, T.A.,Win, J.,Xu, Z.,Zhang, H.,Grigoriev, I.V., Rokhsar, D.S., and Boore, J.L. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313,1261-1266.
    123. Van West, P., Appiah, A.A.,and Gow, N.A.R. (2003).Advances in research on oomycete root pathogens. Physiol Mol Plant Pathol 62,99-113.
    124. Van West, P., Kamoun, S.,van't Klooster, J.W.,and Govers, F.(1999a). Internuclear gene silencing in Phytophthora infestans. Mol Cell 3,339-348.
    125.van West, P., de Jong, A.J.,Judelson, H.S.,Emons, A.M.,and Govers, F.(1998).The ipiO gene of Phytophthora infestans is highly expressed in invading hyphae during infection. Fungal Genet Biol 23,126-138.
    126.Van West, P., Reid, B.,Campbell, T.A., Sandrock, R.W., Fry, W.E., Kamoun, S.,and Gow, N.A. (1999b). Green fluorescent protein (GFP) as a reporter gene for the plant pathogenic oomycete Phytophthora palmivora. FEMS Microbiol Lett 178,71-80.
    127.Van West, P., Shepherd, S.J., Walker, C.A., Li, S., Appiah, A.A., Grenville-Briggs, L.J., Govers, F., and Gow, N.A. (2008). Internuclear gene silencing in Phytophthora infestans is established through chromatin remodelling. Microbiology 154,1482-1490.
    128. Vaucheret, H., and Fagard, M. (2001).Transcriptional gene silencing in plants:targets, inducers and regulators. Trends Genet 17,29-35.
    129.Vijn, I., and Govers, F. (2003). Agrobacterium tumefaciens mediated transformation of the oomycete plant pathogen Phytophthora infestans. Mol Plant Pathol 4,459.
    130.Walker, C.A., Koppe, M., Grenville-Briggs, L.J., Avrova, A.O., Homer, N.R., McKinnon, A.D., Whisson, S.C., Birch, P.R., and van West, P. (2008). A putative DEAD-box RNA-helicase is required for normal zoospore development in the late blight pathogen Phytophthora infestans. Fungal Genet Biol 45,954-962.
    131.Wang, D.K., Sun, Z.X., and Tao, Y.Z. (2006). Application of TILLING in plant improvement. Yi Chuan Xue Bao 33,957-964.
    132.Weiland, J.J. (2003). Transformation of Pythium aphanidermatum to geneticin resistance. Curr Genet 42,344-352.
    133. Weld, R.J., Plummer, K.M., Carpenter, M.A., and Ridgway, H.J. (2006). Approaches to functional genomics in filamentous fungi. Cell Res 16,31-44.
    134.Whisson, S.C.,Avrova, A.O.,van West, P.,and Jones,J.T.(2005).A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Mol Plant Pathol 6,153-163.
    135.Zavada, J., Zavadova, Z., Machon, O.,Kutinova, L., Nemeckova, S.,Opavsky, R.,and Pastorek, J. (1997). Transient transformation of mammalian cells by MN protein, a tumor-associated cell adhesion molecule with carbonic anhydrase activity. Int J Oncol 10,857-863.
    136.Zambryski, P., Joos, H.,Genetello, C.,Leemans, J., Montagu, M.V., and Schell, J.(1983). Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2,2143-2150.
    137. Zhang, X., Scheuring, C.,Tripathy, S., Xu, Z., Wu, C.,Ko, A., Tian, S.K., Arredondo, F., Lee, M.K., Santos, F.A., Jiang, R.H., Zhang, H.B.,and Tyler, B.M. (2006).An integrated BAC and genome sequence physical map of Phytophthora sojae.Mol Plant Microbe Interact 19,1302-1310.
    1.Alarco, A.M., and Raymond, M.(1999). The bZip transcription factor Caplp is involved in multidrug resistance and oxidative stress response in Candida albicans. J Bacteriol 181,700-708.
    2.Alberts, A.S.,Bouquin, N.,Johnston, L.H., and Treisman, R.(1998). Analysis of RhoA-binding proteins reveals an interaction domain conserved in heterotrimeric G protein beta subunits and the yeast response regulator protein Skn7. J Biol Chem 273,8616-8622.
    3.Araki, Y., Wu, H., Kitagaki, H., Akao, T.,Takagi, H.,and Shimoi, H. (2009). Ethanol stress
    stimulates the Ca2+-mediated calcineurin/Crzl pathway in Saccharomyces cerevisiae. J Biosci Bioeng 107,1-6.
    4.Asano, Y., Hagiwara, D., Yamashino, T.,and Mizuno, T. (2007). Characterization of the bZip-type transcription factor NapA with reference to oxidative stress response in Aspergillus nidulans. Biosci Biotechnol Biochem 71,1800-1803.
    5.Billard,P.,Dumond,H.,and Bolotin-Fukuhara, M.(1997).Characterization of an AP-1-like transcription factor that mediates an oxidative stress response in Kluyveromyces lactis. Mol Gen Genet 257,62-70.
    6. Blanco, F.A.,and Judelson, H.S.(2005). A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56, 638-648.
    7.Bohm, S.,Frishman, D.,and Mewes, H.W.(1997). Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins. Nucleic Acids Res 25,2464-2469.
    8.Borneman, A.R.,Hynes, M.J., and Andrianopoulos, A. (2002). A basic helix-loop-helix protein with similarity to the fungal morphological regulators, Phdlp, Efglp and StuA, controls conidiation but not dimorphic growth in Penicillium marneffei. Mol Microbiol 44,621-631.
    9.Brown, J.L.,Bussey, H.,and Stewart, R.C.(1994). Yeast Skn7p functions in a eukaryotic two-component regulatory pathway. EMBO J 13,5186-5194.
    10.Brown, T.A.(2006).Gene Cloning and DNA Analysis:An Introduction, Fifth edition. Wiley-Blackwell.
    11.Castrejon, F.,Gomez, A.,Sanz, M., Duran, A., and Roncero, C. (2006). The RIM101 pathway contributes to yeast cell wall assembly and its function becomes essential in the absence of mitogen-activated protein kinase Slt2p. Eukaryot Cell 5,507-517.
    12.Caubin, J.,Iglesias, T.,Bernal, J.,Munoz, A.,Marquez, G., Barbero, J.L., and Zaballos, A.(1994). Isolation of genomic DNA fragments corresponding to genes modulated in vivo by a transcription factor. Nucleic Acids Res 22,4132-4138.
    13.Chauhan, N., Latge, J.P., and Calderone,R. (2006). Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus. Nat Rev Microbiol 4,435-444.
    14.Chi, M.H., and Shore, D. (1996). SUM1-1,a dominant suppressor of SIR mutations in Saccharomyces cerevisiae, increases transcriptional silencing at telomeres and HM mating-type loci and decreases chromosome stability. Mol Cell Biol 16,4281-4294.
    15.Choi, J., Kim, Y, Kim, S.,Park, J., and Lee, Y.H. (2009). MoCRZ1,a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of
    Magnaporthe oryzae. Fungal Genet Biol 46,243-254.
    16.Coenjaerts, F.E., Hoepelman, A.I., Scharringa, J., Aarts, M., Ellerbroek, P.M., Bevaart, L., Van Strijp, J.A., and Janbon, G. (2006). The Skn7 response regulator of Cryptococcus neoformans is involved in oxidative stress signalling and augments intracellular survival in endothelium. FEMS Yeast Res 6,652-661.
    17.Cramer, R.A., Jr., Perfect, B.Z., Pinchai, N.,Park, S.,Perlin, D.S.,Asfaw, Y.G, Heitman, J., Perfect, J.R., and Steinbach, W.J. (2008). Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus.Eukaryot Cell 7,1085-1097.
    18. Cyert, M.S.(2003). Calcineurin signaling in Saccharomyces cerevisiae:how yeast go crazy in response to stress. Biochem Biophys Res Commun 311,1143-1150.
    19. Dale, W.J., and Schantz, v.M. (2007). From genes to genomes:concepts and applications of DNA technology Wiley-Blackwell.
    20. Damveld, R.A.,Arentshorst, M., Franken, A., vanKuyk, P.A., Klis, F.M., van den Hondel, C.A., and Ram, A.F. (2005). The Aspergillus niger MADS-box transcription factor RlmA is required for cell wall reinforcement in response to cell wall stress. Mol Microbiol 58,305-319.
    21.Davletova, S.,Schlauch, K.,Coutu, J.,and Mittler, R. (2005). The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139, 847-856.
    22.de Nobel, H., van Den Ende, H.,and Klis, F.M. (2000). Cell wall maintenance in fungi. Trends Microbiol 8,344-345.
    23.Emerson, R.O., and Thomas, J.H. (2009). Adaptive evolution in zinc finger transcription factors. PLoS Genet 5, e1000325.
    24. Endoh-Yamagami, S.,Hirakawa, K.,Morioka, D., Fukuda, R., and Ohta, A. (2007). Basic helix-loop-helix transcription factor heterocomplex of Yaslp and Yas2p regulates cytochrome P450 expression in response to alkanes in the yeast Yarrowia lipolytica. Eukaryot Cell 6,734-743.
    25.Estruch, F.(1991).The yeast putative transcriptional repressor RGM1 is a proline-rich zinc finger protein. Nucleic Acids Res 19,4873-4877.
