用户名: 密码: 验证码:
水平界面任意空间取向TI同类反射非双曲时距研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水平界面任意空间取向TI同类反射非双曲时距研究
     各向同性介质中水平界面CMP(Common Middle Point)集同类反射波近、远偏移距反射时距严格为双曲时距。TI(Transverse Isotropy)各向异性介质中近偏移距反射时距为双曲时距,而远偏移距反射时距为非双曲时距。关于VTI(TI with a Vertical symmetry axis)、HTI(TI with a Horizontal symmetry axis)、TTI(TI with a Titled symmetry axis confined to incident plane)以及弱各向异性等特殊介质条件的研究有大量的成果。姚陈(2005)给出了任意强弱、任意空间取向TI(Transverse Isotropy with an Arbitrary spatial orientation,ATI)介质中NMO速度的扩展研究;在此基础上,本文扩展研究任意强弱、ATI介质中非双曲时距,包括理论研究和正演模拟,以及TI介质参数反演两部分的研究。
     理论和正演部分包括对非双曲动校正方程的修正;以及基于任意空间取向TI坐标系到测线坐标系的变换方法,推导给出水平界面ATI介质中同类反射波(非转换波)关于平方走时[t~2(x~2)]的泰勒级数展开式中的四次时差项系数(A_4)的精确解析表达式。
     在对非双曲动校正方程进行修正时,基于我们给出的精确A_4系数解析解和NMO速度解析解,给出了ATI介质中远偏移距非双曲动校正方程中分母系数(A~*)公式,使得非双曲动校正方程能更好地拟合反射时距。由此,我们扩大了非双曲动校正方程的适用范围,从而实现了ATI介质中远偏移距非双曲时距的动校叠加。
     我们给出的A_4精确解析表达式有利于各向异性解释,反演介质各向异性参数,以及提高成像质量。此A_4精确解析表达式,对TI的各向异性强弱及空间取向没有限制,将已有研究结果作为其中的特例统一起来,包括了VTI、HTI、TTI和弱各向异性近似等特殊情况。
     我们给出的精确解与弱各向异性近似解的比较研究表明:随着各向异性参数ε和δ的增大,近似解失去了精确性、存在较大误差。精确解与近似解的差异不仅表现在A_4值的大小及符号(正负),而且表现在A_4随方位的变化特征。
     通过与各向异性射线追踪算法给出的精确时距结果对比得出:我们导出的A_4精确解析解可以用来解析研究任意强弱ATI介质中随方位变化的非双曲时距,修正后的非双曲动校正方程能精确地描述任意强弱ATI中随测线方位变化的走时曲线,可以用来替代耗时、多偏移距、多方位的射线追踪方法正演模拟ATI介质中远偏移距反射走时。
     在反演部分中,我们论述了将遗传算法(GA)应用于各向异性参数反演的实现过程。特别论述了利用多方位二维反射P波长偏移距非双曲走时资料,结合其他资料(如检测炮、钻井或测井)所提供的垂直界面反射速度,来反演获取TI介质参数的可行性及唯一性。对于VTI介质,P波反射由V_(p0)、ε和δ三个参数来描述,在其它资料给出垂直速度(V_(p0))的前提条件下,ε和δ两个参数可由近偏移距NMO速度和远偏移距四次时差系数(A_4)两个条件来约束反演,那么反演解是唯一的。相比VTI介质,ATI介质中增加了对称轴倾角(θ_c)与方位(φ_c)两个参数,问题的复杂性可以通过方位变化的非双曲时距来解决。因此,我们提出了基于三条测线剖面的NMO速度和四次时差项系数进行ATI介质参数反演的新思路,利用三条测线剖面的三个近偏移距NMO速度和一个远偏移距A_4系数四个条件来约束反演ε、δ、θ_c和φ_c四个参数。最后,由遗传算法实现了TI介质的各向异性和空间取向参数反演,反演的精度和稳定性较高。
In isotropic media, the reflection traveltime-offset of pure (non-converted) modes from a horizontal interface in CMP (Common Middle Point) gathers can be strictly described by a hyperbolic curve for both near and far-offset. While in TI (Transverse Isotropy) media, such reflection traveltime-offset is a hyperbolic curve for near-offset, but a nonhyperbolic curve for far-offset. For VTI, HTI, TTI and weak anisotropy approximation, there are many researches. Yao (2005) presents the exact analytic solution of the NMO velocity for the ATI (TI with an Arbitrary spatial orientation) media. In this thesis, we attempt to extend the study of the nonhyperbolic reflection traveltime-offset for the far-offset to the ATI media with arbitrary anisotropy strength. Our research is divided into two parts: theoretic forward modeling and TI parameter inversion.
     In the part of forward modeling, we adjust the nonhyperbolic moveout equation and present an exact analytic expression for the quartic moveout coefficient (A_4) of the Taylor series expansion of the squared traveltime [ t~2 (x~2) ] for the ATI media through the coordinates transformation.
     For the adjusted nonhyperbolic moveout equation, based on our exact analytic solution of A_4, and NMO velocity, a formula of the denominator coefficient (A*) in the nonhyperbolic moveout equation for the far-offset in the ATI media is presented, which makes the nonhyperbolic moveout equation fit the reflection traveltime exactly. Therefore, our work extends the application of the nonhyperbolic moveout equation to the ATI media and makes the nonhyperbolic moveout correction and stack of the far-offset in the ATI media.
     Our analytic solution of A_4 facilitates anisotropy interpretation, the analyses of the influence factors, the inversion of the anisotropy parameters and improving the imaging quality. The solution of A_4 has no limitation to the anisotropy strength and the TI orientation. It unifies all the special cases in existing researches, such as VTI, HTI, TTI, and weak anisotropy approximation.
