用户名: 密码: 验证码:
结构新型聚丙烯基FRP筋、OFBG传感器及其性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
FRP(Fibre Reinforced Polymer)材料以其诸如轻质、高强和高耐久性等优点赢得了土木工程科研人员的青睐。但目前,土木工程结构中不论是对结构进行加固还是增强所使用的FRP筋、板等材料都是采用热固性FRP材料(FRSP,Fiber Reinforced Thermosetting Polymer)。FRSP存在整体柔韧性较差、破坏没有预兆、同时存在污染环境,不能二次回收等问题。再者,FRSP材料不具有二次成型的特点,使得结构中许多特殊形式不易实现,如弯筋或箍筋等。同时,FRSP不论是筋还是板多为预制使用,在现场基本没有再加工能力。针对FRSP材料的这些不足,本文基于FRP的另外一种体系——热塑性FRP材料(FRTP,Fiber Reinforced Thermoplastic Polymer),开发了玻璃纤维增强聚丙烯(GFRPP,Glass Fiber Reinforced Polypropylene)筋。对其生产工艺、物理及力学性能、耐久性能和折弯工艺等进行了系统的研究。同时,在充分研究了GFRPP筋及其树脂基体性能的基础上,我们还开发出GFRPP-OFBG(Optical Fiber Bragg Grating)智能筋以及适用于沥青路面应变监测的PP-OFBG应变传感器,并进行了实验验证和工程应用。本文主要研究内容如下:
     首先,对GFRPP筋的生产工艺进行了研究。对增强纤维与树脂熔体的浸渍过程进行了理论分析,确定了合适的浸渍工艺;同时通过制品性能和生产工艺要求确定了纤维与树脂在制品中的含量,确定了混合树脂各组分配比;并采用自行研制的在线熔融浸渍的热塑性拉挤工艺装置,以及热塑性拉挤缠绕、热塑性拉挤模压装置生产出光面GFRPP筋和带肋GFRPP筋,同时确定了生产工艺参数并研究了生产工艺参数对制品性能的影响,并对GFRPP筋制品的表面及内部缺陷进行了分析。
     其次,对自行研制生产的不同树脂及纤维配比和表面形式的GFRPP筋分别进行了拉伸强度、拉伸模量、层间剪切强度、冲击韧性以及吸水率等物理及力学性能的测试,并与热固性FRP筋进行对比研究。针对GFRPP筋径向强度低,拉伸实验时容易被实验机夹具破坏的特点,通过ANSYS有限元分析,设计出了适合于试验应用的锚夹具。
     再次,对自行研制的GFRPP筋进行了折弯理论的分析,并研究了GFRPP筋折成弯筋或箍筋的具体工艺;根据GFRPP筋的折弯条件开发研制出结构简单、适合于GFRPP筋折弯的弯曲机。同时对弯曲后的GFRPP筋进行了混凝土粘结性能试验和采用GFRPP作为箍筋的加筋混凝土梁受弯实验,以此来讨论GFRPP作为弯筋和箍筋是否满足土木工程需要。
     第四,对自行研制的GFRPP筋进行了在20℃和60℃条件下的碱溶液以及60℃条件下酸和盐溶液中的耐久性常规和加速试验对比研究以及紫外光快速老化试验研究。通过对试件的拉伸强度、拉伸模量、抗冲击性以及层间剪切强度等性能的试验研究,讨论了GFRPP筋耐环境腐蚀性能。并采用FHWA法对GFRPP筋在10℃,100%RH环境中的耐久性寿命进行预测。同时,通过进行GFRPP筋紫外光加速老化试验研究,对不同炭黑含量的GFRPP筋以及热固性FRP筋进行了对比研究,通过对其冲击韧性和层间剪切强度进行对比试验,讨论了炭黑的掺入对制品耐紫外光老化性能的影响。
     第五,在GFRPP筋的拉挤生产过程中,我们通过复合OFBG的方法研制了GFRPP-OFBG智能筋,并对其力学性能和感知性能进行了试验研究,同时利用双光栅法对GFRPP筋拉挤成型过程中的温度和应变进行在线监测,对GFRPP筋拉挤工艺过程控制参数提供参考,同时也检测了智能筋成型工艺对其中光栅性能的影响。同时我们利用PP基体采用挤出生产工艺封装制造了PP-OFBG传感元件,并对其进行了传感性能的试验研究,同时采用双光栅法两次测量对其成型过程中的温度及应变变化进行了在线监测,讨论了采用此工艺来研制大应变传感器的问题。
     最后,基于PP-OFBG传感元件,同时通过设计PP树脂基体模量与沥青混凝土模量相当,本文研制开发出主要针对于沥青路面应变监测的PP-OFBG埋入式应变传感器,并进行了传感性能试验研究。通过进行沥青混凝土梁的四点弯曲静载及动载试验并与理论计算进行了对比研究,我们发现这种传感器能够很好地反映出沥青混凝土的变形特征。通过采用PP-OFBG埋入式传感器对钢梁沥青路面结构进行了实际监测方案的设计、监测和分析研究证明了PP-OFBG作为沥青路面变形测试具有良好、稳定的特性,能够满足实际路面测试要求。
FRP (Fiber Reinforced Polymer) materials have gained much more interests of the researchers in civil engineering for their light weight, high strength and excellent durability performance. While, as we know, common FRP rebars or plates used for reinforcing or strengthening in civil engineering are mostly made by fiber reinforced thermosetting polymer (FRSP) materials. But FRSP have so many disadvantages such as: poor integral flexibility, no