    26.Fernandes, L., Rodrigues-Pousada, C., and Struhl, K.(1997). Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 17, 6982-6993.
    27.Fujioka, T., Mizutani, O.,Furukawa, K.,Sato, N., Yoshimi, A.,Yamagata, Y,Nakajima, T., and Abe, K. (2007). MpkA-Dependent and-independent cell wall integrity signaling in Aspergillus nidulans. Eukaryot Cell 6,1497-1510.
    28.Galas, D.J., and Schmitz, A.(1978). DNAse footprinting:a simple method for the detection of protein-DNA binding specificity. Nucleic Acids Res 5,3157-3170.
    29.Gamsjaeger, R.,Liew, C.K.,Loughlin, F.E.,Crossley, M.,and Mackay, J.P. (2007). Sticky fingers: zinc-fingers as protein-recognition motifs. Trends Biochem Sci 32,63-70.
    30. Garcia-Gimeno,M.A.,and Struhl,K. (2000).Acal and Aca2,ATF/CREB activators in Saccharomyces cerevisiae, are important for carbon source utilization but not the response to stress. Mol Cell Biol 20,4340-4349.
    31.Garner, M.M., and Revzin, A.(1981).A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions:application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9,3047-3060.
    32.Hagiwara, D., Asano, Y., Yamashino, T., and Mizuno, T. (2008). Characterization of bZip-type transcription factor AtfA with reference to stress responses of conidia of Aspergillus nidulans. Biosci Biotechnol Biochem 72,2756-2760.
    33.Hohmann, S.(2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66,300-372.
    34. Imazaki, I., Kurahashi, M., Iida, Y., and Tsuge, T. (2007). Fow2, a Zn(Ⅱ)2Cys6-type transcription regulator, controls plant infection of the vascular wilt fungus Fusarium oxysporum.Mol Microbiol 63,737-753.
    35.Inoue, S.,Orimo, A., Hosoi, T.,Kondo, S.,Toyoshima, H., Kondo, T., Ikegami, A.,Ouchi, Y., Orimo, H., and Muramatsu, M.(1993).Genomic binding-site cloning reveals an estrogen-responsive gene that encodes a RING finger protein. Proc Natl Acad Sci U S A 90, 11117-11121.
    36. Iuchi, S.(2001).Three classes of C2H2 zinc finger proteins.Cell Mol Life Sci 58,625-635.
    37.Iyer, L.M., Anantharaman, V., Wolf, M.Y., and Aravind, L. (2008). Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int J Parasitol 38,1-31.
    38. James, D.W., Tania, A.B.,Stephen, P.B.,and Alexander, G. (2008).Molecular Biology of the Gene (Sixth edition). San Francisco:Pearson/Benjamin Cummings.
    39.Judelson, H.S.,and Tani, S.(2007). Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot Cell 6, 1200-1209.
    40.Judelson, H.S.,Narayan, R.D.,Ah-Fong, A.M.,and Kim, K.S.(2009). Gene expression changes during asexual sporulation by the late blight agent Phytophthora infestans occur in discrete
    temporal stages. Mol Genet Genomics 281,193-206.
    41.Judelson, H.S.,Ah-Fong, A.M.,Aux, G., Avrova, A.O., Bruce, C., Cakir, C., da Cunha, L., Grenville-Briggs, L., Latijnhouwers, M., Ligterink, W., Meijer, H.J., Roberts, S.,Thurber, C.S., Whisson, S.C., Birch, P.R., Govers, F., Kamoun, S., van West, P., and Windass, J. (2008). Gene expression profiling during asexual development of the late blight pathogen Phytophthora infestans reveals a highly dynamic transcriptome. Mol Plant Microbe Interact 21,433-447.
    42.Kapoor, S.,and Takatsuji, H. (2006). Silencing of an anther-specific zinc-finger gene, MEZ1, causes aberrant meiosis and pollen abortion in petunia. Plant Mol Biol 61,415-430.
    43.Karababa, M., Valentino, E., Pardini, G., Coste, A.T., Bille, J.,and Sanglard, D. (2006). CRZ1,a target of the calcineurin pathway in Candida albicans. Mol Microbiol 59,1429-1451.
    44.Kinzler, K.W., and Vogelstein, B.(1989). Whole genome PCR:application to the identification of sequences bound by gene regulatory proteins. Nucleic Acids Res 17,3645-3653.
    45. Krems, B., Charizanis, C., and Entian, K.D.(1996). The response regulator-like protein Pos9/Skn7 of Saccharomyces cerevisiae is involved in oxidative stress resistance. Curr Genet 29,327-334.
    46. Kummerfeld, S.K., and Teichmann, S.A. (2006). DBD:a transcription factor prediction database. Nucleic Acids Res 34,D74-81.
    47. Kunoh, T., Kaneko, Y., and Harashima, S.(2000). Positive regulation of transcription of homeoprotein-encoding YHP1 by the two-component regulator Slnl in Saccharomyces cerevisiae. Biochem Biophys Res Commun 278,344-348.
    48. Lamarre, C., Ibrahim-Granet, O., Du, C., Calderone, R., and Latge, J.P. (2007). Characterization of the SKN7 ortholog of Aspergillus fumigatus. Fungal Genet Biol 44,682-690.
    49. Lamb, T.M., and Mitchell, A.P. (2003).The transcription factor Rim101p governs ion tolerance and cell differentiation by direct repression of the regulatory genes NRG1 and SMP1 in Saccharomyces cerevisiae. Mol Cell Biol 23,677-686.
    50. Latchman, D.S. (2008). Eukaryotic transscription factor. Fifth edition. Elsevier/Academic Press.
    51. Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., and Toledano, M.B.(1999). Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274, 16040-16046.
    52. Lessing, F., Kniemeyer, O.,Wozniok, I., Loeffler, J.,Kurzai, O., Haertl, A., and Brakhage, A.A. (2007).The Aspergillus fumigatus transcriptional regulator AfYapl represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse infection model. Eukaryot Cell 6,2290-2302.
    53.Lev, S.,Hadar, R.,Amedeo, P., Baker, S.E., Yoder, O.C.,and Horwitz, B.A. (2005). Activation of an
    API-like transcription factor of the maize pathogen Cochliobolus heterostrophus in response to oxidative stress and plant signals. Eukaryot Cell 4,443-454.
    54. Lewin, B. (2008). Genes Ⅸ. Jones and Bartlett Publishers.
    55. Li, J.J., and Herskowitz, I. (1993). Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262,1870-1874.
    56.Li, S.,Dean, S.,Li, Z., Horecka, J., Deschenes, R.J., and Fassler, J.S.(2002).The eukaryotic two-component histidine kinase Slnlp regulates OCH1 via the transcription factor, Skn7p. Mol Biol Cell 13,412-424.
    57. Lorick, K.L., Jensen, J.P.,Fang, S.,Ong, A.M., Hatakeyama, S.,and Weissman, A.M.(1999).RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci U SA96,11364-11369.
    58.MacPherson, S.,Larochelle, M.,and Turcotte, B.(2006). A fungal family of transcriptional regulators:the zinc cluster proteins. Microbiol Mol Biol Rev 70,583-604.
    59.Mak, K.L., Longcor, L.C., Johnson, S.E., Lemercier, C.,To, R.Q.,and Konieczny, S.F.(1996). Examination of mammalian basic helix-loop-helix transcription factors using a yeast one-hybrid system. DNA Cell Biol 15,1-8.
    60. Mehrabi, R., Ding, S.,and Xu, J.R. (2008). MADS-box transcription factor migl is required for infectious growth in Magnaporthe grisea. Eukaryot Cell 7,791-799.
    61.Meng, X., and Wolfe, S.A. (2006). Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system. Nat Protoc 1,30-45.
    62. Meng, X., Brodsky, M.H., and Wolfe, S.A. (2005). A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol 23,988-994.
    63.Molina, L., and Kahmann, R. (2007). An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19,2293-2309.
    64. Morgan, B.A., Banks, G.R., Toone, W.M., Raitt, D., Kuge, S.,and Johnston, L.H.(1997). The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J 16,1035-1044.
    65.Moye-Rowley, W.S.(2003).Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. Eukaryot Cell 2,381-389.
    66.Nakashima, K.,Zhou, X.,Kunkel, G., Zhang, Z., Deng, J.M., Behringer, R.R.,and de Crombrugghe, B.(2002). The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108,17-29.
    67.Nathues, E.,Joshi, S.,Tenberge, K.B.,von den Driesch, M., Oeser, B.,Baumer, N.,Mihlan, M.,and
    Tudzynski, P. (2004).CPTF1,a CREB-like transcription factor, is involved in the oxidative stress response in the phytopathogen Claviceps purpurea and modulates ROS level in its host Secale cereale. Mol Plant Microbe Interact 17,383-393.
    68.Onyewu, C.,Wormley, F.L., Jr., Perfect, J.R., and Heitman, J. (2004). The calcineurin target, Crzl, functions in azole tolerance but is not required for virulence of Candida albicans. Infect Immun 72, 7330-7333.
    69. Orlando, V. (2000). Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25,99-104.
    70.Orphanides, G.,and Maxwell, A.(1994). Evidence for a conformational change in the DNA gyrase-DNA complex from hydroxyl radical footprinting. Nucleic Acids Res 22,1567-1575.