     A comparison between our exact solution and the approximate solution of A_4 for weak anisotropy shows that the approximate solution for weak anisotropy loses its exactness and has notable errors with the increasing anisotropic parametersεandδ. The exact and approximate solutions are different in the magnitude and signs (positive and negative) of A_4 as well as the variations with azimuths.
     Compared with the exact traveltime-offset of the ray-tracing algorithm, our exact analytic solution of A_4 can be used for calculating the nonhyperbolic traveltime-offset with different azimuth in the ATI media. The adjusted nonhyperbolic moveout equation can precisely describe the traveltime curves with the different azimuth in the ATI media with arbitrary anisotropy strength, and can also replace the timeconsuming, multioffset, multiazimuth ray tracing method to do the forward modelling of the reflection traveltime for the far-offset in the ATI media.
     In the second part of our study, we discuss the performance of the parameter inversion of anisotropy and TI orientation by means of the genetic algorithm. For the P-wave reflection, the NMO velocity and A_4 in the ATI media can be described by five parameters (V_(p0),ε,δ,θ_c, andφ_c) .In comparison with the VTI media, there are new two parameters (θ_c,φ_c) for the orientation of the symmetric axis in the ATI media. The new two parameters can be obtained through the nonhyperbolic traveltime-offset with different azimuth. Like the case of the VTI, only the nonhyperbolic traveltime data of the P-wave are not sufficient to retrieve the three parameters V_(p0),εandδ, suggesting that the inversion can be performed by using multiazimuth nonhyperbolic (long-spread) P-wave reflection traveltime data, and vertical velocity from check shot and drill or log well data. We discuss the feasibility of the inversion condition and the uniqueness of the inversion result. In our inversion with three profiles, we use three different near-offset NMO velocities and one far-offset A_4 in conjunction with vertical velocity or interface depth from the other data. Then, the inversion is performed for anisotropy parameters and the TI orientation with the genetic algorithm. The numerical tests demonstrate that the precision and stability of our inversion is satisfactory.
引文
陈颙等.岩石破坏过程中的降维现象.地球物理学报,1989,32(增1):132~143
    杜丽英,杜丽娟,彭苏萍,王永丰.VTI介质中的地层弹性参数反演,世界地质,2001,20(4):396~401
    董渊,杨慧株.利用P波层间时差确定地层的各向异性参数.石油地球物理勘探,1999,34(5):520~525
    杜启振,李辉.各向异性介质非双曲时差速度分析.油气地球物理,2005,3(2):20~23
    傅旦丹,何樵登.遗传算法的改进及其在各向异性介质参数反演中的应用.石油物探,2002,41(3):293~298
    高原,冯德益.关于近震S波分裂的研究.中国地球物理学会年刊,地震出版社,1991,31
    高原,郑治真.大同—阳高Ms5.8级地震前S波分裂异常变化.华北地震科学,1993,11(2):1~13
    高原,李世愚,周蕙兰等.大理岩的剪切波分裂对应力变化响应的实验研究.地球物理学报,1999,42(6):778~784
    何樵登主编.地震勘探原理和方法.地质出版社,1986,北京
    何樵登,张中杰.各向异性介质中地震波分裂初探.世界地质,1990,9(2):1~5
    何樵登,张中杰.横向各向同性介质中地震波及其数值模拟.长春:吉林大学出版社,1996
    贺振华,黄德济.缝洞储层的地震检测和预测.勘探地球物理进展,2003,26(2):79~83
    候安宁,何僬登.三维裂隙介质中弹性波的速度研究.石油地球物理勘探,1995,30(s2):1~9
    黄光远,刘小军.数学物理反问题.济南:山东科学技术出版社,1993
    黄捍东,魏修成,叶连成,贺振华,李亚林.碳酸盐岩裂缝性储层研究的地质物理基础.石油地球物理勘探,2001,36(5):591~596
    黄德济,贺振华,何建军,文晓涛.致密储层洞缝发育带综合预测.勘探地球物理进展,2003,26(2):114~120
    季玉新.用地震资料检测裂缝性油汽藏的方法.勘探地球物理进展,2002,25(5):28~35
    金振民,嵇少丞,金淑燕.橄榄石晶格优选方位和上地幔地震波速各向异性.地球物理学报,1994,37(4):220~227