premonition before break, environment pollution and so on. Further more, FRSP materials can not be reshaped so that many of the special shapes as bending rebar or hoop rebar cannot be easily obtained. Rebars or plates are mostly prefabricated in factory, and they can not be handled at site. For above reasons, we developed and successfully fabricated Glass Fiber Reinforced Polypropylene(GFRPP) according to another FRP system—Fiber Reinforced Thermoplastic Polymer (FRTP). And the fabricating techniques, physical and mechanical performance, durability and bending techniques have been systematically studied. Meanwhile, we have also invented and produced GFRPP-OFBG composite rebar and PP-OFBG strain sensor for asphalt pavement strain monitoring on the base of good understanding on the performance of the GFRPP rebar and resin matrix, experiments and project application have been performed. The main works of this dissertation are as follows.
     Above all, the fabricating techniques of GFRPP rebar have been studied. And theoretical analysis on the impregnation of fibers and molten resin has been done, the appropriate impregnation techniques have been defined; the fiber and resin contents and resin mixture ratio have also determined under the needs of fabricating process and performance of the products. Round and ribbed GFRPP rebar have been successfully fabricated through ourselves-designed online molten impregnation thermoplastic pultrusion equipments and thermoplastic pultrusion-enwinding techniques or thermoplastic pultrusion-molding techniques. And the processing parameters have been defined, and their effects on the performance of the products have been studied. Some defects inside or outside of GFRPP rebars have been analyzed.
     Secondly, some physical and mechanical performance of GFRPP rebars with different surface-treatment and fiber/resin mixture ratio as tension strength, tension modulus, interlamination shearing strength, impact toughness and hygroscopic coefficient have been tested, and some comparison study have been done to those of fiber reinforced thermosetting polymer rebars. As we know, the radial strength of FRP rebar is very low, and it can be easily broken by the holders of the testing machine when being tensioned. Because of these, we did some finite element method (FEM) analysis by ANSYS software on the anchors of FRP rebars, and a kind of proper anchor have been designed and fabricated.
