用户名: 密码: 验证码:
模拟人工湿地系统处理酸性重金属废水的效能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,人工湿地用于城市生活污水的处理得到了广泛应用。但是人工湿地用于处理酸性重金属废水的应用还比较少,本论文采用人工湿地的方法处理酸性重金属废水,研究单独种植水葱、香蒲、芦苇、灯芯草、野茭白五种挺水植物的人工湿地系统对含Fe、Mn、Cr的酸性重金属废水的去除效能,找出对其具有高效去除效能的植物,分析pH值、重金属的初始浓度、水力停留时间等对5种植物去除效能的影响,探索其对重金属的去除机理。论文取得了以下研究成果:
     (1)单独种植5种挺水植物的人工湿地系统对酸性重金属废水中的Fe、Mn、Cr都有一定的去除效能。其中,种植水葱、野茭白的系统,对废水中Fe、Mn去除效能相对其他系统较好,7 d内废水中Fe的去除率分别达到94.6%、98.4%以上,Mn的去除率分别达到90.5%、88.3%以上;Cr初始浓度低(< 20 mg/L)时,种植水葱、芦苇的系统,对废水中Cr的去除效能相对其他系统较好,7 d内的去除率分别达到99.7%、99.3%以上,Cr初始浓度高(≥20 mg/L)时,种植香蒲、野茭白的系统,对废水中Cr的去除效能相对其他系统较好,7 d内的去除率分别达到96.3%、97.7%以上。
     (2)在单独种植5种挺水植物的人工湿地系统中,含Fe、Mn、Cr的酸性重金属废水pH值第7天时基本呈弱酸性和中性。
     (3)5种挺水植物对重金属Fe、Mn、Cr都有一定的吸附富集能力。其中,对重金属Fe的吸收富集能力表现为:野茭白>水葱>灯芯草>香蒲>芦苇;对重金属Mn的的吸收富集能力表现为:野茭白>灯芯草>芦苇>香蒲>水葱;对重金属Cr的吸收富集能力表现为:灯芯草>香蒲>水葱>野茭白>芦苇。
     (4)5种挺水植物对Fe、Mn、Cr的吸收富集表现为:根>茎叶。芦苇植株各部位对Fe、Mn的吸收富集表现为:根>茎>叶片;对Cr的吸收富集表现为:根>叶片>茎。
     (5)种植野茭白的人工湿地系统,Mn初始浓度为65.6 mg/L时,5 d内,系统在初始pH 6.0时对Mn的去除效果较好;9 d或者更长时间内,初始pH 5.0时的去除效果较好。
     (6)在种植野茭白的人工湿地系统中,野茭白对基质中有效态Mn的吸收量较大,并以这种方式达到对废水中重金属Mn的去除。
Constructed Wetland has rapidly developed in wastewater treatment recent years, mainly for city domestic wastewater treatment. But the application for acid mine drainage treatment is still relatively little, this study used the constructed wetland to deal with acid heavy metal drainage, study the removal efficiency of the heavy metals with the Constructed Wetland planted with Scirpus validus、Typha orientalis、Phragmitesaustralis、Juncus effuses、Zizania aquatica L. , identify the high removal efficiency constructed wetland plant with heavy metals in acid heavy metal drainage, analyze the influence of removal efficiency with heavy mentals in different pH、initial concentration of heavy metals、the retention time and so on. Explore the removal mechanism with heavy metals. The main conclusions are as follows:
     (1) The constructed wetland systems individually planted with the 5 Macrophytes have a certain removal efficiency with the Fe、Mn、Cr in acid heavy metal drainage. The systems planted with Scirpus validus and Zizania aquatica L. have a better efficiencies with Fe、Mn compared to other systems, the removal rates of Fe 94.6%、98.4% or more and the removal rates of Mn can reach 90.5%、88.3% in the 7th day. When the lower initial concentration of Cr (< 20 mg/L), the systems planted with Scirpus validus and Phragmitesaustralis have a better efficiencies with Cr compared to other systems,the removal rates in the 7th day can reach 99.7%、99.3% and so on. When the higher initial concentration of Cr (≥20 mg/L), the systems planted with Typha orientalis and Zizania aquatica L. have a better efficiencies with Cr compared to other systems. the removal rates in the 7th day can reach 96.3%、97.7% and so on.