    刘劲松.三维非均匀各向异性介质中的纵波走时反演研究.博士后出站报告,中国科学院地球物理研究所,1999
    刘国明,董敏煜,苑书金,王振明.弱横向各向同性介质中 P 波旅行时反演及速度分析.石油大学学报(自然科学版),2000,24(1):73~76
    刘洋,李承楚,牟永光.具有倾斜对称轴的横向各向同性介质中的弹性波.石油地球物理勘探,1998,33(2):161~169
    刘洋,李承楚.双相各向异性介质中弹性波传播特征研究.地震学报,1999a,21(4):367~373
    刘洋,董敏煜.各向异性介质中的方位AVO.石油地球物理勘探.1999b,34(3):260~268
    刘洋,魏修成.三维反射纵波旅行时检测裂隙.石油地球物理勘探,1999,34(6):607~613
    刘希强,周蕙兰,郑治真.地震各向异性研究进展.地震研究,1998,21(2):185~195
    刘希强,周蕙兰等.中国大陆及邻区上地幔各向异性研究地震学报.2001,23(4):337~348
    陆基孟.地震勘探原理.石油大学出版社,1996,42~44
    马在田编.三维地震勘探方法.石油工业出版社,1989
    马在田等.计算地球物理学概论.同济大学出版社,1997
    牟永光.地震勘探资料数字处理方法.石油工业出版社,1993,139~141
    牛滨华.裂隙各向异性介质中地震波传播与数值模拟.长春地质学院博士学位论文,1992
    牛滨华,何樵臀,陶春晖.各向异性介质相速度、群速度与克利斯托费尔方程.长春地质学院学报,1992,22(4):447~453
    牛滨华,何樵登.裂隙各向异性介质波场VSP多分量记录的数值模拟.地球物理学报,1995,38(4):519~527
    牛滨华,孙春岩 编著.半空间介质与地震波传播.石油工业出版社,2002
    曲寿利,季玉新,王鑫.全方位 P 波属性裂隙检测方法.石油地球物理勘探,2001,36(4):390~397
    石琳珂等编著.地球物理遗传反演方法.地震出版社,2000
    石耀霖.遗传算法及其在地球物理科学中的应用(油印本).中国科学院研究生院,1994
    宋仲和,安昌强,陈国英等.中国西部三维速度结构及其各向异性.地球物理学报,1991,34(6):172~181
    宋海斌,马在田,张关泉.层状横向各向同性介质反问题初探.地球物理学报,1997,40(1):105~119
    滕吉文,王光杰,杨顶辉等.地球各向异性介质中地震波动理论、检测与应用研究.地学前缘,1998,5(1-2):83~90
    万志超,滕吉文,张秉明.各向异性介质中地震波速度分析的研究现状.石油地球物理进展,1997,12:35~44
    滕吉文,张中杰,王光杰,张秉铭,王铁男.地球内部各圈层介质的地震各向异性与地球动力学.地球物理学进展,2000,15(1):1~35
    王光杰,陈云,赵爱华等.指示地球深层动力过程的地震各向异性“化石”.地球物理学进展,2000a,15(2):106~110
    王光杰,陈云,赵爱华等.多波多分量地震探测技术,2000b,15(2):54~60
    王光杰,张中杰,滕吉文.TI介质双参数速度分析.地球物理学进展,2004,19(1):113~118
    王家映.地球物理反演理论.武汉:中国地质大学出版社,1998
    王秀明主编.应用地球物理方法原理.石油工业出版社,1999
    魏修成,董敏煜,陈运泰.非均匀各向异性介质中弹性波的传播.地震学报,1998,20(6):561~572
    徐常练 许云.速度随炮检距变化(VVO)分析.石油地球物理勘探,1998,33(6):733~740
    徐士良编著.Fortran常用算法程序集(第二版).清华大学出版社,1995
    徐果明编著.反演理论及其应用.地震出版社,2003
    熊金良,王长春,刘原英,邵玉海.海上四分量地震勘探综述.中国煤田地质,2000,12(3):39~44
    姚陈,王培德,陆玉美,陈运泰.对大同地震横波分裂的研究.华北地震科学,1992a,10(3):12~26
    姚陈,王培德,陈运泰.卢龙地区S波偏振与上地壳裂隙各向异性.地球物理学报,1992b,35(3):305~315
    姚陈,陈祥国,唐健侯.爆破源地震反射波三分量记录理论地震图研究.石油地球物理勘探,1999,34(2):210~217
    姚陈,郝重涛,王迅.任意空间取向TI介质三类体波速度和偏振解析解,CPS/SEG 2004国际地球物理会议论文集,2004:591~594
    姚陈.任意空间取向TI和三维倾斜界面P波NMO速度,中国地球物理学会年刊,2004,493
    姚陈,地震三维矢量反射波场.地球物理学进展,2006,21(2):430~439
    苑书金,董敏煜.各向异性介质中的P波旅行时反演.物化探计算技术,2000,22(4):312~315
    苑书金,董敏煜,横向各向同性介质中的反射波旅行时分析.石油地球物理勘探,2001,36(4):488~494
    杨文采著.地球物理反演的理论与方法.地质出版社,1997
    杨文采.评地球物理反演的发展趋势.地学前缘,2002,9(4):389~396
    尤建军,常旭,刘伊克.VTI介质长偏移距非双曲动校正公式优化.地球物理学报,2006,49(6):1770~1778
    张秉铭,滕吉文,万志超.横向各向同性介质中地震波速度分析及其意义.地球物理学进展,1997,12(1):53~59
    张秉铭、张中杰.一种新的地层弹性参数直接反演方法.地震学报,2000,22(6):654~660
    张建中.三维TI介质中P波NMO速度及VSP走时联合反演.中国地震局地质研究所博士学位论文,2005
    张中杰,何樵登.含裂隙介质中地震波运动学问题正演模拟.石油地球物理勘探,1989,24(3):290~300
    张中杰.2D与3D TIV介质地震波动理论研究.长春地质学院博士论文,1991
    张中杰.各向异性介质中地震波动理论研究.博士后出站报告,中国科学院地球物理研究所,1993
    张中杰,何樵登等.二维横向各向同性介质中弹性波场差分法模拟稳定性研究.长春地质学院学报,1993a,NO.2:205~211
    张中杰等..二维横向各同同性介质VSP三分量地震记录合成.石油物探.1993b,32(3):31~38
    张中杰.地震各向异性研究进展.地球物理学进展,2002,17(2):281~293
    张文生,何樵登.横向各向同性介质中的反射波时距曲线.石油物探,1997,36(2):15~24
    张世俊,杨慧株,董渊,杜启振.遗传算法反演HTI介质各向异性参数.石油地球物理勘探,2002,37(1):24~28
    郑海山,张中杰.横向各向同性(VTI)介质中非线性地震波场模拟.地球物理学报,2005,48(3):660~667
    郑治真.S波分裂的研究.地球物理学进展,1989,5(1):8~13
    易维启,唐宗璜,宁吉杰.多波多分量地震勘探在松辽盆地的初步应用.石油地球物理勘探1998,33(5):663~670
    朱介寿等编著.地震学中的计算方法.地震出版社,1985
    Tarantola A著.反演理论—数据拟合和模型参数估算方法.张先康等译.北京:学术书刊出版社,1989
    AI-Chalabi M. 1997. Parameter nonuniqueness in velocity versus depth functions. Geophysics 62, 970~979.