    71.Ozcan, S., Leong, T., and Johnston, M.(1996).Rgtlp of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription. Mol Cell Biol 16, 6419-6426.
    72. Panadero, J., Hernandez-Lopez, M.J., Prieto, J.A., and Randez-Gil, F. (2007). Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast. Appl Environ Microbiol 73,4824-4831.
    73.Paredes, V.,Franco, A., Soto, T., Vicente-Soler, J., Gacto, M.,and Cansado, J. (2003). Different roles for the stress-activated protein kinase pathway in the regulation of trehalose metabolism in Schizosaccharomyces pombe. Microbiology 149,1745-1752.
    74. Pedley, K.F., and Walton, J.D.(2001).Regulation of cyclic peptide biosynthesis in a plant pathogenic fungus by a novel transcription factor. Proc Natl Acad Sci U S A 98,14174-14179.
    75.Prakob, W., and Judelson, H.S.(2007).Gene expression during oosporogenesis in heterothallic and homothallic Phytophthora. Fungal Genet Biol 44,726-739.
    76.Raitt, D.C., Johnson, A.L., Erkine, A.M., Makino, K., Morgan, B.,Gross, D.S.,and Johnston, L.H. (2000). The Skn7 response regulator of Saccharomyces cerevisiae interacts with Hsfl in vivo and is required for the induction of heat shock genes by oxidative stress. Mol Biol Cell 11,2335-2347.
    77.Ravasi, T., Huber, T., Zavolan, M., Forrest, A., Gaasterland, T., Grimmond, S.,and Hume, D.A. (2003).Systematic characterization of the zinc-finger-containing proteins in the mouse transcriptome. Genome Res 13,1430-1442.
    78.Robinson, K.A.,and Lopes, J.M. (2000).SURVEY AND SUMMARY:Saccharomyces cerevisiae basic helix-loop-helix proteins regulate diverse biological processes. Nucleic Acids Res 28, 1499-1505.
    79. Sakamoto, K., Arima, T.H., Iwashita, K.,Yamada, O.,Gomi, K.,and Akita, O.(2008). Aspergillus
    oryzae atfB encodes a transcription factor required for stress tolerance in conidia. Fungal Genet Biol 45,922-932.
    80.Sakurai, H., and Takemori, Y. (2007). Interaction between heat shock transcription factors (HSFs) and divergent binding sequences:binding specificities of yeast HSFs and human HSF1.J Biol Chem 282,13334-13341.
    81.Sandmann, T.,Jakobsen, J.S.,and Furlong, E.E. (2006). ChIP-on-chip protocol for genome-wide analysis of transcription factor binding in Drosophila melanogaster embryos. Nat Protoc 1, 2839-2855.
    82.Santos, M., and de Larrinoa, I.F. (2005). Functional characterization of the Candida albicans CRZ1 gene encoding a calcineurin-regulated transcription factor. Curr Genet 48,88-100.
    83.Scherer, M.,Wei, H.,Liese, R., and Fischer, R. (2002). Aspergillus nidulans catalase-peroxidase gene (cpeA) is transcriptionally induced during sexual development through the transcription factor StuA.Eukaryot Cell 1,725-735.
    84. Schumacher, J., de Larrinoa, I.F., and Tudzynski, B.(2008). Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryot Cell 7,584-601.
    85.Schweizer, A.,Rupp, S.,Taylor, B.N., Rollinghoff, M., and Schroppel, K. (2000). The TEA/ATTS transcription factor CaTeclp regulates hyphal development and virulence in Candida albicans. Mol Microbiol 38,435-445.
    86. Shore, P.,and Sharrocks, A.D. (1995). The MADS-box family of transcription factors.Eur J Biochem 229,1-13.
    87. Singh, P., Chauhan, N.,Ghosh, A., Dixon, F., and Calderone, R. (2004).SKN7 of Candida albicans: mutant construction and phenotype analysis. Infect Immun 72,2390-2394.
    88.Soriani, F.M., Malavazi, I.,da Silva Ferreira, M.E., Savoldi, M.,Von Zeska Kress, M.R.,de Souza Goldman, M.H., Loss, O., Bignell, E., and Goldman, G.H. (2008). Functional characterization of the Aspergillus fumigatus CRZ1 homologue, CrzA. Mol Microbiol 67,1274-1291.
    89.Stathopoulos, A.M., and Cyert, M.S.(1997). Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev 11,3432-3444.
    90. Stephen, D.W.,Rivers, S.L.,and Jamieson, D.J.(1995). The role of the YAP1 and YAP2 genes in the regulation of the adaptive oxidative stress responses of Saccharomyces cerevisiae. Mol Microbiol 16,415-423.
    91.Strich, R., Surosky, R.T.,Steber, C.,Dubois, E.,Messenguy, F., and Esposito, R.E.(1994). UME6 is a key regulator of nitrogen repression and meiotic development. Genes Dev 8,796-810.
    92.Takeda, T., Toda, T., Kominami, K.,Kohnosu, A., Yanagida, M., and Jones,N. (1995). Schizosaccharomyces pombe atf1+ encodes a transcription factor required for sexual development and entry into stationary phase. EMBO J 14,6193-6208.
    93.Tani, S.,Yatzkan, E., and Judelson, H.S.(2004). Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans. Mol Plant Microbe Interact 17,330-337.
    94.Tani, S.,Kim, K.S.,and Judelson, H.S.(2005). A cluster of NIF transcriptional regulators with divergent patterns of spore-specific expression in Phytophthora infestans. Fungal Genet Biol 42, 42-50.
    95.Testa, A., Donati, G., Yan, P.,Romani, F., Huang, T.H., Vigano, M.A.,and Mantovani, R. (2005). Chromatin immunoprecipitation (ChIP) on chip experiments uncover a widespread distribution of NF-Y binding CCAAT sites outside of core promoters. J Biol Chem 280,13606-13615.
    96. Tong, X., Zhang, X., Plummer, K.M., Stowell, K.M., Sullivan, P.A., and Farley, P.C. (2007). GcSTUA, an APSES transcription factor, is required for generation of appressorial turgor pressure and full pathogenicity of Glomerella cingulata. Mol Plant Microbe Interact 20,1102-1111.
    97. Tropp, E.B.(2008). Molecular Biology:Genes to Proteins, Third edition. Jones and bartlett publishers.
    98.Tuncher, A., Reinke, H., Martic, G, Caruso, M.L., and Brakhage, A.A.(2004). A basic-region helix-loop-helix protein-encoding gene (devR) involved in the development of Aspergillus nidulans. Mol Microbiol 52,227-241.
    99.Vienken, K., and Fischer, R. (2006). The Zn(Ⅱ)2Cys6 putative transcription factor NosA controls fruiting body formation in Aspergillus nidulans. Mol Microbiol 61,544-554.
    100. Vienken, K., Scherer, M., and Fischer, R. (2005). The Zn(Ⅱ)2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics 169,619-630.
    101.Wang, Q., and Szaniszlo, P.J. (2007). WdStuAp, an APSES transcription factor, is a regulator of yeast-hyphal transitions in Wangiella(Exophiala) dermatitidis. Eukaryot Cell 6,1595-1605.
    102.Wilson, R.A., and Talbot, N.J. (2009). Under pressure:investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7,185-195.
    103.Wormley, F.L.,Jr., Heinrich, G, Miller, J.L., Perfect, J.R., and Cox, GM. (2005). Identification and characterization of an SKN7 homologue in Cryptococcus neoformans. Infect Immun 73, 5022-5030.
    104. Yamamoto, A., and Sakurai, H. (2006). The DNA-binding domain of yeast Hsfl regulates both DNA-binding and transcriptional activities. Biochem Biophys Res Commun 346,1324-1329.
    105.Yamamoto, A., Ueda, J., Yamamoto, N.,Hashikawa, N.,and Sakurai, H. (2007). Role of heat shock transcription factor in Saccharomyces cerevisiae oxidative stress response. Eukaryot Cell 6, 1373-1379.
    106. Yoshimoto, H., Saltsman, K., Gasch, A.P., Li, H.X.,Ogawa, N., Botstein, D.,Brown, P.O.,and Cyert, M.S.(2002). Genome-wide analysis of gene expression regulated by the calcineurin/Crzlp signaling pathway in Saccharomyces cerevisiae. J Biol Chem 277,31079-31088.
    107. Zhang, H., Zhao, Q., Liu, K.,Zhang, Z., Wang, Y,and Zheng, X. (2009). MgCRZ1, a transcription factor of Magnaporthe grisea, controls growth, development and is involved in full virulence. FEMS Microbiol Lett.
    108.Zhang, X., De Micheli, M., Coleman, S.T., Sanglard, D.,and Moye-Rowley, W.S.(2000). Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Caplp.Mol Microbiol 36,618-629.
    109. Zheng, Y, Kief, J.,Auffarth, K., Farfsing, J.W., Mahlert, M.,Nieto, F., and Basse, C.W. (2008). The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzrl regulates fungal gene expression during the biotrophic growth stage. Mol Microbiol 68,1450-1470.
    1.Avrova, A.O., Whisson, S.C., Pritchard, L., Venter, E., De Luca, S.,Hein, I., and Birch, P.R. (2007). A novel non-protein-coding infection-specific gene family is clustered throughout the genome of Phytophthora infestans 153,747-759.
