用户名: 密码: 验证码:
零价铁强化厌氧微生物降解2,4,6-三氯酚及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以2,4,6-三氯酚为目标污染物,分别对单独厌氧微生物和零价铁/厌氧微生物驯化的污泥体系降解2,4,6-三氯酚的特性进行了初步探索;并对零价铁与厌氧微生物联合体系的影响因素进行了考察;在此基础上重点研究2,4,6-三氯酚在不同还原环境下的降解性能,并进一步考察了硝酸盐还原条件下不同碳源的影响;试验还研究了该体系在不同初始pH值时2,4,6-三氯酚的还原脱氯和零价铁的腐蚀对降解效果的影响,试图揭示联合体系的复杂作用机理。结果表明:
     (1)以葡萄糖为共基质,单独厌氧微生物和零价铁/厌氧微生物两种体系均能降解2,4,6-TCP,驯化过程中加入零价铁后对体系的影响表现为微生物适应期缩短,2,4,6-TCP去除率提高,加速驯化进程。
     (2)零价铁/厌氧微生物联合体系降解初始浓度为25 mg/L的2,4,6-TCP最优条件为:污泥接种量289.0 mgVSS/L,Fe0投加量1.0 g/L,初始pH值8.0,葡萄糖量0.5 g/L。
     (3)硝酸盐还原条件显著抑制了2,4,6-TCP的还原脱氯,硝酸盐还原活性随着硝酸盐浓度的升高而升高。加入5 mmol/L硝酸盐时,2,4,6-TCP降解产物为2,4-DCP和4-MCP等低氯酚,并出现4-MCP积累现象。
     (4)实验体系中2,4,6-TCP还原脱氯菌不是一种反硝化细菌,当同时存在2,4,6-TCP与硝酸盐时,体系先发生硝酸盐还原再进行2,4,6-TCP还原脱氯。
     (5)在硝酸盐还原条件下,不同碳源对零价铁/厌氧微生物联合体系降解2,4,6-TCP均符合一级反应动力学模型,其反应速率常数大小依次为k(葡萄糖)>k(乙酸盐)>k(乳酸盐)>k(无补充碳源)>k(甲酸盐)。
     (6)硫酸盐和混合电子还原环境均不利于零价铁/厌氧微生物联合体系降解2,4,6-TCP。
     (7)不同初始pH值下,零价铁/厌氧微生物联合体系中零价铁可持续腐蚀产生电子。单独微生物在初始pH值为9.0时对目标物降解效果较好,而零价铁/厌氧微生物在初始pH值为8.0时目标物降解效果较好。零价铁腐蚀产物Fe2+和Fe3+对2,4,6-TCP的降解有一定的抑制作用,且随着Fe3+浓度的增加对2,4,6-TCP的抑制作用有所增强。
     (8)零价铁的参与使微生物对有机物的需求量减小,COD去除率相应降低。ETS活性与2,4,6-TCP残余浓度有一定的相关性。
     (9)零价铁/厌氧微生物联合体系降解2,4,6-TCP主要途径是:2,4,6-TCP→2,4-DCP→4-CP,并出现4-CP积累现象。
In this paper, 2,4,6-trichlorophenol(2,4,6-TCP) was the target pollutants, a preliminary exploration on the degradation characteristics of 2,4,6-trichlorophenol in single sludge system and zero valent iron(Fe0)/acclimated sludge under anaerobic system. And factors that effected Fe0/anaerobic microbial combined system were investigated, on the base of above, the present study focused on the degradation of 2,4,6-trichlorophenol under different redox conditions, and the impact of different carbon sources under nitrate-reducing conditions. In order to reveal the complex mechanism of the combined system, it also discussed the reductive dechlorination of 2,4,6-trichlorophenol and the corrosive process of Fe0 and its effect on degradation efficiency in combined system at different initial pH values. The results showed that,
     (1)Glucose as co-substrate, in both single sludge system and Fe0/anaerobic microbial combined system, 2,4,6-TCP could be degraded effectively. The process of acclimation was sped up by adding zero-valent iron and the removal rate of 2,4,6-TCP was increased.