    AI-Dajani A, Tsvankin I. Nonhyperbolic reflection moveout for horizontal transverse isotropy. Geophysics, 1998, 63: 1738~1753
    Alford R M. Shear data in the presence of azimuthal. Anisotropy. Dilley, Texas: 56th SEG Meeting, Houston, Expanded Abstracts, 1986, 416~479
    Alkhalifah T, Lamer K. Migration error in transversely isotropic media. Geophysics, 1994, 59(10): 1405~1418
    Alkhalifah T, Tsvankin I. Velocity analysis in transversely isotropic media. Geophysics, 1995, 60: 1550~1566
    Alkhalifah T, Tsvankin I, Lamer K and Toidi J. Velocity analysis and imaging in transversely isotropic media: methodology and a case study. Leading Edge, 1996, 15(5): 371~378
    Alkhalifah T. Velocity analysis using nonhyperbolic moveout in transversely isotropic media. Geophysics, 1997, 62: 1839~1854
    Aki K and Richards P G. Quantitative seismology; theory and methods, Vol.1, W. N. Freeman & Co., 1980
    Ando M, Ishikawa Y. Observations of Shear-wave velocity polarization anisotropy beneath Honshu, Japan: two-masses with different polarization in the upper mantle. J. phys. Earth, 1982, 30: 191~199
    Backus G E. Long-wave elastic anisotropy produced by horizontal layering. J. Geophys. Res., 1962, 67: 4427~4440
    Backus G E. Possible forms of seismic anisotropy of the upper mantle under oceans. J. Geophys. Res., 1965, 70: 3429~3439
    Bakulin A V, Grachka V and Tsvankin I. Estimation of fracture parameters from reflection seismic data-Part Ⅰ: HTI model due to a single fracture set. Geophysics, 2000, 65: 1788~1802
    Banik N C. Velocity anisotropy of shales and depth estimation in the North Sea Basin. Geophysics, 1984, 49: 1411~1419
    Banik, N. C. An effective anisotropy parameter in transversely isotropic media: Geophysics, 1987, 52, 1654~1664.
    Berryman J G. Long-wave elastic anisotropy in Transversely isotropic media. Geophysics, 1979, 44: 896~917
    Bruggeman D A G. Berechnung verschiedener physikalischer konstanten yon heterogenen Substantzen[J]. Annalen der Physik, 1935, 24: 636~664
    Byun B S. Seismic parameters for transversely isotropic media. Geophysics, 1984, 49: 1908-1914
    Byun B S, Corrigan D and Gaiser J E. Anisotropic velocity analysis for lithology discrimination. Geophysics, 1989, 54: 1564~1574
    Byun B S and Corrigan D. Seismic traveltime inversion for transverse isotropy. Geophysics, 1990, 55: 192~200
    Cerveny V, Molotokov I A, Psencik I. Ray Method in Seismology[M].Charles Univ. Press, 1977
    Chernjak V, Gritsenko S. Interpretation of effective parameters of the CDP-method for system or 3D homogeneous layers separated by curvilinear interfaces: Russian Geology and Geophysics, 1979, N12, 112~120.
    Chen Xiangguo and Yao Chen, Calculation and comparison between group-propagation (energy) reflection and phase-propagation reflection in strong transverse anisotropic media, SEG Expanded Abstract, 1999, vol. Ⅱ, 1899~1902.
    Contreras, P., Grechka, v., and Tsvankin, I., 1999, Moveout inversion of P-wave data for horizontal transverse isotropy: Geophysics, 64, 1219~1229.
    Crampin S. The dispersion of suface waves in multilayered anisotropic media. Geophys. J. Roy. Astron. Soc., 1970, 21: 387~402
    Crampin S, King D W. Evidence for anisotropy in the upper mantle beneath Eurasia from generalized higher mode surface waves. Geophys. JR Astron. Soc., 1977, 49, 59~85
    Crampin S, Evans R, Ucer B. Observation ofdilatancy-induced polarization anomalies and earthquake prediction. Nature, 1980, 286: 874~877.
    Crampin S, McGonigle R and Bamford D. Estimating crack parameters from observations of P-wave velocity anisotropy. Geophysic, 1980, 45: 345~360
    Crampin S and Mcgonigle. The variation of delays in stress-induced anisotropic polarization-anomalies. Geophys. J. R. Astr. Soc. 1981, 64: 115~131
    Crampin S. 1981. Review of wave motion in anisotropic and cracked elastic-media: Wave Motion, 3, 343~391.
    Crampin S. Effective anisotropic elastic constants for wave propagation through cracked solids: Geophys. J. Roy. Astr. Soc., 1984a, 76, 135~145
    Crampin S. An introduction to wave propagation in anisotropic media: Geophys. J. Roy. Astr. Soc., 1984b, 76: 17~28
    Crampin S, Chesnokov E M, and Hipkin R A. Seismic anisotropy—The state of the art: First Break, 1984, 20, No.3, 9~18
    Crampin S. 1985a, Evaluation of anisotropy by shear-wave splitting: Geophysics, 50, 142~152.
    Crampin S. 1985b, Evidence for aligned cracks in the earth's crust: Fisst Break, 3, no.3, 12~15.