    2. Baldauf, S.L., Roger, A.J., Wenk-Siefert, I., and Doolittle, W.F. (2000).A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290,972-977.
    3.Blanco, F.A.,and Judelson, H.S.(2005). A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56, 638-648.
    4. Bohm, S.,Frishman, D., and Mewes, H.W.(1997). Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins. Nucleic Acids Res 25,2464-2469.
    5.Bulman, A.L., Hubl, S.T., and Nelson, H.C. (2001).The DNA-binding domain of yeast heat shock transcription factor independently regulates both the N-and C-terminal activation domains.J Biol Chem 276,40254-40262.
    6. Chauhan, N., Latge, J.P., and Calderone, R. (2006). Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus. Nat Rev Microbiol 4,435-444.
    7. Clos, J., Westwood, J.T.,Becker, P.B.,Wilson, S.,Lambert, K., and Wu, C.(1990). Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation. Cell 63,1085-1097.
    8. Forey, P.,and Janvier, P.(1994). Evolution of the early vertebrates. Am Scient 82,554-565.
    9. Hohmann, S.(2002). Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66,300-372.
    10. Judelson, H.S.,and Tani, S.(2007). Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations.Eukaryot Cell 6, 1200-1209.
    11.Karababa, M., Valentino, E., Pardini, G, Coste, A.T.,Bille, J.,and Sanglard, D. (2006). CRZ1,a
    target of the calcineurin pathway in Candida albicans. Mol Microbiol 59,1429-1451.
    12.Lamour, K.H., Win, J., and Kamoun, S.(2007). Oomycete genomics:new insights and future directions. FEMS Microbiol Lett 274,1-8.
    13.Latchman, D.S.(2008). Eukaryotic transscription factor. Fifth edition. Elsevier/Academic Press.
    14.Lewin, B.(2008). Genes Ⅸ. Jones and Bartlett Publishers.
    15.Miller, G, and Mittler, R. (2006). Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot (Lond) 98,279-288.
    16.Nover, L., Bharti, K., Doring, P., Mishra, S.K., Ganguli, A., and Scharf, K.D. (2001).Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need? Cell Stress Chaperones 6,177-189.
    17. Qutob, D., Kamoun, S.,and Gijzen, M. (2002). Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J 32, 361-373.
    18.Schumacher, J., de Larrinoa, I.F., and Tudzynski, B.(2008). Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryot Cell 7,584-601.
    19.Shore, P.,and Sharrocks, A.D.(1995). The MADS-box family of transcription factors. Eur J Biochem 229,1-13.
    20.Soriani, F.M., Malavazi,I., da Silva Ferreira, M.E., Savoldi, M., Von Zeska Kress, M.R.,de Souza Goldman, M.H., Loss, O.,Bignell, E., and Goldman, G.H. (2008). Functional characterization of the Aspergillus fumigatus CRZ1 homologue, CrzA.Mol Microbiol 67,1274-1291.
    21.Tamura, K., Dudley, J., Nei, M.,and Kumar, S.(2007). MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.Mol Biol Evol 24,1596-1599.
    22.Tani, S.,Kim, K.S.,and Judelson, H.S.(2005). A cluster of NIF transcriptional regulators with divergent patterns of spore-specific expression in Phytophthora infestans. Fungal Genet Biol 42, 42-50.
    23.Tropp, E.B.(2008). Molecular Biology:Genes to Proteins, Third edition. Jones and bartlett publishers.
    24.Tyler, B.M. (2002).Molecular basis of recognition between phytophthora pathogens and their hosts. Annu Rev Phytopathol 40,137-167.
    25.Tyler, B.M. (2007). Phytophthora sojae:root rot pathogen of soybean and model oomycete. Mol Plant Pathol 8,1-8.
    26.Tyler, B.M.,Tripathy, S.,Zhang, X., Dehal, P., Jiang, R.H., Aerts, A., Arredondo, F.D., Baxter, L.,
    Bensasson, D., Beynon, J.L., Chapman, J., Damasceno, C.M., Dorrance, A.E., Dou, D., Dickerman, A.W., Dubchak, I.L.,Garbelotto, M.,Gijzen, M., Gordon, S.G., Govers, F., Grunwald, N.J.,Huang, W., Ivors, K.L.,Jones, R.W., Kamoun, S.,Krampis, K.,Lamour, K.H.,Lee, M.K., McDonald, W.H., Medina, M., Meijer, H.J., Nordberg, E.K., Maclean, D.J., Ospina-Giraldo, M.D., Morris, P.F., Phuntumart, V., Putnam, N.H., Rash, S.,Rose, J.K., Sakihama, Y., Salamov, A.A., Savidor, A., Scheuring, C.F., Smith, B.M., Sobral, B.W., Terry, A.,Torto-Alalibo, T.A., Win, J., Xu, Z., Zhang, H., Grigoriev, I.V., Rokhsar, D.S.,and Boore, J.L. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313,1261-1266.
    27. West, A.G.,Shore, P.,and Sharrocks, A.D.(1997).DNA binding by MADS-box transcription factors:a molecular mechanism for differential DNA bending. Mol Cell Biol 17,2876-2887.
    28.Wiederrecht, G.,Seto, D., and Parker, C.S.(1988). Isolation of the gene encoding the S. cerevisiae heat shock transcription factor. Cell 54,841-853.
    29. Yamamoto, A., Ueda, J., Yamamoto, N.,Hashikawa, N., and Sakurai, H. (2007). Role of heat shock transcription factor in Saccharomyces cerevisiae oxidative stress response. Eukaryot Cell 6, 1373-1379.
    30.Zhang, H.,Zhao, Q., Liu, K.,Zhang, Z.,Wang, Y, and Zheng, X. (2009).MgCRZ1,a transcription factor of Magnaporthe grisea, controls growth, development and is involved in full virulence. FEMS Microbiol Lett.
    1.Ah-Fong, A.M.,Xiang, Q.,and Judelson, H.S.(2007). Architecture of the sporulation-specific Cdc14 promoter from the oomycete Phytophthora infestans. Eukaryot Cell 6,2222-2230.
    2.Ah-Fong, A.M., Bormann-Chung, C.A., and Judelson, H.S.(2008). Optimization of transgene-mediated silencing in Phytophthora infestans and its association with small-interfering RNAs. Fungal Genet Biol 45,1197-1205.
    3.Ah Fong, A.M.,and Judelson, H.S.(2003).Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete Phytophthora infestans. Mol Microbiol 50,487-494.
    4. Blanco, F.A.,and Judelson, H.S.(2005). A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol 56, 638-648.
    5.Chang, Y.C., Wright, L.C.,Tscharke, R.L.,Sorrell, T.C.,Wilson, C.F., and Kwon-Chung, KJ. (2004). Regulatory roles for the homeodomain and C2H2 zinc finger regions of Cryptococcus neoformans Stel2alphap. Mol Microbiol 53,1385-1396.
    6. Chen, X., Shen, G, Wang, Y., Zheng, X., and Wang, Y. (2007). Identification of Phytophthora sojae genes upregulated during the early stage of soybean infection. FEMS Microbiol Lett 269,280-288.
    7.Cramer, R.A., Jr., Perfect, B.Z., Pinchai, N., Park, S.,Perlin, D.S.,Asfaw, Y.G., Heitman, J., Perfect, J.R.,and Steinbach, W.J. (2008).Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus. Eukaryot Cell 7,1085-1097.
    8.Dou, D., Kale, S.D.,Wang, X., Chen, Y, Wang, Q., Jiang, R.H., Arredondo, F.D., Anderson, R.G., Thakur, P.B.,McDowell, J.M., Wang, Y,and Tyler, B.M. (2008). Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avrlb. Plant Cell 20,1118-1133.
    9. Englbrecht, C.C.,Schoof, H., and Bohm, S.(2004).Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5,39.
    10. Enkerli, J.,Bhatt, G., and Covert, S.F. (1997). Nhtl,a transposable element cloned from a dispensable chromosome in Nectria haematococca. Mol Plant Microbe Interact 10,742-749.
    11.Erwin, D.C.,and Ribiero, O.K.(1996).Phytophthora Diseases Worldwide. APS Press.
    12. Flor-Parra, I., Vranes, M., Kamper, J., and Perez-Martin, J. (2006). Bizl,a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. Plant Cell 18, 2369-2387.
    13.Fox, A.H., Liew, C.,Holmes, M., Kowalski, K.,Mackay, J., and Crossley, M.(1999). Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers.EMBO J 18,2812-2822.
    14.Fry, W. (2008). Phytophthora infestans:the plant (and R gene) destroyer. Mol. Plant Pathol.9,
    385-402.
    15. Hernandez-Lopez, M.J.,Panadero, J., Prieto, J.A., and Randez-Gil, F. (2006). Regulation of salt tolerance by Torulaspora delbrueckii calcineurin target Crzlp. Eukaryot Cell 5,469-479.
    16. Hua, C., Wang, Y., Zheng, X., Dou, D., Zhang, Z., Govers, F., and Wang, Y. (2008). A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones. Eukaryot Cell 7, 2133-2140.
    17. Iuchi, S.(2001).Three classes of C2H2 zinc finger proteins. Cell Mol Life Sci 58,625-635.
    18. Judelson, H.S.,and Blanco, F.A. (2005). The spores of Phytophthora:weapons of the plant destroyer. Nat Rev Microbiol 3,47-58.