     (2)The optimum conditions of 2,4,6-TCP(the initial concentration of 25 mg/L) degradation in Fe0/anaerobic microbial combined system were as follows: inoculation quantity of anaerobic sludge, 289.0 mgVSS/L, Fe0 dosage, 1.0 g/L, initial pH value, 8.0, amount of glucose, 0.5 g/L.
     (3)The reductive dechlorination of 2,4,6-TCP was significantly inhibited under nitrate-reducing conditions, nitrate-reduction activity increased with the increasing of initial nitrate concentrations. The degradation products of 2,4,6-TCP at an initial concentration of 5 mmol/L were 2,4-DCP and 4-MCP, and the accumulation of 4-MCP was found in system.
     (4)In acclimated sluge, 2,4,6-TCP dechlorination bacteria was not denitrifier. while there have both 2,4,6-TCP and nitrate, nitrate is reduced in this system followed by the reductive dechlorination of 2,4,6-TCP.
     (5)Under nitrate-reducing conditions, with different carbon sources, the degradation of 2,4,6-trichlorophenol in Fe0/anaerobic microbial combined system was conformed to the first-order kinetic model, the order of the reaction rate constant was k(glucose)> k(acetate)> k(lactate)>k(without added carbon source)>k(formate).
     (6)Sulfate and the mixed reduction environment both went against the degradation of 2,4,6-TCP in Fe0/anaerobic microbial combined system.
     (7)The continuously corrosion of Fe0 could produce electrons in Fe0/anaerobic microbial combined system in different initial pH values. The opitimal initial pH value for the degradation of 2,4,6-TCP was 9.0 in single sluge system, while 8.0 in the combined system. The products of zero valent iron’s corrosion, Fe2+ and Fe3+, showed inhabitory effect on the degradation of 2,4,6-TCP in some degree, which was enhanced with increasing of Fe3+ concentration.
     (8)Fe0 reduced the demand for microorganisms on organic matter, the removal rate of COD decreased. Residual concentration of 2,4,6-TCP had some relevance to electron transport system activity.
     (9)The major pathway of 2,4,6-TCP degradation in Fe0/anaerobic microbial combined system was: 2,4,6-TCP→2,4-DCP→4-CP, and the accumulation of 4-MCP was found in system.
引文
[1] Gellman I. Environmental effects of paper industry wastewater: an overview[J]. Wat Sci Technol, 1988, 20(2): 59-65.
    [2] Czaplicka M. Sources and transformations of chlorophenols in the natural environment[J]. Sci Total Environ, 2004, 322(1-3): 21–39.
    [3]姜梅,牛世全,展惠英,等.氯酚类化合物的微生物降解研究进展[J].应用生态学报, 2003, 14(6): 1003-1006.
    [4] Ge F, Zhu L, Wang J. Distribution of chlorination products of phenols under various pHs in water disinfection[J]. Desalination, 2008, 225(1-3): 156-166.
    [5] Rodriguez I, Llompart M P, Cela R. Solid-phase extraction of phenols[J]. J Chromatogr, 2000, 885(1-2): 291-304.
    [6]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社, 2002.
    [7]徐向阳.降解PCP厌氧颗粒污泥特性及其在受污染环境生物修复中的应用[D].浙江农业大学博士论文, 1997.
    [8]王芳,林少彬,陈亚妍.氯酚在鲫鱼体内的分布、存在形式与生物富集研究[J].卫生研究, 1999, 28(3): 169-171.
    [9]刘晓峰,刘墨祥,年淑清.土壤中酚污染物对水稻发育的影响及其残留特点的研究[J].吉林农业大学学报, 1995, 17(2): 58-62.
    [10] Betty M, Wu J S. Removal of organic precursors by permanganate oxidation and alum coagulation[J]. Wat Res, 1985, 19(3): 309-314.
    [11]乌锡康.有机化工废水治理技术[M].北京:化学工业出版社, 1999.
    [12] Sinkkonen S, Paasivirta J. Polychlorinated organic compounds in the Arctic cod liver: trends and profiles[J]. Chemosphere, 2000, 40: 619-629.