     (2) In the constructed wetland systems individually planted with the five Macrophytes,the pH values of acid heavy metal drainage including Fe、Mn、Cr are basicly dilute acidic and neutral in the 7th day.
     (3) The five Macrophytes have certain absorption rules of Fe、Mn、Cr. The accumulation to Fe showed: Zizania aquatica L. > Scirpus validus > Juncus effuses > Typha orientalis> Phragmitesaustralis; The accumulation to Mn showed: Zizania aquatica L. > Typha orientalis > Juncus effuses > Phragmitesaustralis > Scirpus validu; The accumulation to Cr showed: Juncus effuses > Typha orientalis > Scirpus validu > Zizania aquatica L. > Phragmitesaustralis.
     (4) The absorption of Fe、Mn、Cr with the 5 Macrophytes showed: root > stem and leaf. The absorption of Fe、Mn with each parts of Phragmitesaustralis showed: root > stem > leaf, but the absorption of Cr showed: root > leaf > stem.
     (5) The constructed wetland systems planted with Zizania aquatica L,when the initial concentration is 65.6 mg/L, the initial pH 6.0,the systerm has a better efficiencies with Mn in 5 days,but for 9 days or more, it has a better efficiencies with the initial pH 5.0.
     (6) In the constructed wetland systems planted with Zizania aquatica L, Zizania aquatica L has a more absorption of the available Mn,and it remove the Mn in the drainage in this way.
引文
[1]赫佐格D J.如何评价矿山废弃物对地下水和地表水的潜在影响[J].国外金属矿山, 1997, (2): 57-60.
    [2]邹知华.加强矿山环境保护促进矿山持续发展[J].中国矿业, 1994, (2): 9-13.
    [3]陈复.水处理技术及药剂大全[M].北京:中国石化出版社, 2000.
    [4]马尧,胡宝群,孙占学.矿山酸性废水治理的研究综述[J].矿业工程, 2006, 4(3): 55-57.
    [5]国家环境保护总局编.中国环境统计年报2007[M].北京:中国环境科学出版社, 2008.
    [6]艾翠玲,张国春.重金属废水处理工艺设计[J].商洛师范专科学校学报, 2003, 17(4): 35-37.
    [7]杨根祥,沙日娜等.酸性矿山废水的废染与处理技术研究.西部探矿工程[J], 2000, (6): 51-52.
    [8]韦冠俊.矿山环境工程[M].北京冶金工业出版社, 2001.
    [9]熊报国.矿山废水处理的研究与应用[J].环境与开发, 1999, (4): 37-40.
    [10]魏东波.矿山废水自净的潜在能力[J].国外环境科学, 1995, (1): 45-48.
    [11] Wang Juntao, Xie Juan, Zhang Yiqian. Effect of waste rock eluviation on water environment[J]. Journal of Earth Sciences and Environment, 2006, 28(4): 92-96.
    [12]林亲铁.废弃矿山土地水体综合治理研究进展[J].环境污染治理技术与设备, 2000, (6): 7-10.
    [13]於方,张强,过孝民.我国金属矿采选业废水污染特征分析[J].金属矿山, 2003, (9): 40-44.
    [14] Evvie Chockalingam, S. Subramanian. Studies on removal of metalions and sulphate reduction using rice husk and Desulfotomaculum nigrificans with reference to remediation of acid mine drainage[J]. Chemosphere, 2006, 62(2): 699-708.
    [15] Ata Akcil, Soner Koldas. Acid Mine Drainage(AMD): causes, treatment and case studies[J]. Journal of Cleaner Production, 2006, (14): 1139-1145.
    [16] Kevin B. Hallberg, D. Barrie Johnson. Microbiology of a wetland ecosystem constructed to remediate[J]. Science of the Total Environment, 2005, 3(38): 53-66.
    [17]张景来,王剑波.冶金工业废水处理技术及工程实例.北京:化学工业出版社, 2003, 57-67.
    [18]刘剑彤,肖邦定,陈珠金.曝气混凝一体法去除碱性废水中砷的研究[J].中国环境科学, 1997, 17(2): 184-187.
    [19] Martin C D, Johnson K D, Kadlec R H, et al. The use of extended aeration and the series surface flow wetlands for landfill leachate treatment.Water Science and Technology, 1995, 32(3): 119-128.