     Thirdly, bending theoretical analysis on GFRPP rebars have been performed and the specific techniques on making GFRPP bending rebar or GFRPP hoop rebar have been studied; and we also invented and produced a simple and flexible“GFRPP rebar bending machine”according to the performance of GFRPP rebar. And it was experimentally studied bonding performance of some kinds of bent rebar with concrete bonding specimens so that we can know whether bent GFRPP rebar can meet the needs of civil engineering. Results shows that the strength in bending part of GFRPP rebar can reach 30%~60% of the ultimate tension strength, and with the strengthening of epoxy resin, this strength can reach or above 70% of the ultimate tension strength.
     Fourthly, to study the corrosion resistance problem of GFRPP rebar, corrosion tests of GFRPP rebars have been done in alkali solution individually at 20, and 60℃accelerating temperature and in salt and acid solution at 60℃accelerating temperature. Some UV-light accelerating ageing experiments also have been done to test the UV-light resistance of GFRPP rebars. The physical and mechanical performance such as tension strength, tension modulus, interlamination shearing strength, impact toughness and hygroscopic coefficient have been tested to evaluate the corrosion or UV-light ageing abilities. Durability life of the GFRPP rebars serving in 10℃, RH=100%, without stress condition was predicted individually by tow kinds of FHWA methods. Also, UV-light accelerating ageing experiments have been done to test the effects of carbon content on the UV-light resistance of GFRPP rebars, and the interlamination shearing strength, impact toughness have been tested at different age. The results tells that carbon as a light stabilizer can improve the UV-light resistance of GFRPP rebars, so it can help to prolong the period of storage and service.
     Fifthly, we successfully fabricated GFRPP-OFBG composite rebar by embedding bare OFBG into GFRPP rebar during pultrusion process, and also the mechanical and sensitive properties have been studied.“Tow OFBG method”was used in monitoring the inner strain and temperature of GFRPP rebar when producing GFRPP rebar with thermoplastic pultrusion techniques, which can give reference on deciding the processing parameters. And also, we packaged bare OFBG with PP resin by extrusion techniques; the sensitive property of PP-OFBG was excellent. Online monitoring work with“Tow OFBG method”has been done to measure the inner strain and temperature changes of PP-OFBG during extrusion process. Based on these, large-scale strain measuring sensor was discussed.
     Finally, based on the PP-OFBG sensing element above, we developed a novel PP-OFBG strain sensor special for asphalt pavement strain measuring because of the same modulus of PP resin and asphalt concrete. Its sensitive property was tested, and 3 asphalt concrete beams were prepared for four point bending experiments. Through comparing the theoretical calculation and static and dynamic loading tests, we found that this novel PP-OFBG strain sensor can reflect the deformation of asphalt concrete well. We also cooperated finishing a steel-asphalt girder deformation monitoring experiment, 90 sensors were embedded or welded. Through designing, monitoring and analyzing we found that as asphalt pavement measuring sensor, PP-OFBG can give stable and accurate results, which can meet the needs of asphalt pavement strain measuring well.