    [13] Xie T M, Abrahamsson K, Fogelqvist E, et al. Distribution of chlorophenols in a marine environment[J]. Environ Sci Technol, 1986, 20: 457-463.
    [14] Valo R. Chlorinated phenols and their derivatives in soil and groundwater around wood-preserving facilities in Finland[J]. Wat Sci Technol, 1985, 17: 1384-1389.
    [15] Zhang X, Wiegel J. Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments[J]. Appl Environ Microbiol, 1990, 56(4): 1119-1127.
    [16]张兵,郑明辉,刘芃岩,等.五氯酚在洞庭湖环境介质中的分布[J].中国环境科学, 2001, 21(2): 165-167.
    [17]王旭刚,孙丽蓉.五氯酚的污染现状及其转化研究进展[J].环境科学与技术, 2009, 32(8): 93-100.
    [18]许士奋,蒋新,谭永睿,等.长江沉积物中痕量氯代酚类化合物的测定[J].环境化学, 2000, 19(2): 154-158.
    [19] Apajalahti J H A, Salkinoja-Salonen M S. Degradation of polychlorinated phenols byRhodococcus chlorophenolicus[J]. Appl Environ Microbiol, 1986, 25(1): 62-67.
    [20]沈东升,徐向阳,冯孝善.含氯代芳香族化合物废水的生物处理技术[J].中国给水排水, 1996, 12(5): 27-30.
    [21]戴友芝,施汉昌,冀静平,等.含五氯酚废水的生物降解性和微生物毒性试验[J].环境科学, 2000, 21(2): 40-45.
    [22] Fetzner S. Bacterial dehalogenation[J]. Appl Microbial Biotechnol, 1998, 50: 633-657.
    [23]左剑恶,肖晶华,陈莉莉.氯代有机污染物在厌氧条件下还原脱氯的研究进展[J].环境污染治理技术与设备, 2003, 4(6): 43-48.
    [24] Park J H, Zhao X, Voice T C. Comparison of biodegradation kinetic parameters for naphthalene in batch and sand column systems by Pseudomonas putida[J]. Environ Progr, 2001, 20(2): 93-102.
    [25] Zhao J S, Singh A, Huang X D, et al. Biotransformation of hydroxylaminobenzene and aminoprenol by Pseudomonas putida 2NP8 cells grown in the presence of 3-nitrophenol[J]. Appl Environ Microbiol, 2000, 66: 2336-2342.
    [26]李慧蓉,陈建海.黄孢原毛平革菌对蒽的降解研究[J].化上环保, 2000, 20(2): 11-14.
    [27]沈东升,徐向阳,冯孝善.厌氧污泥降解氯酚的驯化及其在驯化过程中的解解动力学[J].环境科学学报, 1996, 16(3): 309-316.
    [28]张文,陈玲,分军平,等.以混合单氯酚驯化厌氧颗粒污泥降解2,4-DCP的研究[J].环境科学, 2007, 28(6): 1252-1257.
    [29] Nicholson D K, Woods S L, Islok J D, et al. Reductive dechlorination of chlorophenols by a PCP-acclimated methanogenic consortium[J]. Appl Environ Microbiol, 1992, 58(8): 2280-2286.
    [30]杨大森.氯酚类有机物的厌氧生物降解性与其定量结构-性质关系的研究[D].湘潭大学硕士学位论文, 2006.
    [31]赵慧君.厌氧生物处理技术[J].石油化工环境保护, 1996, 1(4): 19-21.
    [32] Valo R, Apajalahti J, Salkinoja-Salonen M. Studies on the physiology of microbial degradation of pentachlorophenol[J]. Appl Microbiol Biotechnol, 1985, 21(5): 313-319.
    [33] Premalatha A, Rajakumar G S. Pentachlorophenol degradation by Pseudomonas aeruginosa[J]. World J Microbiol Biotechnol, 1994, 10(3): 334-337.
    [34]李海英,李小明,陈昭宜.微生物厌氧降解五氯酚适宜条件的研究[J].湖南大学学报, 2000, 27(1): 81-85.
    [35] Chang C C, Tseng S K, Huang H K. Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment[J]. Biores Technol, 1999, 69(1): 53-58.