    Crampin S. 1986, anisotropy and transverse isotropy: Geophys. Prosp., 34, 94~99.
    Crampin S. Geological and industrial implications ofextensive-dilatancy anisotropy: Nature, 1987,328, 491~496
    Crampin S. Suggestions for a consistent terminology for seismic anisotropy. Geopysical Prosp., 1989, 37: 753~770
    Crampin S. Effects of point singularities and shear wave propagation in sedimentary basins. Geophys. J. Internat., 1991, 107: 531~543
    Christofel E B. Uber die Fortpflanzung von St ssen durch elastische feste K rper[J]. Annali di Matematica, 1877, 8: 193~243
    Daley, P F and Hron F. Reflection and transmission coefficients for transversely isotropic media. Bull., Seis. Soc. Am., 1977, 67, 661~675
    David E G. Genetic algorithms in search, optimization & machine learning. Addison-Wesley Publishing Company, Inc. 1989
    Dellinger J and Muir F. Imaging reflections in elliptically anisotropic media. Geophysics, 1988, 53: 1616~1618
    Dellinger J, Muir F and Karrenbach M. Anelliptic approximations for TI media. J. Seis. Expl., 1993, 2: 23~40
    Dix C H. Seismic velocities from furface measurements. Geophysics, 1955, 20: 68~86
    Fomel S and Grechka V. 2001. Nonhyperbolic reflection moveout of P-waves: An overview and comparison of reasons. Center for Wave Phenomena, Colorado School of Mines, cwp-372
    Farra V. High-order perturbations of the phase velocity and polarization of qP and qS waves in anisotropic media. Geophys. J. Int., 2001, 147: 93~104
    Forsyth D W. The early structural evolution and anisotropy of the oceanic upper mantle. Geophys. J. R. Astr. Soc., 1975, 43: 103~162
    Gajewski D and Psencik. Computation oh high-frequency seismic wavefields in 3-D laterally inhomogeneous anisotropic media. Geophys. J. R.Astr. Sco., 1987, 91: 383~411
    Goldberg D E. Genetic algorithms in search,optimization and machine learning. Addison Wesley Publishing Company, 1989
    Grechka V and Tsvankin I. Feasibility of nonhyperbolic moveout inversion in transversely isotropic media. Geophysics, 1998a, 63(3): 957~969
    Grechka V and Tsvankin I. 3-D description of normal moveout in anisotropic inhomogeneous media. Geophysics, 1998b, 63(4): 1079~1092
    Grechka V and Tsvankin I. 3-D moveout inversion in azimuthally anisotropic media with lateral velocity variation: Theory and a case study. Geophysics, 1999, 64: 1202~1218
    Grechka V, Tsvankin I and Cohen J K. Generalized Dix equation and analytic treatment of normal-moveout velocity for anisotropic media. Geophysical Prospecting, 1999, 47: 117~148
    Grechka V and Tsvankin I. Inversion of azimuthally dependent NMO velocity in transversely isotropic media with a tilted axis of symmetry. Geophysics, 2000, 65: 232~246
    Grechka, V, Pech A, Tsvankin I. and Han Baoniu. Velocity analysis for tilted transversely isotropic media: A physical modeling example. Geophysics, 2001, 66: 904~910
    Grechka V and Tsvankin I. NMO-velocity surfaces and Dix-type formulas in anisotropic heterogeneous media. Geophysics, 2002a, 67: 939~951
    Grechka V and Tsvankin I. The joint nonhyperbolic moveout inversion of PP and PS data in VTI media, Geophysics, 2002b, 67(6): 1929~1932
    Hale D, Hill N R and Stefani J. lmaging salt with turning seismic waves. Geophysics. 1992, 57: 1453~1462
    Hake H, Helbig K and Mesdag C S. Three-term Taylor series for t2-x2 curves over layered transversely isotropic ground. Geophys. Prosp., 1984, 32: 828~850
    Hanyga A. 2001, Fermat's principle for anisotropic elasticity. Advance. Society of Exploration Geophysicists, 271~288
    Hanyga A. Gaussian beams in anisotropic media. Geophys. J. R. astr. Soc., 1986, 85: 473~503
    He C and Castagna J P. Anisotropic effects on full and partial stacks. Geophysics, 2000, 65(4): 1028~1031
    Helbig K. Systematic classification of layer-induced transverse isotropy. Geophysical Prospecting, 1981, 29: 550~577
    Isaac J H and Lawton D C. Image mispositioning due to dipping T1 media: A physical seismic modeling study. Geophysics, 1999, 64: 1230~1238
    Hess H H. Seismic anisotropy of the uppermost mantle under oceans. Nature, 1964, 204: 629~ 631
    Holland J H. Adaptation in natural and artificial systems: Univ. Michigan Press, 1975
    Hsiung S M, Ghosh A, and Chowdhury A H. 1994. An investigation of rock joint models on prediction of joint behavior under pseudostatic cyclic shear loads. First North American Rock Mechanics Symposium, Austin, Texas, June 1994.
    Hubral P. and Krey T. 1980, Interval velocities from seismic reflection time measurements: Soc. Expl. Geophys.