引文
1. G.Thiagarajan. Experimental and Analytical Behavior of Carbon Fiber-Based Rods as Flexural Reinforcement. Journal of Composites for Construction. 2003,7(1):64~72
    2. P.Soroushian, S.Ravanbakhsh, M.A.Nagi. Laboratory Evaluation and Field Application of Concrete Reinforcement with Aramid Fiber-Reinforced Polymer Bars. ACI Materials Journal. 2002,99(6):584~590
    3. S.Matthys, L.Taerwe. Concrete Slabs Reinforced with FRP Grids I: One-Way Bending. Journal of Composites for Construction. 2000, 4(3): 145~153
    4. M.Hastak and D.W.Halpin. Assessment of Life-Cycle Benefit-Cost of Composites in Construction. Journal of Composites for Construction. 2000, 4(3):103~111
    5. L.C.Hollaway. The Evaluation of and the Way Forward Polymer Composites in the Civil Infrastructure. Construction and Building Materials. 2003, 17:365~378
    6. S.Matthys and L.Taerwe. Concrete Slabs Reinforced with FRP Grids I: One-Way Bending. Journal of Composites for Construction. 2000, 4(3):145~153
    7.徐新生,李云兰. FRP筋的结构性能及应用.建筑技术. 1998,29(2):105
    8.彭亚萍,徐新生,初凤荣.连续玻璃纤维筋的基本力学性能研究.房材与应用. 2000, 28(3):19~21
    9.柯伟.中国腐蚀调查报告.化学工业出版社.2003: 119~121
    10.吴靖.长纤维增强热塑性复合材料的研究进展.化工进展. 1995,(2):1~4
    11.吴靖.国外热塑性树脂基复合材料现状及发展趋势.材料导报. 1995,(1):77~81
    12. K.Van de Velde, P.Kiekens. Thermoplastic Polymers: Overview of Several Properties and their Consequences in Flax Fibre Reinforced Composites. Polymer Testing. 2001,(20):885~893
    13.阮积敏,王柏生,张奕薇.纤维塑料筋在桥梁工程中的应用研究.中南公路工程. 2004,29(1):82~83
    14.谷倩,张祥顺,彭少民.新材料FRP的研究与应用综述.华中科技大学学报(城市科学版). 2003,20(1): 97~101
    15. C.E.Demers. Tension–tension Axial Fatigue of E-glass Fiber-reinforced Polymeric Composites Fatigue Life Diagram. Construction and BuildingMaterials. 1998,(12):303~310
    16. L.C.Bank, T. Russell Gentry, Benjamin P. Thompson, Jeffrey S. Russell. A Model Specification for FRP Composites for Civil Engineering Structures. Construction and Building Materials. 2003,(17):405~437
    17. P.Z.Qiao, J.F.Davalos, B.Brown. A Systematic Analysis and Design Approach for Single-span FRP Deck Stringer Bridges. Composites. 2000,(31):593~609
    18.陈平,于祺,孙明,陆春.高性能热塑性树脂基复合材料的研究进展.纤维复合材料. 2005,(2):52~57
    19.许晓东,董祥忠,董毅,莫建华.玻璃纤维增强聚丙烯复合材料研究进展.合成树脂及塑料. 2004,21(1):66
    20. A.Carlsson. Experimental Investigation of Pultrusion of Glass Fibre Reinforced Polypropylene Composites. Composites. 1998,(29):585~593
    21.丁权. Twintex复合纤维——一种新颖的玻纤材料.玻璃纤维.1998,(4):36~39
    22. A.R.Offringa.Thermoplastic composites-rapid processing applications. Composites: Part A.1996,(27A):329~336
    23.王荣国,谢怀勤,刘文博.连续纤维增强聚醚砜聚醚酮的力学性能研究.纤维复合材料. 1995,(3):37~41
    24.林师沛.塑料配置与成型.化学工业出版社.北京. 2004:42~44
    25.王家龙.热塑性塑料挤出生产技术.化学工业出版社.北京. 2003:203~211
    26.宗成中,黄兆阁,葛涛等.塑料配方设计及应用900例.中国石化出版社.北京. 2002:283~286
    27. K.Van de Velde, P.Kiekens. Thermoplastic Pultrusion of Natural Fiber Reinforced Composites. Composite Structures. 2001,(54):355~360
    28. K.Van de Velde, P.Kiekens. Thermoplastic polymers: overview of several properties and their consequences in flax fiber reinforced composites. Polymer Testing. 2001,(20):885~893.