    [20]阳承胜,蓝崇珏,束文圣.重金属在宽叶香蒲人工湿地系统中的分布与积累[J].水处理技术, 2004, 28(2): 101-104.
    [21] Cànovas C R, O lías M, N ieto J M, et al. Hydrogeochemical characteristics of the Tinto and Odiel rivers (SW Spain). Factors controlling metal contents[J]. Science of the Total Environment, 2007, 3(73): 363-382.
    [22] S Potgieter Vermaak. Comparison of limestone, dolomiteand fly ash as pretreatment agents for acid m ne drainage[J]. Minerals Engineering, 2006, 19(4): 454-462.
    [23] Margarete Kalin, Andrew Fyson, William N Wheeler. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage[J]. Science of the Total Environment, 2006, 36(6): 395-408.
    [24]陈喜红.银金矿总废水处理研究[J].湖南有色金属, 2000, 16(5): 31-33.
    [25]鞠海燕,黄春文,罗文海等.金属矿山酸性废水危害及治理技术的现状与对策[J].中国钨业, 2008, 23(2): 41-44.
    [26]杨文甫,祝玉学.酸性矿山水处理技术的新进展[J].安全与环保, 2001, (4): 26-27.
    [27] Gerald J Zagury . Characterization and reactivity assessment of organic substrates for sulphate reducing bacteria in acid m ine drainage treatment[J]. Chemosphere, 2006, 64(8): 944-954.
    [28]帖靖玺,陆建红,郑正.潜流式人工湿地微生物特性初探[J].安徽农业科学, 2009, 37(8): 3699-3701.
    [29] Y.P.TingF. Lawson, et al. Uptake of cadmium and zine by the alga Chlorella vu1garis.Part 2.Multi-ion situation[J]. Bioteehnol.Bioeng. 1991, (37): 445-455.
    [30]吴启堂,蒋成爱,林毅等.利用剩余活性污泥的生物吸附降低城市污水污泥重金属含量[J].环境科学学报, 2000, 20(5): 652-653.
    [31]沈晴,解庆林,王敦球.二种处理重金属废水的生物方法[J].西科学院学报, 2005, 21(2): 122-126.
    [32] Kevin B: Hallberg, D. ,Barrie Johnson. Novel acidoPhiles isolated from moderately aeidic mine drainage waters[J]. Hydrometallurgy, 2003, (71): 139-148.
    [33]蔡美芳,党志.磁黄铁矿氧化机理及酸性矿山废水防治的研究进展[J].环境污染与防治, 2006, 28(1): 58-61.
    [34] Shelp. The amelioration of acid mine drainage by an insituelectrochemical method;part 2:employing aluminium andzinc as sacrificial anodes[J]. Applied Geochemistry, 1996, 11(5): 425-432.
    [35] Shrestha R R. Constructed wetland technology tansfer to Nepal[J]. Wat Sci Tech, 2001, 43(11): 345-350.
    [36]李定龙,姜展.重金属废水处理的方案比较研究[J].工业安全与环保, 2005, 131(12): 18-19.
    [37]籍国东,孙铁珩,李顺.人工湿地及其在工业废水处理中的应用[J].应用生态学报, 2002, 13(2): 224-228.
    [38]白峰青,郑丙辉,田自强.水生植物在水污染控制中的生态效益[J].环境科学与技术, 2007, 4(27): 99-100.
    [39] Verhoeven, J. T. A., A.F. M. Meuleman. Wetlands for wastewater treatment:opport unities and limitations[J]. Ecological Engineering, 1999, 12(2): 5-12.
    [40]梁继东,周启星,孙铁衍.人工湿地废水处理系统研究及性能改进分析[J].生态学杂志, 2003, 22(2): 49-55.
    [41]胡文容,高廷耀.酸性矿井水的处理方法和利用途径[J].能源环境保护, 1994, (1): 17- 20.
    [42]唐述虞.铁矿酸性排水的人工湿地处理[J].环境工程, 1996, 14(4):3-7.
    [43]招文锐,杨兵,朱新民等.人工湿地处理凡口铅锌矿金属废水的稳定性分析[J].生态科学, 2001, 20(4): 16-20.
    [44] Baker AJ M, Brooks RR. Terrestrial higher plants which hyperaccumulate metallicelements view of their distribution,ecology and phytochemistry[J]. Biorecovery, 1998,5(1): 81-126.