    Hudson J A. Wave Speads and attenuation of elastic waves in material containing cracks. Geophysical Journal of the Royal Astronomical Society, 1981, 64: 133~150
    Hudson J A. A higher order approximation to the wave propagation constants for a cracked solid, Geophysical Journal of the Royal Astronomical Society, 1986, 87: 265~274
    James D, Assumpcao M. Tectonic implications of S-wave anisotropy beneath SE Brazil. Geophys. J. Int., 1996, 126: 1~10
    Jolly R N. Investigation of shear waves. Geophysics, 1956, 21 (4): 905~938
    Jones E A, Wang H F. Ultrasonic velocities in Cretaceous shales from the Williston basin. Geophysics, 1981, 46: 288~297
    Kaneshima S and P G Silver. Anisotropic loci in the mantle beneath central Peru. Phys. Earth Planet. Inter., 1995, 88: 257~272
    Kasahara J, Suzuki I, Kumazaka M, Kobayashi Y and iida K. Anisotropism of P-wave in Dunite. 地震,1968a, 21: 222~228
    Kasahara J, Suzuki I, Kumazaka M, Kobayashi Y, and lida K. Plane and spherical wave velocities and energy flow in anisotropic media,地震, 1968b, 21: 282~292
    Katahara K W. Clay mineral elastic properties. 66th SEG meeting, Denver, USA, Expanded Abstracts, 1996, 1691~1694
    Keith C M, Crampin S. Seismic body waves in anisotropic media:synthetic seismograms. Geophys. J. Roy. Astron. Soc., 1977, 49: 225~243.
    Kosioff D., Reshef M. and Loewenthal D. Elastic wave calculations by the Fourier method. Bull. Seis. Soc. Am., 1984, 74: 875~891
    Krey T H and Helbig K. A theorem concerning anisotropy of stratified media and its significance for reflection seismics. Geophys.Prosp., 1956, 4: 294~302
    Kumar D, Sen M K and Ferguson R J. Tarveltime calculation and prestack depth migration in tilted transversely isotropic media. Geophysics, 1987, 69: 37~44
    Kumazawa M. A fundamental thermodynamic theory on nonhydrostatic field and on the stability of mineral orientation and phase equilibrium. Jour, Earth Nagoya Univ., 1963, 11: 145~217
    Kumazawa M and Anderson O L. Elastic moduli, pressure derivatives, and temperature derivatives of single-crystalolivine and single-crystal forsterite. J. Geophys. Res., 1969, 74: 5961~5972
    Kumazawa M. The elastic constants of single-crystal orthopyroxene. J. Geophys. Res., 1969, 74: 5973~5980
    Kummer B, Behle A and Dorau F. Hybrid modelling of elastic wave propagation in 2-D laterally inhomogeneous media. Geophysics, 1987, 52: 765~771
    Lamer K. 1993, Dip-moveout error in transversely isotropic media with linear velocity variation in depth. Geophysics, 58: 1442~1453
    Lamer K and Cohen J K. Migration error in transversely isotropic media with linear velocity variation in depth. Geophysics, 1993, 58(10): 1454~1467
    Lamer K and Tsvankin I. P-wave anisotropy: its practical estimation and importance in processing and interpretation of seismic data: SEG Annual Meeting Expanded Technical Program Abstracts with Biographies: 1995, 65, 1502~1505.
    Li L. and Yao C. High-Order Approximations of Phase Velocity in VT1. The 12th international workshop on seismic anisotropy. 2006, 95~98
    Lou Min, Long Don Pham, and John Willis. Anisotropic parameter estimation from joint P-and C-wave data. 72th Ann. Internat. Mtg., Soc. Expl. Geophys., 2002
    Love A E H. A treatise on the Mathematical Theory of Elasticity. 4th edn. Dover Publications Inc. 1944
    Luo Y and Schuster G. 1989. A hybrid traveitime+full waveform inversion method. 1989 Univ. Utah Ann. Seismic Tomography report
    Lynn H B, Campagna D, Simon K M and Beckham W E. Reationship of P-wave seismic attributes, azimuthal anisotropy, and commercial gas play in 3-D P-wave mutiazimuth data, Rulison Field, Piceance Basin, Colorado, 1999, 64, 1293~1311
    McCollum B and Snell F A. Asymmetry of sound velocity in stratified formations, in SEG Staff, Ed., Early geophysical papers, 01: Soc. ofExpl. Geophys, 1947, 216~227
    Mensch T And Rasolofasaon P. Elastic wave velocities in anisotropic media of arbitrary anisotropy-generalization of Thomsen's parameters, δ and γ. Geophys. J Int., 1997, 128: 43~64
    Morris G B. Anisotropy of the Pacific upper mantle. J. Geophys. Res., 1969, 74: 3095~3109
    Musgrave M J P. Crystal acoustics. Holden-Day 1970
    Nur A, Simmons G Stress-induced velocity anisotropy in rock: an experimental study. Jour. of Geophys, Res., 1969, 74(27): 6667~6674
    Nye JF. Physical properties of crystals: their representation by tensors and matrices. Clarendon Press, Oxford, 1993
    Pech A, Tsvankin I and Grechka V. Quartie moveout coefficient: 3D description and application to tilted TI media. Geophysics, 2003, 68(5): 1600~1610
    Pech A, Tsvankin I. Quartic moveout coefficient for a dipping azimuthally anisotropic layer. Geophysics, 2004, 69(3): 699~707
    Postma W G Wave propagation in a stratified medium. Geophysics, 1955, 20: 80~806
    Psencik I and Gajewski D. Polarization, phase velocity and NMO velocity of qP waves in arbitrary weakly anisotropic media. Geophysics, 1998, 63: 1754~1766
    Radovich B J and Levin F K. Instantaneous velocities and reflection times for transversely isotropic solids. Geophysics, 1982, 47(3): 316~322
    Rai C S and Hanson K E. Shear-wave velocity anisotropy in sedimentary rocks: a laboratory study. Geophysics, 1988, 53: 800~806
    Raitt R W, Shor G G, Francis T J, Morns G B. Anisotropy of the pacific upper mantle, d. Geophys. Res., 1969, 74:3095~3109
    Rasolofosaon P N J. Explicit analytic expression for normal moveout from horizontal and dipping reflectors in weakly anisotropic media of arbitrary symmetry type. Geophysics, 2000, 65: 1294~1304
    Reshef M and Roth M. VTI anisotropic corrections and effective parameter estimation after isotropic prestack depth migration: Geophysics, 2006, 71(3): D35~D43