    29.张晓明,刘雄亚.纤维增强热塑性复合材料及其应用.化学工业出版社. 2006: 27~29
    30.章亚东,段跃新,左璐等.经编织物法制备连续纤维增强热塑性复合材料的微观形貌和浸润过程分析.复合材料学报. 2004,21(6):63~69
    31. R. Marissen, L. Th. van der Drift, J. Sterk. Technology for Rapid Impregnation of Fibre Bundles with a Molten Thermoplastic Polymer. Composites Science and Technology. 2000,(60):2029~2034
    32.张昕,李辅安,王晓洁.热塑性树脂基体纤维缠绕工艺.纤维复合材料.2003,(1):27~29
    33.杨岭,何华珍,顾海麟,王东川.玻璃纤维增强热塑性复合材料及其应用.汽车工艺与材料. 2002,(6):28~31
    34.孙宏杰,张晓明,宋中健.纤维增强热塑性复合材料的预浸渍技术发展概况.玻璃钢/复合材料. 1999,(4):40~44
    35.张晓明,刘雄亚.纤维增强热塑性复合材料及其应用.化学工业出版社. 2007:225~229
    36. F.N.Cogswell.“Rheology and Structure”in Polymer Melt Rheology: A Guide for Indusrial Practice.Woodhead Publishing.1981:32~35
    37. F.N.Cogswell. Thermoplastic Aromatic Polymer Composites. Butterworth-Heinemann.1992:78~81
    38. P.Mitschang, M.Blinzler. Processing Technologies for Continuous Fibre Reinforced Thermoplastics with Novel Polymer Blends. Composites Science and Technology. 2003,(63):2099~2110
    39.张晓明,刘雄亚.纤维增强热塑性复合材料及其应用.化学工业出版社. 2007:8~11
    40.樊在霞,张瑜.纤维增强热塑性树脂基复合材料的加工方法.玻璃钢/复合材料. 2002,(7):22~25
    41. D.H. Kim, W.H, Lee. A Model for a Thermoplastic Pultrusion Process Using Commingled Yarns. Composites Science and Technology. 2001,(61):1065~1077
    42. A.Carlsson, B.T.Astrom. Experimental investigation of pultrusion of glass fibre reinforced polypropylene composites. Composites Part A. 1998,(29):585~593
    43. A.H.Miller, N.Dodds, J.M.Hale, A.G.Gibson. High Speed Pultrusion of Thermoplastic Matrix Composites. Composites. 1998,(29):773~782
    44. W. Michaeli, D.Jurss. Thermoplastic Pull-braiding: Pultrusion of Profiles with Braided Fibre Lay-up and Thermoplastic Matrix System(PP). Composites. 1996,(27):3~7
    45. K.Van de Velde, P.Kiekens. Thermoplastic Pultrusion of Natural Fiber Reinforced Composites. Composite Structures. 2001,(54):355~360
    46. G.Sala, D.Cutolo. The Pultrusion of Powder-impregnated Thermoplastic Composites. Composites. 1997,(28):637~646
    47. C.E.Demers. Tension–tension axial fatigue of E-glass fiber-reinforced polymeric composites fatigue life diagram. Construction and building materials. 1998,(12):303~310.
