用户名: 密码: 验证码:
运动微液滴表面瞬态传质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气雾两相流瞬态传质现象广泛存在于多相反应器、燃烧、空气污染物控制和大气运动等化工、环境和气溶胶科学领域。随着喷雾干燥,化学气相沉积,等离子体反应设备等化工技术的深入发展,气雾两相流的传质理论和应用得到的极大地丰富,同时由于液雾特征尺寸为微米量级,属于气溶胶,因此成为化学工程与气溶胶科学交叉领域新的增长点。
    由于雾粒特征尺度为微米量级,因而具有比传统气液接触体系大得多的比表面积,换言之,气雾两相流比传统气液体系具有更大的传质面积;另外由于雾粒粒径尺度很小,因而更容易分散在空间以形成高分散体系,从而进一步促进气雾接触,因此气雾两相流具有优异的传质特性。为进一步强化并利用此体系的传质性质,推进其工程技术的应用,有必要深入研究此体系的瞬态传质性质,为此本文试图从理论角度分析此类瞬态传质现象,并通过计算模拟预测其传质影响。
    气雾两相流中雾粒的振动现象是广为存在的,雾粒的振动与流体运动相互影响,实践表明雾粒振动能强化其传质,为此有必要研究雾粒振动下的气雾两相流传质,但由于问题的复杂性,其基础理论尚不充分,特别是对于中等振幅(振幅为几倍到几十倍雾粒直径)中等频率(几十到几百赫兹)的雾粒振动下的气雾两相传质尚无确切的理论指导。为此本文首先应用准稳态假设,建立静止气体介质中振动微液滴的传质模型,在轴对称条件下,应用此传质模型得到简化的传质控制方程及其边界条件,进而导出了传质速率和无因次传质系数Sherwood数的关联式。采用Electrodynamic Balance(EDB)中十二烷醇微米级液滴在氮气介质中的一维拟简谐振动蒸发传质实验结果验证上述理论结果,结
    
    
    果表明,理论预测的Sherwood数与实验结果的平均误差为39.5%,明显优于已有的理论关联结果(其平均误差为50.3%)。
    为进一步研究振动条件下的传质瞬态特征,本文在上述理论基础上,提出静止气体介质中振动微液滴的瞬态传质模型,根据此瞬态传质模型,分别从坐标变换和微元衡算两个不同的途径得到共同的轴对称下的瞬态传质控制方程及其初始/边界条件,进而导出其相应的瞬时Sherwood数关联式,其理论预测的Sherwood数与EDB传质实验结果的平均误差仅为9.2%,说明瞬态传质模型能较好的反映EDB传质实验中气雾传质现象。模拟结果进一步分析表明,在EDB中较高频率下的振动传质,其浓度分布存在一个固定的区域,而在较低的频率下,其浓度分布与没有周期运动的传质分布相类似;进一步指出瞬时Sherwood数随时间成周期性变化的瞬态特征,其变化周期为流动变化周期的1/2。
    湍流下的气雾两相流在工程技术中有广泛的应用,特别是对于高剪切高分散体系,受到许多学者的重视,特别是对于在化工中具有广泛应用前景的低温等离子体工艺,高速射流中的雾粒体系能满足低温等离子体活性寿命时间的要求,然而对于此类体系优异传质效能的理论研究并不充分,为此本文还研究了湍流气体射流中的雾粒运动与传质过程。
    采用可近似为传质控制的氢氧化钠雾粒与二氧化碳气体中和反应体系作为模拟,着重考察了雾粒表面的传质现象与雾粒运动。在湍流颗粒分散框架下,建立了决定性分离流(DSF)模型,并基于Monte Carlo方法的思想,开发出相应的模拟方案,从而模拟了高速射流中侧向引入的雾粒运动与传质现象。模拟结果表面传质时间比雾粒的弛豫时间更短,对于典型的射流出口速度为142m/s的气体中平均粒径为10μm的雾粒,其弛豫时间为0.45ms,而传质时间为0.16ms,这样的传质效能是传统气液接触方式无法达到的,同时也是满足低温等离子体活性寿命时间ms量级的要求,充分说明其高剪切高分散体系的优异传质效能。模拟结果进一步表明传质对雾粒运动的影响可以忽略。为验证模拟结果,本文进行了由Laval喷管产生的高速射流中侧向引入雾粒运动学实验,通过激光Doppler测速仪测得的雾粒运动速度与计算模拟结果一致,其速度侧型可近似为Gauss分布
    综上所述,本文进行了如下工作:
    首次提出了适用于中等振幅与频率的微液滴瞬态传质模型并导出传质速率和Sherwood数的机理性关联方程;
    