    [45]吴振斌,陈辉蓉,荷锋等.人工湿地系统对废水磷的净化作用[J].水生生物学报, 2000, 25(1): 28-35.
    [46] Cooper P. The design and performance of a nitrifying vertical flow reed bed treatment system[J]. Wat Sic Tech, 1997, 35(5): 215-221.
    [47] Michael M, Robert H. The design and performance of a vertical flow reedbed for the treatment of high ammonia low suspended solids organic effluents[J]. Wat.Sci. Tech, 1997, 35(5): 197-204.
    [48] Shalla Gray. The nutrient assimilative capacity ofmaerl as a substrate in constructed wetland systems for waste treatment[J]. Wat Res, 2000, 34(8): 2183-2190.
    [49]桑伟莲,孔繁翔.植物修复研究进展[J].环境科学进展, 1999, 7(3): 40-44.
    [50] Beverly Collins, J Vaun McArthur, Rebecca R. Sharitz, et al. Plant effectson microbial assemblages and remediation of acidic coal pile runoff in mesocosmtreatment wetlands[J]. Eco Eng, 2004, 2(3):107-115.
    [51]靖元孝,陈兆平,杨丹菁.风车草对生活废水的净化效果及其在人工湿地的应用[J].应用与环境生物学报, 2002, 8(6): 614-617.
    [52] Koottatep T, Polprasert C, Oanh N T K, et al. Septage dewatering in Vertical-flow constructed wetlands located in the tropics[J]. Wat Sci Tech, 2001, 44(223): 181-188.
    [53] Tanner, C. C. ,C. Chris. Plants for constructed wetland treatment systems--a comparison of the growth and nutrient uptake of eight emergent species[J]. Ecological Engineering, 1996, 7(1): 59-83.
    [54]朱彬.利用水生植物净化富营养化水体的研究进展[J].上海环境科学, 2002, 21(9): 564-567.
    [55] Mc Jannet C. L. ,Keddy P. A., Pick F. R. Nitrogen and phosphorus tissue concentration in wetland plants:A comparison across habitats and functional groups[J]. Funct.Ecol., 1995, 9: 231-238.
    [56] Garba L, J acques B, Linda D, et al. Nitrogen and phosphorus removal in a subsurface2flow reed bed[J]. Water Quality Research Journal of Canada, 1998, 33 (2): 319-329.
    [57] Ansola, G., J. M. Gonzalez, R. Cortijo, et al. Experimental and fullscale pilotplant constructed wetlands for municipal wastewaters reatment[J]. Ecological Engineering, 2003, 21(1): 43-52.
    [58] Mays , P. A. , G. S. Edwards. Comparison of heavy metal accumulation in natural wetland and constructed wetl-ands receiving acid mine drainage [J]. Ecological Engineering, 2001, 16(4): 487-500.
    [59]徐伟伟,章北平等.植物在人工湿地净化污水过程中的作用[J].安全与环境工程, 2005, 12(2): 41-44.
    [60]韩志萍,张建梅,姜叶琴等.植物整治技术在重金属废水处理中的应用[J].环境科学与技术, 2002, 25(3): 46-50.
    [61]吴振斌,陈辉蓉,荷锋等.人工湿地系统对废水磷的净化作用[J].水生生物学报, 2000, 25(1): 28-35.
    [62]傅伟军,唐亚.植物在人工湿地中的作用及物种选择[J].四川环境, 2005, 24(6): 45-49.
    [63]陈玉成编.废染环境生物修复工程.北京:化学工业出版社, 2003: 30-52.
    [64]成水平,况琪军,夏宜峥.香蒲、灯心草人工湿地的研究(I)——净化废水的效果[J].湖泊科学, 1997, 9(4): 351-358.
    [65]李铁民,马汐平,付宝荣等.环境生物资源.北京:化学工业出版社, 2003, 101.
    [66]张雨葵,杨扬,刘涛.人工湿地植物的选择及湿地植物对污染河水的净化能力[J].农业环境科学学报, 2006, 25(5): 1318-1323.
    [67]袁东海,景丽洁,高士祥等.几种人工湿地基质净化磷素污染性能的分析[J].环境科学, 2005, 26(1): 51-55.
    [68]罗凯,张建国.矿山酸性废水治理研究现状[J].资源环境与工程, 2005, 19(1): 45- 49.