    19.Judelson, H.S.,and Tani, S.(2007). Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot Cell 6, 1200-1209.
    20. Judelson, H.S.,Tyler, B.M., and Michelmore, R.W. (1991).Transformation of the oomycete pathogen, Phytophthora infestans. Mol Plant Microbe Interact 4,602-607.
    21.Kamoun, S.(2003). Molecular genetics of pathogenic oomycetes. Eukaryot Cell 2,191-199.
    22. Karababa, M., Valentino, E., Pardini, G, Coste, A.T., Bille, J., and Sanglard, D. (2006). CRZ1,a target of the calcineurin pathway in Candida albicans. Mol Microbiol 59,1429-1451.
    23. Maeta, K.,Izawa, S.,and Inoue, Y. (2005). Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crzl-mediated pathway in Saccharomyces cerevisiae. J Biol Chem 280, 253-260.
    24. McLeod, A., Fry, B.A., Zuluaga, A.P., Myers, K.L., and Fry, W.E. (2008). Toward improvements of oomycete transformation protocols. J Eukaryot Microbiol 55,103-109.
    25.Medvedik, O., Lamming, D.W, Kim, K.D., and Sinclair, D.A. (2007). MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol 5,e261.
    26. Miller, J., McLachlan, A.D.,and Klug, A.(1985). Repetitive zinc-binding domains in the protein transcription factor ⅢA from Xenopus oocytes. EMBO J 4,1609-1614.
    27. Polekhina, G, House, C.M., Traficante, N., Mackay, J.P., Relaix, F., Sassoon, D.A.,Parker, M.W., and Bowtell, D.D. (2002).Siah ubiquitin ligase is structurally related to TRAF and modulates TNF-alpha signaling. Nat Struct Biol 9,68-75.
    28. Prakob, W.,and Judelson, H.S.(2007). Gene expression during oosporogenesis in heterothallic and homothallic Phytophthora. Fungal Genet Biol 44,726-739.
    29.Schumacher, J., de Larrinoa, I.F., and Tudzynski, B.(2008). Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryot Cell 7,584-601.
    30. Soriani, F.M.,Malavazi, I., da Silva Ferreira, M.E., Savoldi, M.,Von Zeska Kress, M.R., de Souza Goldman, M.H., Loss, O., Bignell, E.,and Goldman, G.H. (2008). Functional characterization of the Aspergillus fumigatus CRZ1 homologue, CrzA.Mol Microbiol 67,1274-1291.
    31. Tani, S., Kim, K.S., and Judelson, H.S.(2005). A cluster of NIF transcriptional regulators with divergent patterns of spore-specific expression in Phytophthora infestans. Fungal Genet Biol 42, 42-50.
    32.Tyler, B.M. (2007). Phytophthora sojae:root rot pathogen of soybean and model oomycete. Mol Plant Pathol 8,1-8.
    33.Tyler, B.M., Forster, H., and Coffey, M.D.(1995). Inheritance of Avirulence Factors andRestriction Fragment Length Polymorphism Markersin Outcrosses of the Oomycete Phytophthora sojae. Mol. Plant Microbe Interact.8,515-523.
    34.van West, P., de Jong, A.J., Judelson, H.S.,Emons, A.M., and Govers, F.(1998).The ipiO gene of Phytophthora infestans is highly expressed in invading hyphae during infection. Fungal Genet Biol 23,126-138.
    35.郑小波.(1997).疫霉菌及其研究技术.中国农业出版社.
    1.Chauhan, N., Latge, J.P., and Calderone, R. (2006). Signalling and oxidant adaptation in Candida albicans and Aspergillus fumigatus. Nat Rev Microbiol 4,435-444.
    2. Chen, X.-R., Wang, X.-L., Zhang, Z.-G, Wang, Y.-C, and Zheng, X.-B.Differences in the induction of the oxidative burst in compatible and incompatible interactions of soybean and Phytophthora sojae.Physi Mol Plant Pathol In Press, Corrected Proof.
    3.Doke, N.(1983).Generation of superoxide anion by potato tuber protoplasts during the hypersensitive response to hyphal wall components of Phytophthora infestans and specific inhibition of the reaction by suppressors of hypersensitivity. Physiol Plant Pathol 23,359-367.
    4. Erwin, D.C., and Ribiero, O.K.(1996). Phytophthora Diseases Worldwide. APS Press.
    5.Gara, L.D., Pinto, M.C.,and Tommasi, F. (2003). The antioxidant systems vis-a-vis reactive oxygen species during plant-pathogen interaction. Plant Physiol. Bioch 41.
    6. Gechev, T.S.,Van Breusegem, F., Stone, J.M., Denev, I., and Laloi, C. (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays 28, 1091-1101.
    7. Hahn, J.S.,Hu, Z., Thiele, D.J., and Iyer, V.R. (2004).Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24,5249-5256.
    8.Huckelhoven, R., and Kogel, K.H. (2003). Reactive oxygen intermediates in plant-microbe interactions:who is who in powdery mildew resistance? Planta 216,891-902.
    9.Imazu, H.,and Sakurai, H. (2005). Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock. Eukaryot Cell 4,1050-1056.
    10.Kawano, T. (2003).Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Plant Cell Rep 21,829-837.
    11.Ketela, T., Brown, J.L.,Stewart, R.C.,and Bussey, H. (1998). Yeast Skn7p activity is modulated by the Slnlp-Ypdlp osmosensor and contributes to regulation of the HOG pathway. Mol Gen Genet 259,372-378.
    12.Krems, B.,Charizanis, C.,and Entian, K.D.(1996). The response regulator-like protein Pos9/Skn7 of Saccharomyces cerevisiae is involved in oxidative stress resistance. Curr Genet 29,327-334.
    13.Kruppa, M., and Calderone, R. (2006).Two-component signal transduction in human fungal pathogens. FEMS Yeast Res 6,149-159.
    14.Lee, J., Godon, C., Lagniel, G, Spector, D.,Garin, J., Labarre, J., and Toledano, M.B.(1999). Yapl
    and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274, 16040-16046.
    15.Li, S.,Ault, A.,Malone, C.L., Raitt, D., Dean, S.,Johnston, L.H., Deschenes, R.J., and Fassler, J.S. (1998). The yeast histidine protein kinase, Slnlp, mediates phosphotransfer to two response regulators, Ssklp and Skn7p.EMBO J 17,6952-6962.
    16.Liu, X.D.,and Thiele, D.J.(1996).Oxidative stress induced heat shock factor phosphorylation and HSF-dependent activation of yeast metallothionein gene transcription. Genes Dev 10,592-603.
    17.Maeda, T.,Wurgler-Murphy, S.M., and Saito, H.(1994). A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369,242-245.
    18. Miller, G., and Mittler, R. (2006). Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot (Lond) 98,279-288.
    19.Morano, K.A., Santoro, N.,Koch, K.A., and Thiele, D.J.(1999). A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress.Mol Cell Biol 19, 402-411.
    20.Morgan, B.A., Banks, G.R., Toone, W.M., Raitt, D., Kuge, S.,and Johnston, L.H.(1997).The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces cerevisiae. EMBO J 16,1035-1044.
    21.Nishizawa, A., Yabuta, Y.,Yoshida, E., Maruta, T., Yoshimura, K., and Shigeoka, S.(2006). Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J 48,535-547.
    22.Nover, L.,Bharti, K.,Doring, P., Mishra, S.K., Ganguli, A., and Scharf, K.D.(2001).Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need? Cell Stress Chaperones 6,177-189.
    23.Philippe, B.,Ibrahim-Granet, O.,Prevost, M.C.,Gougerot-Pocidalo, M.A., Sanchez Perez, M.,Van der Meeren, A., and Latge, J.P. (2003).Killing of Aspergillus fumigatus by alveolar macrophages is mediated by reactive oxidant intermediates.Infect Immun 71,3034-3042.
    24.Pirkkala, L., Nykanen, P., and Sistonen, L. (2001).Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15,1118-1131.
    25.Posas, F., Witten, E.A., and Saito, H.(1998). Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Mol Cell Biol 18,5788-5796.
    26.Posas, F.,Wurgler-Murphy, S.M., Maeda, T.,Witten, E.A., Thai, T.C.,and Saito, H.(1996).Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Cell 86,865-875.
    27.Rementeria, A.,Lopez-Molina, N., Ludwig, A., Vivanco, A.B.,Bikandi, J., Ponton, J., and Garaizar, J. (2005). Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 22, 1-23.
    28.Schulz-Raffelt, M.,Lodha, M., and Schroda, M. (2007). Heat shock factor 1 is a key regulator of the stress response in Chlamydomonas. Plant J 52,286-295.
    29. Takemori, Y., Sakaguchi, A., Matsuda, S.,Mizukami, Y., and Sakurai, H. (2006). Stress-induced transcription of the endoplasmic reticulum oxidoreductin gene ERO1 in the yeast Saccharomyces cerevisiae. Mol Genet Genomics 275,89-96.
    30. Torres, M.A., Jones, J.D., and Dangl, J.L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiol 141,373-378.
    31.Truman, A.W., Millson, S.H., Nuttall, J.M., Mollapour, M., Prodromou, C.,and Piper, P.W. (2007). In the yeast heat shock response, Hsfl-directed induction of Hsp90 facilitates the activation of the Slt2 (Mpkl)mitogen-activated protein kinase required for cell integrity. Eukaryot Cell 6,744-752.