    [36]刘翠英,余贵芬,蒋新,等.土壤和沉积物中多氯代有机化合物厌氧降解研究进展[J].生态学报, 2007, 27(8): 3482-3488.
    [37]史敬华,刘菲,李烨,等.不同基质共代谢降解地下水中四氯乙烯的研究[J].地学前缘(中国地质大学(北京);北京大学). 2006, 13(1): 145-149.
    [38] Sch?llhorn A, Savary C, Stucki G, et al. Comparison of different substrates for the fast reductive dechlorination of trichloroethene under groundwater conditions[J]. Wat Res, 1997, 31(6): 1275-1282.
    [39] Fennell D E, Gossett J M, Zinder S H. Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene[J]. Environ Sci Technol, 1997, 31(3): 918-926.
    [40] Gao J W, Skeen R S, Hooker B S, et al. Effects of several electron donors on tetrachloroethylene dechlorination in anaerobic soil microcosoms[J]. Wat Res, 1997, 31(10): 2479-2486.
    [41] Hendriksen H V, Ahring B K. Metabolism and kinetics of pentachlorophenol transformation in anaerobic granular sludge[J]. Appl Microbiol Biotechnol, 1992, 37(5): 662-666.
    [42] Chang B V, Zheng J X, Yuan S Y. Effects of alternative electron donors, acceptors and inhibitors on pentachlorophenol dechlorination in soil[J]. Chemosphere, 1996, 33(2): 313-320.
    [43]徐向阳,祁华宝,王其于.厌氧颗粒污泥还原脱氯与降解五氯酚(PCP)的研究[J].浙江大学学报(农业与生命科学版), 2001, 27(2): 145-150.
    [44] Ma X, Novak P J, Semmens M J, et al. Comparison of pulsed and continuous addition of H2 gas via membranes for stimulating PCE biodegradation in soil columns[J]. Wat Res, 2006, 40(6): 1155-1166.
    [45] Villemur R, Lanthier M, Beaudet R, et al. The Desulfitobacterium genus[J]. FEMS Microbiol Rev, 2006, 30(5): 706-733.
    [46] Sanford R A, Cole J R, Tiedje J M. Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp nov., an aryl-halorespiring facultative anaerobic myxobacterium[J]. Appl Environ Microbiol, 2002, 68(2): 893–900.
    [47] Adrian L, Szewzyk U, Gorisch H, et al. Bacterial dehalorespiration with chlorinated benzenes[J]. Nature, 2000, 408: 580-583.
    [48] He J, Sung Y, Dollhope M E, et al. Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites[J]. Environ Sci Technol, 2002, 36(18): 3945-3952.
    [49] Distefano T D, Gossett J M, Zinder S H. Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture[J]. Appl Environ Microbiol, 1992, 58(11): 3622-3629.
    [50] Deweerd K A, Concannon F, Suflita J. Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei[J]. Appl Environ Microbiol, 1991, 57(7): 1929-1934.
    [51] Ballapragada B S, Stensel H D, Puhakka J A, et al. Effect of hydrogen on reductive dechlorination of chlorinated ethenes[J]. Environ Sci Technol, 1997, 31(6): 1728-1734.
    [52] Carr C, Hughes J. Enrichment of high-rate PCE dechlorination and comparative study of lactate, methanol, and hydrogen as electron donors to sustain activity[J]. Environ Sci Technol, 1998, 32(12): 1817-1824.
    [53] Aulenta F, Pera A, Rossetti S, et al. Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors[J]. Wat Res, 2007, 41(1): 27-38.
    [54]豆俊峰,刘翔.苯系化合物在硝酸盐还原条件下的生物降解性能[J].环境科学, 2006, 27(9):1846-1852.
    [55]程婷.零价铁强化2,4-二氯酚生物还原脱氯的效应及机理[D].湘潭大学硕士学位论文, 2008.
    [56] Yang Y, Mccarty P L. Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture[J]. Environ Sci Technol, 1998, 32(22): 3591-3597.
    [57] Bae H S, Yamagishi T, Suwa Y. An anaerobic continuous-flow fixed-bed reactor sustaining a 3-chlorobenzoate degrading denitrifying population utilizing versatile electron donors and acceptors[J]. Chemosphere, 2004, 55: 93-100.