    [69]陈金发,卿东红,阮尚全.组合人工湿地对渗滤液中重金属的去[J].水处理技术, 2008, 5(34): 57-58.
    [70] Cheng S P, Grosse W, Karrenbrock F. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals[J]. Ecol.Eng, 2002, 18(3): 317- 325.
    [71]胡国光,曹向东,穆瑞林.深圳市沙田人工湿地废水处理厂简介[J].给水排水, 2003, 20(8): 30 -31.
    [72] Dpartment Of the Environment(1973).“Aeration at weirs”. Notes on Water pollution.No. 61 Water Research Laboratory Stevenage.
    [73]王薇.人工湿地废水处理工艺与设计[A].城市环境与城市生态, 2001, 2: 59-62.
    [74]高拯民.李宪法编.城市废水土地处理利用设计手册[M].中国标准出版社, 1990.
    [75]诸惠昌.新型废水处理工艺一人工湿地的设计方法[J].环境科学, 1993, 14(2): 39-43.
    [76]何池全,李蕾,顾超.重金属污染土壤的湿地生物修复技术[J].生态学杂志, 2003, 22(5): 78-81.
    [77] Tessier A, Campbell PGC, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal .Chem., 1979, 51(7): 844-851.
    [78]地里拜尔·苏里坦.土壤中铁锰的形态分布及其有效性研究[J]. Chinese Journal of Ecology, 2006, 25(2): 155-160.
    [79]吴晓磊.人工湿地废水处理机理[J].环境科学, 1995, 1(6): 83-86.
    [80]白峰青,郑丙辉,田自强.水生植物在水污染控制中的生态效益[J].环境科学与技术, 2007, 4(27): 99-100.
    [81] Greenway M. Nutrient content of wetland plants in constructed wetland receiving municipal effulent in tropical Australia[J]. Wat.Sci. Tech, 1997, 35(5): 135-142.
    [82]武维华主编.植物生理学[M].北京:科学出版社, 2003: 86-98.
    [83] AKsoy A, Demirezen D, Duman F. Bioaccumulation,detection and analyses of heavy metal pollution in Sultan Marsh and its environmnent[J]. Warter, Air and Soil Pollution, 2005, 164: 241-255.
    [84]董志成,鲍征宇等.湿地芦苇对有毒重金属元素的抗性及吸收和累积[J].地质科技情报, 2008, 27: 80-84.
    [85] Clemens S, Plamgren W G, Kramer U. A long way ahead: Understanding and engineering plant metal accumulation[J]. Trends in plant Science, 2002, 7: 309-315.
    [86]付春平,唐运平,闫玉荣等.水葱对高盐再生水的净化效果研究[J].中国给水排水, 2006, 22(5): 40-42.
    [87]周邦基,何雪辉主编.植物的营养.北京:农业出版社, 1985.
    [88] Sadana U. S. and Claassen N. Manganese dynamics in the rthizosphere and Mn uptake by different crops evaluated by a mechanistic model[J]. Plant and soil, 2000, 218(1): 233-238.
    [89]龙新宪.东南景天(Sedum alfredii Hance)对锌的耐性和超级累机制研究.浙江大学博士论文, 2002.
    [90]薛生国.超积累植物商陆对锰富集机理及其对污染水体的修复潜力.浙江大学博士论文, 2005.
    [91]陈飞霞,魏世强.土壤中有效态重金属的化学试剂提取法研究进展[J].干旱环境监测, 2006, 20(3): 153-158.
    [92] DIN ISO 11047-2003土壤质量.土壤的王水萃取物中镉、铬、钴、铜、铅、锰、镍和锌的测定.
    [93]水和废水监测分析方法编委会.水和废水监测分析方法[M].第四版.北京:中国环境科学出版社, 2002.
    [94] Rauser WE. Structure and function of metal chelators produced by plants-the case for organic acids,amino acids,phytinanmetallo-thioneins[J]. Cell Biochemistry and Biophysics, 1999(31): 19-48.
    [95]王华,唐述梅等.超积累植物水蓼的生理及分子基质[J].云南植物究, 2008, 30(4): 489-495.
    [96]童依平,李继云.北京地区石灰性土壤对锰的吸附[J].环境科学进展, 1996, 11(10): 237-239.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700