    48.咸贵军,益小苏等.热塑性树脂熔融浸渍连续纤维装置.塑料工业. 2000,28(5):15~17
    49.戴干策,崔新宇等.玻璃纤维增强聚丙烯材料结晶行为研究.高分子材料科学与工程. 2002,18(2):138~142
    50.杨卫疆.聚丙烯树脂熔融浸渍连续玻璃纤维毡过程的研究.纤维复合材料. 1999,(3):17~23
    51.梅启林,胡卫斌,黄志雄.混纤纱法制备连续玻璃纤维增强聚丙烯复合材料.武汉理工大学学报. 2003,25(1):5~7
    52.吴靖.长纤维增强热塑性复合材料的研究进展.化工进展. 1995,(2):1~4
    53.叶鼎铨.玻璃纤维增强热塑性塑料发展概况.中国塑料. 2005.19(2): 8~11
    54.孔庆宝,丁传荣.树脂基复合材料拉挤技术研究新进展及我国拉挤工业未来发展探讨(Ⅰ).纤维复合材料. 1999(4): 45~52
    55.孔庆宝,丁传荣.树脂基复合材料拉挤技术研究新进展及我国拉挤工业未来发展探讨(Ⅱ).纤维复合材料. 2000(1): 50~54
    56.孔庆宝,丁传荣.树脂基复合材料拉挤技术研究新进展及我国拉挤工业未来发展探讨(Ⅲ).纤维复合材料. 2000(2): 35~39
    57.李龙,储长流,张茂林等.芳纶/聚丙烯复合材料基体浸渍模型分析.玻璃钢/复合材料. 2003,(5):14~17
    58.丁辛,钟闻,翁鸣等.浸渍过程中树脂流体在纤维集合体内的流动行为.复合材料学报. 2003,20(6):109~114
    59. R.J.Gaymans, E.Wevers. Impregnation of a Glass Fibre Roving with a Polypropylene Melt in a Pin Assisted Process. Composites. 1998,(29):663~670
    60. F.Henninger, J.Hoffmann. Thermoplastic Filament Winding with Online-impregnation. Part B. Experimental Study of Processing Parameters. Composites. 2002,(33):1677~1688
    61. http://www.fulcrumcomposites.com/index.html
    62. A.Luisier, P.E.Bourban, J.A.E. Manson. Reaction injection pultrusion of PA12 composites: process and modeling. Composites,Part A. 2003,(34):583~595
    63. http://www.imhotepcomposites.co.uk/index.html
    64. A.B.Mehrabi, A.F.Elremaily, D.R.Vanderpool. Mechanical performance of thermoplastic fibre reinforced polymer rebars. http://ctlgroup.com /files/resources/Mehrabi_Elremaily_ICCE92_3157.pdf
    65.赵洪凯,钱春香,周效谅,王辉.拉挤工艺成型连续纤维增强热塑性FRP的性能研究. 2005年全国博士生学术论坛论文集. 2005:8
    66.郑孝霞,钱春香.加固用连续纤维增强热塑性树脂基复合材料预制片材的研究综述.高科技纤维与应用. 2003,28(5):36~41
    67. L.R.Taerwe. FRP Developments and Applications in Europe. A. Nanni. Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications. Amsterdam. 1993:99~114
    68. L.R.Taerwe and S.Matthys. FRP for Concrete Construction: Activities in Europe. Concrete International. 1999, 21(10):33~36
    69.张新越,欧进萍.混凝土结构中FRP筋的耐久性研究.沿海地区混凝土结构耐久性及其设计方法科技论坛与全国第六届混凝土耐久性学术交流会论文集.深圳. 2004:522~527
    70.张新越,欧进萍. FRP筋酸碱盐介质腐蚀与冻融耐久性试验研究.武汉理工大学学报. 2007, 29(1): 33~36
    71. G.L.Steckel, G.F.Hawkins, J.L.Bauer. Environmental Durability of Composites for Seismic Retrofit of Bridge Columns. Fiber Composites in Infrastructure. Proceedings of the Second International Conference on Fibre Composites in Infrastructure ICCI’98. Tucson. 1998:460~475