    32.Tyler, B.M. (2002). Molecular basis of recognition between phytophthora pathogens and their hosts. Annu Rev Phytopathol 40,137-167.
    33.Voellmy, R. (2004). On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9,122-133.
    34. Wormley, F.L.,Jr., Heinrich, G., Miller, J.L.,Perfect, J.R., and Cox, G.M. (2005). Identification and characterization of an SKN7 homologue in Cryptococcus neoformans. Infect Immun 73, 5022-5030.
    35.Yamamoto, A., and Sakurai, H. (2006). The DNA-binding domain of yeast Hsfl regulates both DNA-binding and transcriptional activities. Biochem Biophys Res Commun 346,1324-1329.
    36.Yamamoto, A., Mizukami, Y, and Sakurai, H. (2005). Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem 280,11911-11919.
    37. Yan, L.J., Christians, E.S.,Liu, L.,Xiao, X., Sohal, R.S.,and Benjamin, I.J. (2002). Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21,5164-5172.
    38.Zhong, M., Orosz, A., and Wu, C.(1998). Direct sensing of heat and oxidation by Drosophila heat shock transcription factor. Mol Cell 2,101-108.
    39.Zou, J., Salminen, W.F., Roberts, S.M.,and Voellmy, R.(1998).Correlation between glutathione oxidation and trimerization of heat shock factor 1,an early step in stress induction of the Hsp response. Cell Stress Chaperones 3,130-141.
    1.Ah-Fong, A.M., Xiang, Q.,and Judelson, H.S.(2007). Architecture of the sporulation-specific Cdc14 promoter from the oomycete Phytophthora infestans.Eukaryot Cell 6,2222-2230.
    2.Alvarez-Buylla, E.R.,Pelaz, S.,Liljegren, S.J.,Gold, S.E.,Burgeff, C.,Ditta, G.S.,Ribas de Pouplana, L.,Martinez-Castilla, L.,and Yanofsky, M.F. (2000). An ancestral MADS-box gene duplication occurred before the divergence of plants and animals.Proc Natl Acad Sci U S A 97, 5328-5333.
    3.Becker, A.,and Theissen, G. (2003).The major clades of MADS-box genes and their role in the development and evolution of flowering plants.Mol Phylogenet Evol 29,464-489.
    4.Buchner, P., and Boutin, J.P.(1998).A MADS box transcription factor of the AP1/AGL9 subfamily-is also expressed in the seed coat of pea (Pisum sativum) during development. Plant Mol Biol 38, 1253-1255.
    5.Chen, X.,Shen, G,Wang, Y.,Zheng, X.,and Wang, Y. (2007).Identification of Phytophthora sojae genes upregulated during the early stage of soybean infection. FEMS Microbiol Lett 269,280-288.
    6.Damveld, R.A.,Arentshorst, M.,Franken, A.,vanKuyk, P.A.,Klis, F.M.,van den Hondel, C.A.,and
    Ram, A.F. (2005). The Aspergillus niger MADS-box transcription factor RlmA is required for cell wall reinforcement in response to cell wall stress.Mol Microbiol 58,305-319.
    7. de Nadal, E.,Casadome, L.,and Posas, F. (2003).Targeting the MEF2-like transcription factor Smpl by the stress-activated Hogl mitogen-activated protein kinase.Mol Cell Biol 23,229-237.
    8.de Nobel, H., van Den Ende, H.,and Klis, F.M. (2000).Cell wall maintenance in fungi. Trends Microbiol 8,344-345.
    9.Hileman, L.C.,Sundstrom, J.F., Litt, A.,Chen, M., Shumba, T., and Irish, V.F. (2006). Molecular and phylogenetic analyses of the MADS-box gene family in tomato.Mol Biol Evol 23,2245-2258.
    10.Hua, C., Wang, Y.,Zheng. X.,Dou, D.,Zhang, Z.,Govers, F.,and Wang, Y. (2008).A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones. Eukaryot Cell 7, 2133-2140.
    11.Jung, U.S.,and Levin, D.E.(1999).Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol Microbiol 34,1049-1057.
    12.Kamoun, S.(2003).Molecular genetics of pathogenic oomycetes.Eukaryot Cell 2,191-199.
    13.Kruger, J.,Aichinger, C.,Kahmann, R.,and Bolker, M.(1997). A MADS-box homologue in Ustilago maydis regulates the expression of pheromone-inducible genes but is nonessential. Genetics 147,1643-1652.
    14. McInerny, C.J.,Partridge, J.F.,Mikesell, G.E.,Creemer, D.P.,and Breeden, L.L.(1997). A novel Mcm1-dependent element in the SWI4, CLN3,CDC6, and CDC47 promoters activates M/Gl-specific transcription. Genes Dev 11,1277-1288.
    15. McLeod, A., Smart, C.D.,and Fry, WE. (2004). Core promoter structure in the oomycete Phytophthora infestans.Eukaryot Cell 3,91-99.
    16.Mehrabi, R., Ding, S.,and Xu, J.R. (2008). The MADS-box transcription factor Migl is required for infectious growth in Magnaporthe grisea. Eukaryot Cell 7,791-799.
    17.Messenguy, F.,and Dubois, E. (2003).Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316,1-21.
    18.Messenguy Francine, and Evelyne, D. (2000). Regulation of Arginine Metabolism in Saccharomyces cerevisiae:a Network of Specific and Pleiotropic Proteins in Response to Multiple Environmental Signals.Food TechnolBiotechnol 38,277-285.
    19.Nielsen, O.,Friis, T.,and Kjaerulff, S.(1996).The Schizosaccharomyces pombe mapl gene encodes an SRF/MCM1-related protein required for P-cell specific gene expression. Mol Gen Genet 253,387-392.
    20.Parenicova, L.,de Folter, S., Kieffer, M.,Homer, D.S.,Favalli, C.,Busscher, J., Cook, H.E.,Ingram,
    R.M.,Kater, M.M.,Davies, B.,Angenent, G.C., and Colombo, L. (2003). Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis:new openings to the MADS world. Plant Cell 15,1538-1551.
    21.Shore, P.,and Sharrocks, A.D.(1995).The MADS-box family of transcription factors.Eur J Biochem 229,1-13.
    22.Tani, S.,and Judelson, H.(2006).Activation of zoosporogenesis-specific genes in Phytophthora infestans involves a 7-nucleotide promoter motif and cold-induced membrane rigidity. Eukaryot Cell 5,745-752.
    23.Terashima, H.,Yabuki,N.,Arisawa, M.,Hamada, K.,and Kitada, K. (2000). Up-regulation of genes encoding glycosylphosphatidylinositol (GPI)-attached proteins in response to cell wall damage caused by disruption of FKS1 in Saccharomyces cerevisiae. Mol Gen Genet 264,64-74.
    24.Walker, C.A.,and van West, P. (2007).Zoospore development in the oomycetes.Fungal Biology Reviews 21,10-18.
    1. Araki, Y.,Wu, H.,Kitagaki, H.,Akao, T.,Takagi, H., and Shimoi, H.(2009).Ethanol stress stimulates the Ca2+-mediated calcineurin/Crzl pathway in Saccharomyces cerevisiae.J Biosci Bioeng 107,1-6.
    2.Arechiga-Carvajal, E.T.,and Ruiz-Herrera, J. (2005). The RIM101/pacC homologue from the basidiomycete Ustilago maydis is functional in multiple pH-sensitive phenomena. Eukaryot Cell 4, 999-1008.
    3.Bignell, E.,Negrete-Urtasun, S.,Calcagno, A.M.,Haynes, K.,Arst, H.N.,Jr., and Rogers, T. (2005). The Aspergillus pH-responsive transcription factor PacC regulates virulence.Mol Microbiol 55, 1072-1084.
    4.Calcagno, A.M.,Bignell, E.,Warn, P., Jones, M.D.,Denning, D.W., Muhlschlegel, F.A.,Rogers, T.R.,and Haynes, K. (2003).Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation. Mol Microbiol 50,1309-1318.
    5.Calero-Nieto, F.,Di Pietro, A.,Roncero, M.I.,and Hera, C. (2007). Role of the transcriptional activator xlnR of Fusarium oxysporum in regulation of xylanase genes and virulence. Mol Plant Microbe Interact 20,977-985.
    6.Caracuel, Z.,Roncero, M.I.,Espeso, E.A.,Gonzalez-Verdejo, C.I.,Garcia-Maceira, F.I.,and Di Pietro, A.(2003).The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum.Mol Microbiol 48,765-779.
    7.Chang, Y.C.,Wright, L.C.,Tscharke, R.L.,Sorrell, T.C., Wilson, C.F.,and Kwon-Chung, K.J. (2004).Regulatory roles for the homeodomain and C2H2 zinc finger regions of Cryptococcus neoformans Stel2alphap. Mol Microbiol 53,1385-1396.
    8.Chilton, I.J.,Delaney, C.E.,Barham-Morris, J.,Fincham, D.A.,Hooley, P.,and Whitehead, M.P. (2008).The Aspergillus nidulans stress response transcription factor StzA is ascomycete-specific and shows species-specific polymorphisms in the C-terminal region. Mycol Res 112,1435-1446.