    应用本文提出的瞬态传质模型首次成功地预测了EDB内十二烷醇微米级液滴在氮气介质中的一维拟简谐振动蒸发传质实验结果,其Sherwood数的平均偏差仅为9.2%,明显优于前人基于准稳态分析所得的结果(平均偏差为50.3%);
    首次提出振动微液滴的瞬时传质Sherwood数随时间具有周期性变化的特征,进而指出Sherwood数的变化周期为微液滴振动周期的1/2的规律;
    应用Deterministic Separated Flow (DSF)方法和Monte Carlo方法,成功开发了液雾在湍流射流中运动-传质的计算模拟方案,并进行了由Laval喷管产生的高速气体射流中侧向引入雾粒运动学实验,通过激光Doppler测速仪测得的雾粒运动速度与计算模拟结果一致,其速度侧型可近似为Gauss分布;
    首次指出雾粒在气体湍流射流场中的传质时间比弛豫时间更短,从而更直接地说明了该体系优异的传质特性。对于典型的射流出口速度为142m/s,平均粒径为10μm雾粒在射流出口附近侧向引入的情况,其传质时间为0.16ms,而弛豫时间为0.45ms,这样的传质时间与低温等离子体活性寿命时间相匹配。
Instantaneous mass transfer of gas-microdroplet two-phase flow is one of the most important procedures in the field of chemical engineering, colloid science and environment science. As the development of atomizing drying, chemical vapor deposit and plasma reactor and so on, the theoretical researches and applications have flourished. Since the characteristic size of microdroplet is in the order of micrometer, which belongs to the field of aerocolloid, the researches for mass transfer of those systems become a emerging area in the cross-field of chemical engineering and colloid science.
    The most obvious character of microdroplet is that there is much more surfaces in the same volume. In another words, gas-microdroplet system has much more surfaces of mass transfer than those in traditional system, so they will cause the enhancement of mass transfer. In order to illuminate the nature of mass transfer in the gas-microdroplet system, a relatively comprehensive theoretical research in the mass transfer of gas-microdroplet system is presented from two aspects: firstly the case of mass transfer from an oscillating microdroplet in the gaseous media, and the case of mass transfer from the microdroplets accelerated by high-speed gas secondly.
    The mass transfer from an oscillating microdroplet is enhanced by the oscillation of microdroplet especially in moderate oscillatory frequency and
    
    
    amplitude. The theoretical predictions for this phenomenon based on the past theories, whose precision is far away from the satisfaction in both theoretical research and engineering, however, have performed poorly. Thus a novel mass transfer model is presented based on the framework of pseudo-steady assumption. Applying the mass transfer model into the conservation equation of mass transfer in axis symmetric coordinates, a new mass transfer equation is deduced. Based on the mass transfer equation, correlation expressions for the rate of mass transfer and Sherwood number are obtained. The results of a mass transfer experiment, in which a dodecanol microdroplet trapped and oscillated in the electrodynamic balance (EDB) was evaporating while the microdroplet’s diameter is measured by means of light scattering which has the precision of 10-5, verify the theoretical predictions. The present theoretical predictions for Sherwood number have about 39.5% error in comparison of experimental data, which is better than 50.3% error in the predictions based on the literature.
    Further, in order to show the instantaneous effect of mass transfer, an advanced version of instantaneous mass transfer model is presented. Based on the instantaneous mass transfer model, the mass transfer equation is deduced from two different paths of coordinate transformation and mass conservation in the control volume. The respondent correlation expression for Sherwood number and the rate of mass transfer are obtained. The simulation results show that the predictions of Sherwood number are much better, in which the average error is about 9.2%. It indicates that the instantaneous mass transfer model can explain the nature of mass transfer from an oscillating microdroplet.
    Further investigation to the simulation results of instantaneous mass transfer show that the instantaneous Sherwood numbers change with time periodically, which is regarded as the periodical changes of mass transfer inherit the periodical character of motion. It also indicates that the higher oscillatory frequency the microdroplet has, the more obvious periodical character the mass transfer has.
    Turbulent flow is the most important flows in engineering because most of flows in practice are in the status of turbulent flow. Highly dispersion systems of gas-microdroplet are concerned by many scholars and engineers for its excellent
    