    Roberts G and Crampin S. Shear-wave polarizations in a Hot-Dry-Rock geothermal reservoir: anisotropic effects of fractures. Int. J. RockMech. Min. Sci., 1986, 23, 291~302
    Ruger A. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics, 1997, 62: 713~722
    Ruger A and Tsvankin I. Using AVO for fracture detection : Anayltic basis and practical solutions. The LeadingEdge, 1997, 16: 1429~1434
    Ruger A. Variation of P-wave reflectivity with offset and azimuth in anisotropic media: Geophysics, 1998, 63: 935~947
    Rudzki M P. Parametric Representation of the Elastic Wave in Anisotropic Media[OL]. Presented to the Academy of Sciences at Cracow, October 9, 1911. Translation by K. Helbig Commentary by K. Helbig and M. Slawinski. http://www.0iwsa.dkrz.De/abstracts/RudzkiHelbig.pdf
    Sawamoto H, Weidner D J, Sasaki S and Kumazawa M. Single-crystal elastic properties of the modified spinel (Beta) phase of magnesium orthosilicate. Science, 1984, 224: 749~751
    Sayers C M. P-wave propagation in weakly anisotropic media. Geophys. J. Int., 1994. 116: 799~805
    Sayers C M. Simplified anisotropy parameters for transversely isotropic sedimentary rocks. Geophysics, 1995, 60, 1933~1935.
    Sayers C M. Seismic anisotropy of shales. Geophysical Prospection, 2005, 53: 667~676
    Sena A G Seismic traveltime equations for azimuthally anisotropic and isotropic media: Estimation of interval elastic properties. Geophysics, 1991, 51 (12): 2090~2101
    Shearer P M and J Orcutt. Compressional and shear wave anisotropy in the oceanic lithosphere, Geophys. J. Roy. Astron. Soc., 1986, 87: 967~1003
    Shearer P M and Chapman C H. Ray tracing in anisotropic media with a linear gradient. Geophys. J. Int., 1988, 94:33, 575~580
    Shearer P M and Chapman C H. Ray tracing in azimuthally anisotropic media—I. Results for models of aligned cracks in the upper crust. Geophys. J., 1989, 96: 51~64
    Sheriff R E. 1991. Encyclopedic dictionary of exploration geophysics,Soc, of Expl. Geophys., USA.
    Shtivelman V. A hybrid method for wave field computation. Geophys. Prosp., 1984, 32: 236~257
    Shtivelman V. Two-dimensional acoustic moddeling by a hybrid method. Geophysics, 1985, 50: 1273~1284
    Siegesmund S, Vollbrecht A and Kern H. Relationships between velocity anisotropy, texture and microcracks in mylonites from the Insubric Line.5th meeting of the EUG, Strasbourg 20~23 March 1989, Terra abstracts 1989, 95(V).
    Silver P G and Chan W W. Implications for continental structure and evolution from seismic anisotropy. Nature, 1988, 335: 34~39
    Silver P G and Chan W W. Shear wave splitting and subcontinentai mantle deformation. J. geophys. Res., 1991, 96: 16429~16454
    Silver P G. Seismic anisotropy beneath the continents: Probing the depths of Geology. Annu. Rev. Earth Planet. Sci., 1996, 24: 385~432
    Slater C, Crampin S, Brodov L Y and Kuznetsov V M.. Observations of anisotropic cusps in transversely isotropic clay, Canadian Journal of exploration geophysics, 1993, 29(1): 216~226.
    Slawinski M A, Slawinski R A, Brown R J. A generalized form of Snell's law in anisotropic media: Geophysics, 2000, 65(2), 632~637.
    Soga N H, Mizutani H, Spetzler R J. Martin Ⅲ, The effect of dilatancy on velocity anisotropy in Westerly granite. J. Geophys. Res., 1978, 83: 4451~4458
    Song, X D. Anisotropy in the central part of the inner core. J.. Geophys. Res., 1996, 101: 16089~16097
    Song, X D. Joint inversion for inner core rotation, inner core anisotropy, and mantle heterogeneity. J. Geophys. Res., 2000, 105: 7931~7943
    Stephen R A. Fermat's principle for anisotropic elastic media. Advance. Society of Exploration Geophysicists, 2001, 255~270
    Stunff Y L, Grechka V, and Tsvankin I. Depth-domain velocity analysis in VTI media using surface P-wave data: Is it feasible? Geophysics, 2001, 66: 897~903
    Stewart R R, Gaiserz J E, Brown R J and Lawton D C. Converted-wave seismic exploration: Applications. Geophysics, 2003, 68: 40~57
    Stoffa P L and Mrinal K S. Nonlinear multiparameter optimization using genetic algorithms:Inversion of plane-wave seismograms. Geophysics, 1991, 56: 1794~1810
    Stoneley R. The seismological implications of aeolotropy in continental structure. Mon. Not. R. astr. SOt?. Geophys. Suppl., 1949, 5: 343~353
    Su W J and Adam Dziewonski. 1999. Inner core anisotropy from body wave traveitimes. A science facility for studying the dynamics of the solid earth, From IRIS 2000
    Tarter M T and Koehlers F. Velocity spectra-digital computer derivation and applications of velocity functions. Geophysics, 1969, 34(6): 859~881
    Takahashi K and Hones E W. ISEE 1 and 2 observations of ion distributions at the plasma sheet-tail lobe boundary. J. Geophys. Res., 1984, 89: 137
    Tanimoto T. The three-dimensional shear wave structure in the mantle by overtone waveform inversion—I: Radial seismogram inversion. Geophys. J. R. Astron. Soc., 1987, 89: 713~740
    Thomsen L. Weak elastic anisotropy. Geophysics, 1986, 51: 1954~1966
    Thomsen L. Elastic anisotropy due to aligned cracks: SEG Abstracts, 1987,57, 857
    Thomsen L. Reflection seismology over azimuthally anisotropic media: Geophysics, 1988,53(3): 304~313
    Thomson L. Seismic anisotropy: Geophysics, 2001, 66(1): 40~41
    Toldi J, Alkhalifah T, Berthet P, Amaud J, Williamson P and Conche B. Case study of estimation ofanisotropy. The Leading Edge, 1999, 18: 588~594
    Tsvankin I. and Thomsen L. Nonhyperbolic reflection moveout in anisotropic media. Geophysics, 1994, 59: 1209~1212
    Tsvankin I. and Thomson, L., 1995, Inversion of reflection traveltimes for transverse isotropy: Geophysics, 60(4), 1095~1107.