    9. Choi, J., Kim, Y.,Kim, S.,Park, J.,and Lee, Y.H. (2009). MoCRZ1,a gene encoding a calcineurin-responsive transcription factor, regulates fungal growth and pathogenicity of Magnaporthe oryzae. Fungal Genet Biol 46,243-254.
    10.Cramer, R.A.,Jr.,Perfect, B.Z.,Pinchai, N.,Park, S.,Perlin, D.S.,Asfaw, Y.G.,Heitman, J.,Perfect, J.R.,and Steinbach, W.J. (2008).Calcineurin target CrzA regulates conidial germination, hyphal growth, and pathogenesis of Aspergillus fumigatus.Eukaryot Cell 7,1085-1097.
    11.Deng, F.,Allen, T.D.,and Nuss, D.L. (2007). Ste12 transcription factor homologue CpST12 is down-regulated by hypovirus infection and required for virulence and female fertility of the chestnut blight fungus Cryphonectria parasitica. Eukaryot Cell 6,235-244.
    12.Flor-Parra, I., Vranes, M.,Kamper, J.,and Perez-Martin, J. (2006).Bizl,a zinc finger protein required for plant invasion by Ustilago maydis, regulates the levels of a mitotic cyclin. Plant Cell 18, 2369-2387.
    13.Hagiwara, D., Kondo, A.,Fujioka, T.,and Abe, K. (2008).Functional analysis of C2H2zinc finger transcription factor CrzA involved in calcium signaling in Aspergillus nidulans. Current Genetics 54,325-338.
    14.Harrison, K.A.,and Marzluf, G.A. (2002). Characterization of DNA binding and the cysteine rich region of SRE, a GATA factor in Neurospora crassa involved in siderophore synthesis. Biochemistry 41,15288-15295.
    15.Hernandez-Lopez, M.J., Panadero, J., Prieto, J.A.,and Randez-Gil, F. (2006).Regulation of salt tolerance by Torulaspora delbrueckii calcineurin target Crzlp.Eukaryot Cell 5,469-479.
    16.Hirayama, S.,Sugiura, R., Lu, Y.,Maeda, T.,Kawagishi, K., Yokoyama, M., Tohda, H.,Giga-Hama, Y.,Shuntoh, H.,and Kuno, T. (2003).Zinc finger protein Przl regulates Ca2+ but not Cl' homeostasis in fission yeast. Identification of distinct branches of calcineurin signaling pathway in fission yeast. J Biol Chem 278,18078-18084.
    17.Hoi, J.W., Herbert, C.,Bacha, N.,O'Connell, R., Lafitte, C.,Borderies, G., Rossignol, M., Rouge, P., and Dumas, B.(2007).Regulation and role of a STE12-like transcription factor from the plant pathogen Colletotrichum lindemuthianum.Mol Microbiol 64,68-82.
    18.Hurtado, C.A.,and Rachubinski, R.A.(1999).MHY1 encodes a C2H2-type zinc finger protein that promotes dimorphic transition in the yeast Yarrowia lipolytica. J Bacteriol 181,3051-3057.
    19.Kamran, M., Calcagno, A.M., Findon, H.,Bignell, E.,Jones, M.D.,Warn, P., Hopkins, P.,Denning, D.W., Butler, G., Rogers, T.,Muhlschlegel, F.A.,and Haynes, K. (2004).Inactivation of transcription factor gene ACE2 in the fungal pathogen Candida glabrata results in hypervirulence. Eukaryot Cell 3,546-552.
    20.Karababa, M.,Valentino, E.,Pardini, G., Coste, A.T., Bille, J.,and Sanglard, D.(2006).CRZ1,a target of the calcineurin pathway in Candida albicans.Mol Microbiol 59,1429-1451.
    21.Kihara, J.,Moriwaki, A.,Tanaka, N.,Tanaka, C.,Ueno, M.,and Arase, S.(2008).Characterization of the BMR1 gene encoding a transcription factor for melanin biosynthesis genes in the phytopathogenic fungus Bipolaris oryzae.FEMS Microbiol Lett 281,221-227.
    22. Kren, A.,Mamnun, Y.M., Bauer, B.E., Schuller, C.,Wolfger, H.,Hatzixanthis, K., Mollapour, M.,
    Gregori, C.,Piper, P., and Kuchler, K. (2003).Warlp, a novel transcription factor controlling weak acid stress response in yeast. Mol Cell Biol 23,1775-1785.
    23.Limjindaporn, T.,Khalaf, R.A.,and Fonzi, W.A.(2003).Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1.Mol Microbiol 50,993-1004.
    24.Maeta, K.,Izawa, S.,and Inoue, Y.(2005).Methylglyoxal, a metabolite derived from glycolysis, functions as a signal initiator of the high osmolarity glycerol-mitogen-activated protein kinase cascade and calcineurin/Crzl-mediated pathway in Saccharomyces cerevisiae.J Biol Chem 280, 253-260.
    25.Masloff, S.,Jacobsen, S.,Poggeler, S.,and Kuck, U. (2002). Functional analysis of the C6 zinc finger gene prol involved in fungal sexual development. Fungal Genet Biol 36,107-116.
    26.Medvedik, O.,Lamming, D.W.,Kim, K.D.,and Sinclair, D.A.(2007).MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol 5,e261.
    27. Mulhern, S.M.,Logue, M.E.,and Butler, G. (2006). Candida albicans Transcription Factor Ace2 Regulates Metabolism and Is Required for Filamentation in Hypoxic Conditions. Eukaryotic Cell 5, 2001-2013.
    28.Nicholls, S.,Straffon, M.,Enjalbert, B.,Nantel, A.,Macaskill, S.,Whiteway, M.,and Brown, A.J. (2004).Msn2-and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans. Eukaryot Cell 3,1111-1123.
    29. Onyewu, C.,Wormley, F.L., Jr.,Perfect, J.R.,and Heitman, J. (2004).The calcineurin target, Crzl, functions in azole tolerance but is not required for virulence of Candida albicans.Infect Immun 72, 7330-7333.
    30.Panadero, J.,Hernandez-Lopez, M.J.,Prieto, J.A.,and Randez-Gil, F. (2007).Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast. Appl Environ Microbiol 73,4824-4831.
    31.Perez-Garcia, A.,Snoeijers, S.S.,Joosten, M.H.,Goosen, T.,and De Wit, P.J. (2001).Expression of the Avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by the global nitrogen response factor NRF1.Mol Plant Microbe Interact 14,316-325.
    32. Ramon, A.M.,Porta, A.,and Fonzi, W.A.(1999).Effect of environmental pH on morphological development of Candida albicans is mediated via the PacC-related transcription factor encoded by PRR2.J Bacteriol 181,7524-7530.
    33.Ren, P.,Springer, D.J.,Behr, M.J.,Samsonoff, W.A.,Chaturvedi,S.,and Chaturvedi, V. (2006).
    Transcription factor STE12alpha has distinct roles in morphogenesis, virulence, and ecological fitness of the primary pathogenic yeast Cryptococcus gattii. Eukaryot Cell 5,1065-1080.
    34.Rerngsamran, P., Murphy, M.B.,Doyle, S.A., and Ebbole, D.J. (2005). Fluffy, the major regulator of conidiation in Neurospora crassa, directly activates a developmentally regulated hydrophobin gene. Mol Microbiol 56,282-297.
    35.Roetzer, A.,Gregori, C.,Jennings, A.M.,Quintin, J., Ferrandon, D.,Butler, G., Kuchler, K., Ammerer, G, and Schuller, C.(2008).Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors. Mol Microbiol 69,603-620.
    36.Rollins, J.A.,and Dickman, M.B.(2001).pH signaling in Sclerotinia sclerotiorum:identification of a pacC/RIM1 homolog. Appl Environ Microbiol 67,75-81.
    37.Santos, M., and de Larrinoa, I.F. (2005). Functional characterization of the Candida albicans CRZ1 gene encoding a calcineurin-regulated transcription factor. Curr Genet 48,88-100.
    38.Schumacher, J., de Larrinoa, I.F., and Tudzynski, B.(2008).Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryot Cell 7,584-601.
    39.Soriani, F.M.,Malavazi, I.,da Silva Ferreira, M.E.,Savoldi, M.,Von Zeska Kress, M.R.,de Souza Goldman, M.H.,Loss, O., Bignell, E.,and Goldman, G.H. (2008).Functional characterization of the Aspergillus fumigatus CRZ1 homologue, CrzA. Mol Microbiol 67,1274-1291.
    40.Stathopoulos, A.M.,and Cyert, M.S.(1997). Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev 11,3432-3444.
    41.Sun, Q., Choi, G.H.,and Nuss, D.L. (2009). Hypovirus-responsive transcription factor gene prol of the chestnut blight fungus Cryphonectria parasitica is required for female fertility, asexual spore development, and stable maintenance of hypovirus infection. Eukaryot Cell 8,262-270.
    42.Tsuji, G., Kenmochi, Y., Takano, Y.,Sweigard, J.,Farrall, L., Furusawa, I.,Horino, O.,and Kubo, Y. (2000). Novel fungal transcriptional activators, Cmrlp of Colletotrichum lagenarium and piglp of Magnaporthe grisea, contain Cys2His2 zinc finger and Zn(Ⅱ)2Cys6 binuclear cluster DNA-binding motifs and regulate transcription of melanin biosynthesis genes in a developmentally specific manner. Mol Microbiol 38,940-954.