    
    interphase transport properties. Especially, the system that microdroplets accelerate by high-speed gas which is jetting through the Laval nozzle is one of the highly dispersion systems, which can be applied into the new equilibrium plasma reactor. The excellent mas
引文
刘大有. 研究多相介质运动的意义、内容和方法. 力学与实践, 1995, 17(6): 1-10.
    郭烈锦. 两相与多相流动力学. 西安: 西安交通大学出版社, 2002.
    大卫·阿兹贝尔, 沈庆阳译. 化学工程中的两相流. 北京: 化学工业出版社, 1987.
    黄立新, 王宗濂, 唐金鑫. 我国喷雾干燥激素研究及进展. 化学工程, 2001, 29(2): 51-55.
    刘荣军, 周新贵, 张长瑞等. 化学气相沉积(CVD)法制备先进陶瓷材料. 高科技纤维与应用, 2002, 27(2): 16-21.
    国家自然科学基金委员会. 等离子体物理学(自然科学学科发展战略调研报告). 北京: 科学出版社, 1994.
    刘立明. 等离子体在化学化工中的应用. 化工进展, 1990, 5(1): 30-35.
    李海青. 两相流参数测量与应用. 杭州: 浙江大学出版社, 1991.
    吴其芬, 陈伟芳. 高温稀薄气体热化学非平衡流动德DSMC方法. 长沙: 国防科技大学出版社, 1999.
    张雄, 陆明万, 王建军. 任意拉格朗日-欧拉描述法研究进展. 计算力学学报, 1997, 14(1): 92-102.
    Hirt, C.W., Amsden, A.A., Cook, J.L.. An Arbitrary Lagrangian -Eulerian Computing Method for All Flow Speeds. Journal of Computational Physics, 1974, 14(3): 227-253.
    岳宝增, 李笑天. ALE有限元方法研究及应用. 力学与实践,2002, 24(2): 7-11.
    Chen, J.P., Zhou R.R., Wan, S.. ALE Finite Element Analysis of Nonlinear Sloshing Problems Based on Fluid Velocity Potential. Transactions of Nanjing University of Aeronautics & Astronautics, 2003, 20(1): 23-29.
    孙江龙, 叶恒奎. ALE有限元法解二维自由面流体大晃动问题. 华中科技大学学报(自然科学版), 2002, 30(11): 80-82.
    
    Zheng, Z.C., Chen, F.Y., Hou, Z.C.. Fluid-Structure Interaction During Large Amplitude Sloshing and TLD Vibration Control. Tsinghua Science and Technology, 2003, 8(1): 90-96.
    蒋莉, 沈孟育. 求解流体与结构相互作用问题的ALE有限体积方法. 水动力学研究与进展, 2000, 15(2): 148-155.
    曹丰产, 项海帆. 低雷诺数下方柱和圆柱涡致振动的数值分析. 同济大学学报, 1998, 26(4): 382-386.
    Schlichting, H.. Boundary-Layer Theory, 7th Edition. New York: McGraw-Hill Press, 1979.
    张兆顺. 湍流. 北京: 国防工业出版社, 2002.
    严宗毅. 低雷诺数流理论. 北京: 北京大学出版社, 2002.
    闻建平, 刘明言, 胡宗定. 多相反应器流动非线性混沌特性研究进展. 化学工程, 1999, 27(5): 18-21.
    Jerzy B., John, R.B.. Turbulent Mixing and Chemical Reactions. New York: John-Wiley Press, 1999.
    Aziz, A., Na, T.T.. 摄动法在传热学中的应用. 北京: 科学出版社, 1992.
    帕坦卡. 传热与流体流动的数值计算. 北京: 科学出版社, 1984.
    周力行. 湍流两相流动与燃烧的数值模拟. 北京: 清华大学出版社, 1991.
    魏文韫. 高速气雾两相流弛豫过程相间动量传递研究. 四川大学博士论文, 2002.
    张政, 谢灼利. 流体-固体两相流的数值模拟. 化工学报, 2001, 52(1): 1-11.
    Yakhot, V., Orazag, S.A.. Renormalization Group Analysis of Turbulence, I. Basic Theory. Journal of Scientific Computing, 1986, 1(1): 39-51.
    Menter, F.R.. Comparison of Some Recent Eddy-viscosity Turbulence Models. ASME: Journal of Fluids Engineering, 1996, 118(3): 514-519.
    Zhou, P.Y.. Journal of Applied Mathematics, 1945, 3: 38-54.
    Rodi, W.. Turbulence Models and Their Application in Hydraulics, 2nd Revised Edition. Netherlands: IAHR, 1984: 9-46.
    Elghobashi, S.E.. On Predicting Particle-laden Turbulent Flows. Applied Scientific Research, 1994, 52(4): 309-329.
    吴文权. 旋涡的场特征与物质性——离散涡方法基础. 工程热物理学报,
    