    Tsvankin I. 1995, Normal moveout from dipping reflectors in anisotropic media. Geophysics, 60(1): 268~284
    Tsvankin 1. P-wave signatures and notation for transversely isotropic media: an overview: Geophysics, 1996, 61(2): 467~483
    Tsvankin I. Reflection moveout and parameter estimation for horizontal transverse isotropy. Geophysics, 1997a, 62: 614~629
    Tsvankin I. Moveout analysis for transversely isotropic media with a tilted symmetry axis. Geophysical Prospecting, 1997b, 45(3): 497~512
    Tsvankin I. Seismic signatures and analysis of reflection data in anisotropic media. Elsevier Science Publ. Co., inc., 2001
    Uren N F, Gardner G N F and McDonald J A. Normal moveout in anisotropic media. Geophysics, 1990, 55: 1634~1636
    Van D P. Reduced order observers: A new algorithm and proofs. Systems and Control Letters, 1984, 4: 243~251
    Vernik L and Nut A. Ultrasonic velocity and anisotropy of hydrocarbon source-rocks. Geophysics, 1992, 57: 727~735
    Vernik L, Liu X Z. Velocity anisotropy in shales: A petrophysical study. Geophysics, 1997, 62: 521~532
    Vinnik L P, Kosarev G L, Makeyeva L I. Anisotropy in the lithosphere from the ovbservations of SKS and SKKS. Dok. Acad. NaukSSSR, 1984, 278: 1335~1339
    Vinnik L P, Makeyeva L I, Milev A and Usenko A Yu. Global patterns of azimuthal anisotropy and deformations in the continental mantle. Geophys. J. Int., 1992, 111, 433~447
    Vinnik L P, Green R W E, Nicolaysen L O. Recent deformations of the deep continental roots in southern Africa. Nature, 1995, 375: 50~52
    Wang Z J. Seismic anisotropy in sedimentary rocks, pan 1: A single-plug laboratory method. Geophysics, 2002a, 67(5): 1415~1422
    Wang Z J. Seismic anisotropy in sedimentary rocks, pan 2: Laboratory data. Geophysics, 2002b, 67(5): 1423~1440
    Weidner D J, Sawamoto H, Sasaki S and Kumazawa M. Single-crystal elastic properties of the spinel phase of Mg2SiO4. Journal of Geophysical Research, 1984, 89, 7852~7860
    Winterstein D F. Anisotropy effects in P-wave and S-wave stacking velocity contain information on lithology. Geophysics, 1986, 51: 661~672.
    Winterstein D F, Pauisson B N P. Velocity anisotropy in shale determined from crosshole seismic and vertical seismic profile data. Geophysics, 1990, 55: 470~479
    Yao C and Chen X G. Numerical modeling energy reflection in stratified anisotropie media, SEG Expanded Abstract, 1999, vol. 11: 1896~1898
    Yao C, Hao C T, Wang X. An Analytic Solution of Three Body-wave Velocity and Polarization for Arbitrary Spatial Orientation TI. CPS/SEG: 879~882. Beijing, China, 2004
    Yao C. NMO velocity for 3D dipping reflector and arbitrary spatial orientation TI. 75th Ann. Internat. Mtg., Soc. Expl. Geophys, Expanded Abstracts, 2005
    Yao C., Li L. The Second Order Arroxiamation for Phase Velocity of Theree Body Waves in VTI. The 12th international workshop on seismic anisotropy, 2006, 174~176
    Yan L, Lines L R. Seismic imaging and velocity analysis for an Alberta Foothills seismic survey. Geophysics, 2001, 66: 721~732
    Yeganh-Haeri A, Weidner D J, and Parise J B. Elasticity ofa cristobalite: A silicon dioxide with a negative Poisson's ratio. Science, 1992, 257: 650~652
    Qin Y L, Zhang Z J., Zhang S L. CDP mapping in tilted transversely isotropic(TTI) media, Part Ⅰ: Method and Effectiveness. Geopysical Prospecting, 2003, 51: 315~324
    Zhang Bixing, Wang Kexie, Dong Qingde. Nonaxisymmetric acoustic field excited by a cylindrical tool placed off borehole axis and extraction of shear wave. J. Acoust. Soc. Am., 1996, 99(2): 682~690
    Zheng X Y, Psenick I. Local Determination of Weak Anisotropy Parameters from qP-wave Slowness and Particle Motion Measurements. Pure andApplied Geophysics, 2002, 159: 1881~1905

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700