    72. T.Uomoto, T.Nishimura. Development of New Alkali Resistant Hybrid AGFRP Rod. Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Third International Symposium. Sapporo. 1997: 67-74
    73. M.Fransesco, A.Nanni. Durability of FRP Rods for Concrete Structures. Construction and Building Materials. 2004,(18):491~503
    74.杨枫,张洋.沥青路面变形类损坏的影响因素及其改进措施探讨.华东公路. 2005,(2):37~38
    75.方正军,刘海涛,徐志宏.光纤光栅传感器在公路安全监测中的应用.光纤新闻网. http://www.ofnmag.com
    76.李怀璋,余群.半刚性基层沥青路面车辙的预估方法和试验分析.农业机械学报. 2002,33(6):8~11
    77.李强,佘小红,邱延峻.沥青混凝土路面永久变形预测研究综述.公路. 2004,(5):1~5
    78.梁新政,潘卫育,徐宏.路面无损检测技术新发展.公路. 2002 (9): 95~98
    79.鹿春建,张宏谋.沥青混凝土路面破坏原因探讨及其治理.辽宁建材. 2005 (3): 66~67
    80.熊海贝,李志强.结构安全监测的研究现状.结构工程师. 2006, 22(5): 86~90
    81.王建平.光纤光栅传感器在土木工程结构安全监测中的应用.贵州工业大学学报. 2004,33(1):77~84
    82.田石柱,赵雪峰,周智.结构安全监测新型传感器-光纤Bragg光栅.低温建筑技术. 2002, (4): 42~43
    83.万里冰,张博明,王殿富,武湛君,赵雪峰.结构安全监测用光纤Bragg光栅应变传感器研究.激光杂志. 2002,(4):47~48
    84.阮积敏,王柏生,张奕薇.纤维塑料筋在桥梁工程中的应用研究.中南公路工程. 2004,29(1):82~83
    85.谷倩,张祥顺,彭少民.新材料FRP的研究与应用综述.华中科技大学学报(城市科学版). 2003,20(1):97~101
    86. L.C.Bank, T.R.Gentry, B.P.Thompson, J.S.Russell. A model specification for FRP composites for civil engineering structures. Construction and Building Materials. 2003, (17):405~437.
    87. P.Z.Qiao, J.F.Davalos, B.Brown. A systematic analysis and design approach for single-span FRP deck stringer bridges. Composites: Part B. 2000, (31): 593~609.
    88.孙训方,方孝淑,关来泰.材料力学.高等教育出版社. 2002:24~35
    89. B. T.Astrom, R. B.Pipes, S. G.Advani. On Flow Through Aligned Fiber Beds and its Application to Composites Processing. Journal of Composites Materials. 1992,(9):1351~1373
    90.李龙,储长流,张茂林等.芳纶/聚丙烯复合材料基体浸渍模型分析.玻璃钢/复合材料, 2003(5): 14~17
    91.赵通,左德元,黄建刚.夹片式锚固体系锥角的有限元参数化设计.西南交通大学学报. 2004,39(5):515~518
    92.王力龙,刘华山,阳梅.碳纤维筋(CFRP)夹片式锚具的有限元分析.南华大学学报(自然科学版). 2005,19(2):26~29
    93.周智.光纤光栅智能传感元件、监测系统及其在桥梁结构中的应用.哈尔滨工业大学博士论文. 2003:107~116
    94.欧阳国恩,欧国荣.复合材料试验技术.武汉工业大学出版社. 1993:121~123
    95.赵洪凯,钱春香,周效谅,王辉.拉挤工艺成型连续纤维增强热塑性FRP的性能研究. 2005年全国博士生学术论坛论文集(CD-COM). 2005:8
    96. T.Imjai, M.Guadagnini and K.Pilakoutas. Mechanical performance of curved FRP rebars-PartⅠ: Experimental study. Proceedings of the first Asia-Pacific Conference on FRP in Structures (APFIS 2007). 12~14 December, HongKong 2007, 333~338.
    97. T.Imjai, M.Guadagnini and K.Pilakoutas. Mechanical performance of curved FRP rebars-PartⅡ: Analytical study. Proceedings of the first Asia-Pacific Conference on FRP in Structures (APFIS 2007). 12~14 December, HongKong 2007, 339~344.