    
    1996, 17(3): 301-304.
    吴文权. 旋涡动力学方程非定常动边界条件. 工程热物理学报, 2002, 20(3): 289-292.
    Gradinger, T.B., Boulouchos, K.. Modeling Turbulent Droplet Motion in Vaporizing Sprays. Flow Turbulence Combustion, 2001, 65(1): 1-29.
    Frisch, U.. Turbulent. London: Cambridge University Press, 1995
    Michaelides, E.E.. Review-The Transient Equation of Motion for Particles, Bubbles, and Droplets. ASME: Journal of Fluids Engineering, 1997, 119(2): 233-247
    王维, 李佑楚. 颗粒流体两相流模型研究进展. 化学进展,2000, 12(2): 208-217.
    Cundall, P.A., Strack O.D.L.. Discrete Numerical Model for Granular Assemblies. Geotechnique. 1979, 29(1): 47-65.
    Albagli, D., Levy, Y.. Prediction of Two-phase Flowfield in Ram Combustors. Journal of Thermophysics and Heat Transfer, 1990, 4(2): 170-179.
    Lopez, B., Martin, A.. Two-fluid Model for Two-phase turbulent jets. Nuclear Engineering and Design, 1998, 179(1): 65-74.
    Chan, S.H., Ellail, M. A.. A Two-fluid Model for Reacting Turbulent Two-phase Flows. Journal of Heat Transfer, 1994, 116(3), 427.
    Maxwell, J.C.. Encyclopaedia Brtiannica 9th Edition. 1878, 7: 214.
    Davis, E.J., Schweiger, G.. The Airborne Microparticle, Berlin: Springer Press, 2002.
    Masters, K.. Spray Drying Handbook. New York: Pitman Press, 1985.
    Acrivos, A., Taylor, T.D.. Physical Fluid, 1962, 5: 387.
    Rimmer, P.L.. Journal of Fluid Mechanism. 1968, 32: 1.
    Rimmer, P.L.. Journal of Fluid Mechanism. 1969, 35: 827.
    Zhang, S.H., Davis, E.J.. Mass Transfer from a Single Micro-droplet to a Gas Flowing at Low Reynolds Number. Chemical Engineering Communication, 1987, 50: 51.
    Kronig, R., Bruijsten, J.. Applied Science Research, 1951, A2: 439.
    Levich, V.G.. Physicochemical Hydrodynamics. New York: Prentice-Hall
    
    
    Press, 1962.
    Wagner, P.E.. Aerosol Growth by Condensation, in Marlow. W.H.. Aerosol Microphysics II – Chemical Physics of Microparticle, Berlin: Springer-Verlag Press, 1982, 29: 129-178.
    Kotake, S., Okazaki, T.. International Journal of Heat Mass Transfer, 1969, 12: 595-609.
    陈佐一. 流体激振. 北京: 清华大学出版社, 1998.
    Tamir, A., Huang, B.. Impinging Stream Reactors: Fundamentals and Applications. Drying Technology, 1995, 13(1-2): 503.
    Mayya, Y.S.. Charging-induced Drift and Diffusion of Aerosol Particles in Oscillating Electric Fields. Journal of Aerosol Science, 1994, 25(2), 277-288.
    Sujith, R.I., Waldherr, G.A., Jagoda, J.I., et al.. Theoretical Investigation of the Behavior of Droplets in Axial Acoustic Fields. Journal of Vibration and Acoustics, 1999, 121(3), 286-294.
    Tian, Y., Apfel, R.E.. A Novel Multiple Droplet Levitator for the Study of Drop Array. Journal of Aerosol Science, 1996, 27(5): 721-737.
    Richardson, P.D.. Heat Transfer from a Circular Cylinder by Acoustic Streaming. Journal of Fluid Mechanics, 1967, 30(2): 337-355.
    Stokes, G.G.. Cambridge Phil. Trans. IX, 1851: 8.
    Lin, C.C.. Motion in the boundary layer with a rapid oscillating external flow, Proc. 9th International. Congress Applied Mechanics. Brussels, 1957, 4: 155-167.
    Holmes, M.H.. Introduction to perturbation methods. New York: Springer-Verlag Press, 1995.
    Landau, L.D., Lifshitz, E.M.. Fluid Mechanics – 2nd Edition, Oxford: Pergamon Press, 1987.
    Jameson, G.J.. Mass(or Heat) Transfer from an Oscillating Cylinder. Chemical Engineering Science, 1964, 19: 793-800.
    Taweel, A.M., Landau, J.. Mass Transfer Between Solid Spheres and Oscillating Fluids – A Critical Review. The Canadian Journal of Chemical Engineering, 1976, 54(6): 532-539.
    