    [58] Haggblom M M. Reductive dechlorination of halogenated phenols by a sulfate-reducing consortium[J]. FEMS Microbiol Ecol, 1998, 26(1): 35-41.
    [59] Haggblom M M, Young L Y. Chlorophenol degradation coupled to sulfate reduction[J]. Appl Environ Microbiol, 1990, 56: 3255-3260.
    [60] Haggblom M M, Young L Y. Anaerobic degradation of halogenated phenols by sulfate-reducing consortia[J]. Appl Microbiol Biotechnol, 1995, 61: 1546-1550.
    [61]王建龙.微生物群落对多氯酚的脱氯特性及机理研究[J].中国科学(B辑). 2003, 33(1): 47-53.
    [62] Genthner B R S, Allen W, Pritchard P H. Anaerobic degradation of chloroaromatic compounds in aquatic sediment under a variety of enrichment conditions[J]. Appl Environ Microbiol, 1989, 55(6): 1466-1471.
    [63] Sanford R A, Tiedje J M. Chlorophenol dechlorination and subsequent degradation in denitrifying microcosms fed low concentrations of nitrate[J]. Biodegradation, 1996, 7(5): 425-434.
    [64] Chang C C, Tseng S K, Chang C C, et al. Degradation of 2-chlorophenol via a hydrogenotrophic biofilm under different reductive conditions[J]. Chemosphere, 2004, 56: 989-997.
    [65] Puhakka J A, Shieh W K, J?rvinen K, et al. Chlorophenol degradation under oxic and anoxic conditions[J]. Wat Sci Technol, 1992, 25(1): 147-152.
    [66] Chang B V, Chen K S, Yuan S Y. Dechlorination of 2,4,6-TCP by an anaerobic mixed culture[J]. Chemosphere, 1995, 31(8): 3803-3811.
    [67] Blenkinsopp S A, Lock M A. The measurement of electron transport system activity in river biofilms[J]. Wat Res, 1990, 24(4): 441-445.
    [68]尹军,谭学军,任南琪.用TTC与INT-电子传递体系活性表征重金属对污泥活性的影响[J].环境科学, 2005, 26(1): 56-62.
    [69] Christine M C, Pernelle J J, Morin L, et a1. Relevance of the INT response as an indicator of ETS activity in monitoring heterotrophic aerobic bacterial populations in activated sludges[J]. Wat Res, 1998, 32(4): 1213-1221.
    [70]陈皓,陈玲,赵建夫,等.重金属对厌氧污泥电子传递体系活性影响研究[J].环境科学, 2007, 28(4): 786-790.
    [71]尹军,谭学军,任南琪,等.污泥电子传递体系(ETS)活性测定中萃取剂的选择[J].环境科学学报, 2004, 24(3): 413-417.
    [72]马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社, 2005.
    [73]唐受印,戴友芝,汪大翚,等.废水处理工程(第二版) [M].北京:化学工业出版社, 2004.
    [74] James R C, Cascarelli A, William W M, et al. Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol[J]. Appl Environ Microbiol, 1994, 60: 3536-3542.
    [75] Steinle P, Stucki G, Stettler R, et al. Aerobic mineralization of 2,6-dichlorophenol by Ralstonia sp. Strain RK1[J]. Appl Environ Microbiol, 1998, 64(7): 2566-2571.
    [76] Suflita J M, Horowitz A, Tiedje J M. Dehalogenation: a noval pathway for the anaerobic biodegradation of haloaromatic compounds[J]. Science, 1982, 21: 1115-1117.
    [77] Suflita J M, Robinson A, Tiedje J M. Kinetics of microbial dehalogenation of haloaromatic subtrates in methanogenic environments[J]. Appl Environ Microbiol, 1983, 45(5): 1466-1473.
    [78] Dlofing J, Harrison B K. Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments[J]. Environ Sci Techno1, 1992, 26: 2213-2218.
    [79] Holliger C, Wohlfarth G, Diekert G. Reductive dechlorination in the energy metabolism of anaerobic bacteria[J]. FEMS Microbiol Rev, 1998, 22(5): 383-398.