    98.王贤锋,赵建华,姜洪源等.玻纤和碳纤在低温下的强度统计特性.无机材料学报. 2003,18(1): 45~49
    99.陈国华等.几种纤维强度的概率分布分析.青岛大学学报. 2003, 18(2): 42~45
    100.王明超,张佐光,孙志杰,李敏.玄武岩纤维丝束强度的Weibull和Gauss分布统计分析.复合材料学报. 2008, 25(3): 600~604
    101.王恒武,王继辉等.用Weibull评价表面处理对玻璃纤维强度影响.武汉理工大学学报. 2003,25(6): 40~42
    102. A.Illig主编,张丽叶,彭响方等译.热成形实用指南.化学工业出版社. 2007: 4~6
    103. American Concrete Institute (ACI) Committee. Building Code Requirements for Structural Concrete and Commentary (ACI 318-08). Farmington Hills, MI. USA: American Concrete Institute. 2008:88
    104. British Standards Institution, Specification for Scheduling, Dimensioning, Bending and Cutting of Steel Reinforcement for Concrete, BS8666:2000.2000:76
    105. V.L.Brown, C.L.Bartholomew. FRP Reinforcing Bars in Reinforced Concrete Members. ACI Materials Journal. 1993,90(1):34~39
    106. A.Nanni. North American Design Guidelines for Concrete Reinforcement and Strengthening Using FRP: Principles, Applications and Unresolved Issues. Construction and Building Materials. 2003, (17):439~44
    107. 21世纪精细化工网. http://www.21jxhg.com/slxj/jczs/200710/21565.shtml
    108.刘英俊.聚丙烯的老化及耐老化研究. http://blog.china.alibaba.com/blog/ yoyo7894879/article/b123-i1633477.html
    109.陈贻瑞,范震冈,方洞浦等.磁场对酚醛环氧树脂交联的影响.高等学校化学学报. 1987, (12):1136~1140
    110. T.A.Man′ko, A.N.Kvasha, A.V.Solovev. Structural Studies of Epoxy Polymers Cured in a Constant Magnetic Field. Mekh Kompoz Mater. 1984, 20(4):589~592
    111. R.D.Bradshaw, L.C.Brinson. Physical Aging in Polymer Composites: an Analysis and Method for Time Aging Time Superposition. Polymer Engineeringand Science. 1997,31(1):31~34
    112.张志春.结构新型热固性FRP复合筋及其性能.哈尔滨工业大学工学博士学位论文. 2008:97~98
    113. L.Gautier, B.Mortaigne. Interface Damage Study of Hydrothermally Aged Glass-fibre-reinforced Polyester Composites. Composites Science and Technology. 1999,(59):2329~2339
    114.周智.光纤光栅智能传感元件、监测系统及其在桥梁结构中的应用.哈尔滨工业大学博士论文. 2003:53~57, 107~116
    115.周智,欧进萍. FBG智能传感器及其在土木工程中的应用研究.功能材料增刊. 2004:152~157
    116.周智.系列光纤传感制品研制与开发及其工程应用.哈尔滨工业大学博士后研究工作报告. 2006:2~4
    117. T. G.古托夫斯基.先进复合材料制造技术.化学工业出版社. 2004:206
    118.张志春,王川,周智,欧进萍. FRP筋拉挤成型工艺过程的光纤光栅监测与结果分析.东南大学学报(自然科学版). 2005,35(S1):23~26
    119. W.L.Schulz, E.Udd, J.M.Seim, et al. Advanced Fiber Grating Strain Sensor Systems for Bridges. SPIE. 1998,(3325) : 212~221
    120. T.Kurashima, T.Usu, K.Tanaka. Application of Fiber Optic Distributed Sensor for Strain Measurement in Civil Engineering. SPIE. 1997, (3241): 247~258
    121. Z.Zhou, J.P.Ou. Various Types of Optical FBG Sensors and Their Applications SHM. Proceeding of the 2nd international conference on structural monitoring and intelligent Infrastructures, Shenzhen China, 2005:489~498
    122. P.Kronenberg, N.Casaletta, D.Inaudi, et al. Dam Monitoring with Fiber Optics Deformation Sensors. SPIE.1997,(3043): 2~7
    123.刘瑞堂,刘文博,刘锦云.工程材料力学性能.哈尔滨工业大学出版社. 2001:180~186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700