    43.van Peij,N.N.,Visser, J., and de Graaff, L.H.(1998).Isolation and analysis of xlnR, encoding a transcriptional activator co-ordinating xylanolytic expression in Aspergillus niger. Mol Microbiol 27,131-142.
    44.Vinces, M.D., Haas, C.,and Kumamoto, C.A.(2006).Expression of the Candida albicans morphogenesis regulator gene CZF1 and its regulation by Efglp and Czflp. Eukaryot Cell 5, 825-835.
    45.Zhang, H.,Zhao, Q.,Liu, K.,Zhang, Z.,Wang, Y., and Zheng, X.(2009). MgCRZl, a transcription factor of Magnaporthe grisea, controls growth, development and is involved in full virulence. FEMS Microbiol Lett.
    46.Zheng, Y.,Kief, J.,Auffarth, K.,Farfsing, J.W.,Mahlert, M.,Nieto, F.,and Basse, C.W. (2008).The Ustilago maydis Cys2His2-type zinc finger transcription factor Mzrl regulates fungal gene expression during the biotrophic growth stage. Mol Microbiol 68,1450-1470.
    1. Arai, M.,Mitsuke, H.,Ikeda, M.,Xia, J.X., Kikuchi, T.,Satake, M.,and Shimizu, T. (2004). ConPred Ⅱ:a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res 32, W390-393.
    2.Bakthavatsalam, D.,Meijer, H.J.,Noegel, A.A.,and Govers, F. (2006). Novel phosphatidylinositol phosphate kinases with a G-protein coupled receptor signature are shared by Dictyostelium and Phytophthora. Trends Microbiol 14,378-382.
    3.Caterina, M.J.,and Devreotes, P.N.(1991).Molecular insights into eukaryotic chemotaxis.FASEB J 5,3078-3085.
    4.Chen, Y,Yu, P.,Luo, J.,and Jiang, Y (2003).Secreted protein prediction system combining CJ-SPHMM,TMHMM,and PSORT. Mamm Genome 14,859-865.
    5.Cherezov, V., Rosenbaum,D.M.,Hanson,M.A.,Rasmussen,S.G,Thian, F.S.,Kobilka, T.S., Choi, H.J.,Kuhn, P., Weis, W.I.,Kobilka, B.K.,and Stevens, R.C.(2007). High-resolution crystal
    structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258-1265.
    6.Chung, K.S., Won, M., Lee, S.B.,Jang, Y.J., Hoe, K.L., Kim, D.U.,Lee, J.W., Kim, K.W., and Yoo, H.S.(2001).Isolation of a novel gene from Schizosaccharomyces pombe:stml encoding a seven-transmembrane loop protein that may couple with the heterotrimeric Galpha 2 protein, Gpa2. J Biol Chem 276,40190-40201.
    7. Conigrave, A.D., and Hampson, D.R. (2006).Broad-spectrum L-amino acid sensing by class 3 G-protein-coupled receptors.Trends Endocrinol Metab 17,398-407.
    8. Cserzo, M., Wallin, E., Simon, I.,von Heijne,G., and Elofsson, A.(1997).Prediction of transmembrane alpha-helices in prokaryotic membrane proteins:the dense alignment surface method. Protein Eng 10,673-676.
    9. Donaldson SP, and Deacon JW.(192). Role of calcium in adhesion and germination of zoospore cysts of Pythium:a model to explain infection of host plants. J Gen Microbiol 138,2051-2059.
    10. Han, K.H.,Seo, J.A.,and Yu, J.H. (2004).A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Mol Microbiol 51,1333-1345.
    11.Hua, C.,Wang, Y, Zheng, X.,Dou, D.,Zhang, Z.,Govers, F., and Wang, Y. (2008).A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones.Eukaryot Cell 7, 2133-2140.
    12.Jackson, S.L.,and Hardham, A.R.(1996). A transient rise in cytoplasmic free calcium is required to induce cytokinesis in zoosporangia of Phytophthora cinnamomi. Eur J Cell Biol 69,180-188.
    13.Kolakowski, L.F.,Jr.(1994). GCRDb:a G-protein-coupled receptor database.Receptors Channels 2,1-7.
    14.Kraakman, L., Lemaire, K.,Ma, P.,Teunissen, A.W.,Donaton, M.C.,Van Dijck, P.,Winderickx, J., de Winde, J.H.,and Thevelein, J.M.(1999).A Saccharomyces cerevisiae G-protein coupled receptor, Gprl,is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose.Mol Microbiol 32,1002-1012.
    15.Lafon, A.,Han, K.H.,Seo, J.A.,Yu, J.H., and d'Enfert, C.(2006). G-protein and cAMP-mediated signaling in aspergilli:a genomic perspective.Fungal Genet Biol 43,490-502.
    16.Latijnhouwers, M., Ligterink, W.,Vleeshouwers, V.G.,van West, P., and Govers, F. (2004).A Galpha subunit controls zoospore motility and virulence in the potato late blight pathogen Phytophthora infestans.Mol Microbiol 51,925-936.
    17.Lefkowitz, R.J. (2007). Seven transmembrane receptors:something old, something new. Acta Physiol(Oxf) 190,9-19.
    18.Lemaire, K.,Van de Velde, S.,Van Dijck, P.,and Thevelein, J.M. (2004).Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gprl in the yeast Saccharomyces cerevisiae.Mol Cell 16,293-299.
    19.Li, L.,Wright, S.J., Krystofova, S.,Park, G, and Borkovich, K.A.(2007).Heterotrimeric G protein signaling in filamentous fungi.Annu Rev Microbiol 61,423-452.
    20.Liebmann, C.,and Bohmer, F.D. (2000).Signal transduction pathways of G protein-coupled receptors and their cross-talk with receptor tyrosine kinases:lessons from bradykinin signaling. Curr Med Chem 7,911-943.
    21.Liu, X.,Yue, Y.,Li, B.,Nie, Y.,Li, W.,Wu, W.H.,and Ma, L. (2007).A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315,1712-1716.
    22.Maller, J.L. (2003).Signal transduction. Fishing at the cell surface.Science 300,594-595.
    23. Morris, P.F.,Bone, E.,and Tyler, B.M.(1998). Chemotropic and contact responses of phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. Plant Physiol 117,1171-1178.
    24.Nazarko, V.Y.,Thevelein, J.M., and Sibirny, A.A. (2008). G-protein-coupled receptor Gprl and G-protein Gpa2 of cAMP-dependent signaling pathway are involved in glucose-induced pexophagy in the yeast Saccharomyces cerevisiae. Cell Biol Int 32,502-504.
    25. Olesnicky, N.S.,Brown, A.J.,Dowell, S.J.,and Casselton, L.A.(1999).A constitutively active G-protein-coupled receptor causes mating self-compatibility in the mushroom Coprinus.EMBO J 18,2756-2763.
    26.Pandey, S.,and Assmann, S.M. (2004).The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16, 1616-1632.
    27.Ponting, C.P., Schultz, J., Milpetz, F.,and Bork, P.(1999). SMART:identification and annotation of domains from signalling and extracellular protein sequences.Nucleic Acids Res 27,229-232.
    28.Rasmussen, S.G.,Choi, H.J.,Rosenbaum, D.M.,Kobilka, T.S.,Thian, F.S.,Edwards, P.C., Burghammer, M.,Ratnala, V.R., Sanishvili, R.,Fischetti, R.F., Schertler, G.F., Weis, W.I.,and Kobilka, B.K. (2007). Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450,383-387.
    29.Rosenbaum, D.M.,Cherezov, V.,Hanson, M.A.,Rasmussen, S.G.,Thian, F.S., Kobilka, T.S., Choi, H.J.,Yao, X.J.,Weis, W.I.,Stevens, R.C.,and Kobilka, B.K. (2007).GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318,1266-1273.
    30.Tani, S.,Yatzkan, E.,and Judelson, H.S.(2004). Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans.Mol Plant Microbe Interact 17,330-337.
    31. Tusnady, G.E., and Simon, I. (2001).The HMMTOP transmembrane topology prediction server. Bioinformatics 17,849-850.
    32.Warburton, A.J.,and Deacon, J.W.(1998).Transmembrane Ca2+ fluxes associated with zoospore encystment and cyst germination by the phytopathogen phytophthora parasitica. Fungal Genet Biol 25,54-62.
    33.Warne, T.,Serrano-Vega, M.J.,Baker, J.G.,Moukhametzianov, R., Edwards, P.C.,Henderson, R., Leslie, A.G., Tate, C.G., and Schertler, G.F. (2008). Structure of a betal-adrenergic G-protein-coupled receptor. Nature 454,486-491.
    34. Whiteway, M.,Hougan, L.,Dignard, D.,Thomas, D.Y.,Bell, L.,Saari, G.C.,Grant, F.J.,O'Hara, P., and MacKay, V.L.(1989).The STE4 and STE18 genes of yeast encode potential beta and gamma subunits of the mating factor receptor-coupled G protein. Cell 56,467-477.
    35.Xue, C.,Hsueh, Y.P.,and Heitman, J. (2008). Magnificent seven:roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32,1010-1032.
    36. Xue, C., Bahn, Y.S., Cox, G.M.,and Heitman, J. (2006).G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol Biol Cell 17, 667-679.
    37. Yu, J.H. (2006). Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J Microbiol 44,145-154.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700