    [80]张锡辉,白志俳.难降解有机污染物共降解机理解析[J].上海环境科学, 2000, 19(7): 297-301.
    [81] Middeldorp P J, Alexander M, Zehnder J B, et al. Enrichment and properties of a 1,2,4-trichlorobenzene-dechlorinating methanogenic Microbial consortium[J]. Appl Environ Microbiol, 1997, 63(4): 1225-1229.
    [82] Utkin I, Dalton D D, Wiegel J. Specificity of reductive dehalogenation of substituted orth-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1[J]. Appl Environ Microbio1, 1995, 61: 346-351.
    [83] Madsen T, Aamand J. Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture[J]. Appl Environ Microbiol, 1992, 58(2): 557-56l.
    [84] Wood S L, Ferguson J F, Benijgamin M M. Characterization of chlorophenol and chloromethoxy benzene biodegration during anaerobic treatment[J]. Environ Sci Technol, 1989, 23(1): 32-68.
    [85] Bryant F O, Hale D D, Rogers J E. Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in fresh water, anaerobic sediment slurries[J]. Appl Environ Microbiol, 1991, 57(8): 2293-2301.
    [86] Mohn H, Puhakka J A, Ferguson J F. Effects of electron donors on degradation of pentachlorophenol in a methanogenic fluidized, bed, reactor[J]. Environ Technol, 1999, 20(9): 909-920.
    [87] Juteau P, Beaudet R, McSween G, et al. Anaerobic biodegradation of PCP by a methnogenic consortium[J]. Appl Environ Microbiol, 1995, 44(1-2): 218-224.
    [88] Bhatnagar L, Fathepure B Z. Mixed culture in detoxification of hazardous waste. In Zerkus JG (Eds.), Mixed cultures in biotechnology. NY: Mc Graw-Hill Book Co, 1995: 293-340.
    [89] Gillham R W, O’Hannesin S F. Enhanced degradation of halogenated aliphatics by zero-valent iron[J]. Ground Wat, 1994, 32(6): 958-967.
    [90] Matheson L J, Tramyek P Q. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environ Sci Technol, 1994, 28(12): 2045-2053.
    [91] Chen J, AI-Abed S R, Ryan J A, et al. Effects of pH on dechlorination of trichloroethylene by zero-valent iron[J]. J Hazard Mater, 2001, 83(3): 243-254.
    [92] Scherer M M, Balko B A, Gallagher D A, et al. Correlation analysis of rate constants for dechlorination by zero-valent iron[J]. Environ Sci Technol, 1998, 32(19): 3026-3033.
    [93]程荣,王建龙, Zhang Wei-xian.纳米Fe0作用下4-氯酚的脱氯特性及机理[J].环境科学, 2007, 28(3): 578-583.
    [94]程荣,王建龙, Zhang Wei-xian.纳米Fe0颗粒对三种单氯酚的降解[J].中国环境科学, 2006, 26(6): 698-702.
    [95]郎印海,聂新华,贾永刚.零价铁渗透反应格栅原位修复地下水中氯代烃的应用及研究进展[J].土壤, 2006, 38(1): 23-28.
    [96]马长文,仵彦卿,孙承兴.受氯代烃类污染的地下水环境修复研究进展[J].环境保护科学, 2007, 33(3): 23-25.
    [97] Alvarez P J, Till B A, Weathers L J, et al. Fe(0)-based bioremediation of aquifers contaminated with mixed wastes: US, 6719902. 04/13/2004.
    [98] Rosenthal H, Adrian L, Steiof M. Dechlorination of PCE in the presence of Fe0 enhanced by a mixed culture containing two Dehalococcoides strains[J]. Chemosphere, 2004, 55(5): 661-669.
    [99] Lampron K J, Chiu P C, Cha D K. Reductive dehalogenation of chlorinated ethenes with elemental iron: The role of microorganisms[J]. Wat Res, 2001, 35(13): 3077-3084.
    [100] Lee T, Tokunaga T, Suama A, et al. Efficient dechlorination of tetrachloroethylene in soil slurry by combined use of an anaerobic Desulfitobacterium sp. Strain Y-51 and zero-valent iron[J]. J Biosci Bioeng, 2001, 92(5): 453-458.