    Blackham, H.M.. Mass and Momentum Transport from a Sphere in steady and Oscillatory Flows. Physics of Fluids, 2002, 14(11): 3997-4011.
    Thomas, A.M., Narayanan, R.. Physics of Oscillatory Flow and its Effect on the Mass Transfer and Separation of Species. Physics of Fluids, 2001, 13(4): 859-866.
    Zhu, J.H., Zheng, F., Laucks, M.L., et al.. Mass Transfer from an Oscillating Microsphere. Journal of Colloid and Interface Science, 2002, 249(2): 351-358
    Zheng, F., Qu, X., Davis, E.J.. An Octopole Electrodynamic Balance for Three-dimensional Microparticle Control. Review of Scientific Instruments, 2001, 72(8): 3380-3385.
    Brandt, E.H.. Science, 1989, 243: 349-355.
    Davis, E.J.. Microchemical Engineering: The Physics and Chemistry of the Microparticle. in James, W.. Advances in Chemical Engineering - Volume 18, London: Academic Press, 1992.
    Ray, A.K., Souyri, A.. 63rd Colloid and Surface Science. Symp., Seattle, 1989: 296.
    Davis, E.J., Ravindran, P.. Single Particle Light Scattering Measurements Using the Electrodynamic Balance. Aerosol Science and Technology, 1982, 1(3): 337-350.
    范洁川. 近代流动显示技术. 北京: 国防工业出版社, 2002.
    Vehring, R., Aardahl, C.L., Davis, E.J., et al.. Electrodynamic Trapping and Manipulation of Particle Clouds. Reviews of Scientific Instruments, 1997, 68(1): 70-78.
    Perry’s Chemical Engineer’s Handbook. McCraw-Hill Press, 1999.
    Yaws, C.L.. Chemical Properties Handbook. New York: McGraw-Hill Press, 1999.
    Handbook of Chemistry and Physics – 3rd Electronic Edition. New York: CRC Press, 2000.
    张苓. 电动力学天平测量微米液滴粒径的研究. 四川大学硕士论文,2002.
    Taflin, D.C., Zhang, S.H., Allen, T., et al.. Measurement of Droplet Interfacial Phenomena by Light-scattering Techniques. AIChE Journal, 1988, 34(8):
    
    
    1310-1320.
    Landau, L.D., Lifshitz, E.M.. Fluid Mechanics – 2nd Edition. New York: Pergamon Press, 1987.
    吴望一. 流体力学(下册). 北京: 北京大学出版社, 1982.
    陶文銓. 计算传热学的近代进展. 北京: 科学出版社, 2001.
    Leonard, B.P.. Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation. Computer Methods in Applied Mechanics and Engineering, 1979, 19(1): 59-98.
    Bird, R.B., Stewart, W.E., Lightfoot, E.N.. Transport Phenomena. New York: John-Wiley Press, 2002.
    Zhang, S.H., Davis, E.J.. Mass Transfer from a Single Micro-droplet to a Gas Flowing at Low Reynolds Number. Chemical. Engineering. Communication, 1987, 50(1): 51-67.
    Woolfson, M.M., Pert, G.J.. An Introduction to Computer Simulation. London: Oxford University Press, 1999.
    Wei, R., Sekine, A., Shimura, M.. Numerical Analysis of 2D Vortex-induced Oscillations of a Circular Cylinder. International Journal of Numerical Methods of Fluid, 1995, 21(10): 993-1005.
    Van A.F.J.. Mass Transfer – Transport Properties. New York: American Institute of Chemical Engineers, 1955.
    魏文韫, 朱家骅, 夏素兰等. 超音速气雾两相流弛豫过程数值模拟. 化工学报, 2000, 51(增刊): 88-92.
    戴晓雁, 朱家骅, 吴平. C18烯酸的等离子选择性加氢. 四川大学学报(工程科学版), 2000, 32(4): 48-50.
    Suhr, H.. Applications and Trends of Nonequilibrium Plasma Chemistry with Organic and Organometallic Compounds, Plasma Chemistry and Plasma Pro., 1989, 9: 7-13.
    Tamier, A., 伍沅译. 撞击流反应器-原理和应用. 北京: 化学工业出版社, 1996.
    Shirolkar, J.S., Coimbra, C.F.M., McQuay, M.Q.. Fundamental Aspects of Modeling Turbulent Particle Dispersion in Dilute Flows, Prog. Energy
    
    
    Combust. Sci., 1996, 22: 363-399.
    Taylor, G.I.. Proceedings of the London Mathematical Society, 1921, 20: 196.
    Shirolkar, J.S., Queiroz, M.. Parametric Evaluation of a Particle Dispersion Submodel Used in a Two-dimensional Pulverized-coal Combustion code. Energy & Fuels. 1993, 7(6): 919-927.
    Venkatram, A.. Interpetation of Taylor’s Statistical Analysis of Particle Dispersion. Atmospheric Environment, 1988, 22(5): 865-868.
    Berlemont, A., Desjonqueres, P., Gouesbet, G.. Particle Lagrangian Simulation in Turbulent Flows. International Journal of Multiphase Flow, 1990, 16(1): 19-34.
    Burry, D., Bergeles, G.. Dispersion of Particles in Anisotropic Turbulent Flows. International Journal of Multiphase Flow, 1993, 19(4): 651-664.
    Litchford, R.J., Jeng, S.M.. Efficient Statistical Transport Model for Turbulent Particle Dispersion in Sprays. AIAA Journal, 1991, 29(9): 1443-1451.
    Chen, X.Q., Pereira, J.C.F.. Stochastic-probabilistic Efficiency Enhanced Dispersion Modeling of Turbulent Polydispersed Sprays. Journal of Propulsion Power, 1996, 12(4): 760-769.
    Lockwood, F.C., Papadopoulos, C.. New Method for the Computation of Particulate Dispersion in Turbulent Two-phase Flows. Combustion and Flame, 1989, 76(3-4): 403-413.
    Lightstone, M.F., Raithby, G.D., Hollands, K.G.T.. Numerical Simulation of the Charging of Liquid Storage Tanks: Comparison with Experiment. Journal of Solar Energy Engineering, 1989, 111(3): 225-231.
    徐华舫. 空气动力学基础. 北京: 国防工业出版社, 1980.
    应崇福. 超声学. 北京: 科学出版社, 1990.
    关国强, 朱家骅, 夏素兰等. 高速气流加速下雾粒的传质. 四川大学学报(工程科学版), 2003, 35(3): 42-48.
    Forney, L.J., Nafia, N.. Eddy Contact Model: CFD Simulations of Liquid Reactions in nearly homogeneous Turbulence. Chemical Engineering Science. 2000, 55(24): 6049-6058.
    Torobin, L.B., Ganvin, W.H.. The Canadian Journal of Chemical Engineering,
    
    
    1959, 37: 224.
    Csanady, G.T.. Journal of. Atmosphere Science, 1963, 20: 201.
    Hinze, J.O.. Turbulent Flow Regions with Shear Stress and Mean Velocity Gradient of Opposite Sign. Applied Scientific Research, 1970, 22(3-4): 163-175.
    Feng, Z.H., Zhu, J.H., Yang, X.F., et al.. Numerical Simulation of a single Microparticle Trajectory in an Electrodynamic Balance. Chinese Journal of Chemical Engineering. (to be published)
    Wei, W.Y., Zhu, J.H., Xia, S.L., et al.. Velocity Slip and Interfacial Momentum Transfer in the Transient Section of Supersonic Gas-droplet two-phase Flows. Chinese Journal of Chemical Engineering, 2002, 10(2): 1-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700