    [101] Rysavy J P, Yan T, Novak P J. Enrichment of anaerobic polychlorinated biphenyl dechlorinators from sediment with iron as a hydrogen source[J]. Wat Res, 2005, 39(4): 569-578.
    [102] Yu X, Amrhein C, Deshusses M A, et al. Perchlorate reduction by autotrophic bacteria in the presence of zero-valent iron[J]. Environ Sci Technol, 2006, 40(4): 1328-1334.
    [103] Shrout J D, Williams A G B, Scherer M M, et al. Inhibition of bacterial perchlorate reduction by zero-valent iron[J]. Biodegradation, 2005, 16: 23-32.
    [104]董玲玲,吴锦华,吴海珍,等.硝基苯厌氧降解过程中Fe0的促进作用[J].环境化学, 2005, 24(6): 643-646.
    [105] Zhang W, Chen L, Chen H, et al. The effect of Fe0/Fe2+/Fe3+on nitrobenzene degradation in the anaerobic sludge[J]. J Hazard Mater, 2007, 143(1-2): 57-64.
    [106]陈皓,陈玲,赵建夫,等.铁元素对有机物厌氧降解的影响研究[J].四川环境, 2005, 24 (6): 14-16.
    [107]刘智勇,戴友芝,程婷. Fe0/厌氧微生物联合体系处理2,4,6-三氯酚影响因素的研究[J].环境工程学报, 2008, 2(3): 349-352.
    [108]程婷,戴友芝,刘智勇,等.零价铁对2,4-二氯酚生物还原脱氯的影响研究[J].微生物学通报, 2008, 35(3): 332-335.
    [109]程婷,戴友芝,刘智勇,等.不同电子供体对2,4-二氯酚还原脱氯的影响研究[J].微生物学通报, 2008, 35(8): 1209-1213.
    [110]程婷,戴友芝,史雷,等. pH值对“Fe0-厌氧微生物”降解2,4-二氯酚的影响[J].环境化学, 2008, 27(6): 716-720.
    [111]史雷,戴友芝,罗春香,等. Fe0/厌氧微生物体系降解2,4,6-三氯酚特性研究[J].环境工程学报, 2009, 3(5): 11-14.
    [112] Rysavy J P, Yan T, Novak P J. Enrichment of anaerobic polychlorinated biphenyl dechlorinators from sediment with iron as a hydrogen source[J]. Wat Res, 2005, 39(4): 569-578.
    [113] Fernandez-Sanchez J M, Sawvel E J, Alvarez P J J. Effect of Fe0 quantity on efficiency of integrated microbial-Fe0 treatment processes[J]. Chemosphere, 2004, 54(7): 823-829.
    [114]钱忠宁,张腾江,杨赓.难降解废水生物处理的共代谢作用[J].福建环境, 2003, 20(5): 37-39.
    [115] Sanchez M, Mosquera-Corral A, Mendez R, et al. Simple methods for the determination of the denitrifying activity of sludges[J]. Bioresource Technol, 2000, 75: 1-6.
    [116] Seunghee C, Howard M L, Jeehyeong K. Nitrate reduction by zero-valent iron under different pH regimes[J]. Appl Geochemistry, 2004, 19: 335-342.
    [117] Huang C P, Wang H W, Chiu P C. Nitrate reduction by metallic iron[J]. Wat Res, 1998, 32(8): 2257-2264.
    [118] Ottley C J, Davison W, Edmunds W M. Chemical catalysis of nitrate reduction by iron(Ⅱ) [J]. Geochimica et Cosmochimica Acta, 1997, 61(9): 1819-1828.
    [119] Ye D, Quensen J F, Tiedje J M. 2-Bromoethanesulfonate, Sulfate, Molybdate, and Ethanesulfonate inhibit anaerobic dechlorination of Polychlorobiphenyls by pasteurized microorganisms[J]. Appl Environ Microbiol, 1999, 65: 327-329.
    [120]冯颖.硫酸盐还原菌与Fe0协同处理含重金属酸性废水的研究[D].天津大学博士学位论文, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700