用户名: 密码: 验证码:
中国西南地区深部脱气(地质)作用与碳循环研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深大断裂的CO_2释放作用研究是一项非常重要和有意义的工作,它对于确定地球的含碳量,弄清岩溶动力系统、碳的全球地球化学循环过程,大气中CO_2含量增加的原因以及近年来多种并发性灾害的成因都是不可缺少的方面。不仅如此,它也是弄清地幔深部特性和地质过程的重要手段。
     本文系统地采集了中国西南地区各地温泉水的水化学样品、气体样品及泉华样品、岩石样品,对各类样品进行了有目的的分析。同时对某些项目进行了野外及实验室双重检测。通过对中国西南地区典型温泉的地质背景、环境条件、水化学及碳、氮稳定同位素的分析,探讨了中国西南地区深大断裂出露温泉CO_2释放的一般规律,并进行了初步的释放量计算。
     根据中国西南地区典型温泉水化学分析结果,结合温泉附近断裂性质及大地构造和小构造特征,对温泉形成条件及泉水水文地球化学特征作出了分析:
     西藏自治区温泉泉水属中偏碱性,与世界上大多数地热区热水的pH值总貌相似。而在滇西腾冲地块出露的温泉中则存在pH<4的酸性或强酸泉水。
     通过多种地球化学指标,比如:硼、铯、锂、氟、矿化度等的分析来说明中国西南地区温泉的出露与大地构造关系紧密,并且在青藏高原腹地存在深部地壳的部分熔融体,而在滇西则存在第四纪火山岩浆房。川西北则主要是多条深大断裂带结合汇合处且有强烈的变质作用决定了CO_2释放。
     野外实测西南地区各类温泉温度反应地热温度变化范围广。其温度的高低在很大程度上反映了构造活动带的强弱,并与深大断裂相联系、相适应。
     对于温泉水的补给来源:虽然西南地区各温泉水补给主要是大气降水,同时也不排除存在少量的岩浆岩、变质岩的成岩作用水,及火山岩冷却分异的同生作用水。
     滇西腾冲火山区所在的腾冲地块位于印度板块与欧亚板块之间,构造活动及地热流活动强烈,存在大量释放CO_2。热海地热区热泉补给水源的多样化,导致热海地热区的水化学特点差异较大。有来自岩浆的分异脱水,同时在该区又存在有大量外源水补给混入的温泉。氮同位素比值极高,几乎存在纯地幔来源。
     而西藏冈底斯及喜马拉雅带并没有发现第四纪火山,整个藏中至藏南存在异常强烈的水热系统与地壳深部的局部岩浆熔融有关,并从氦同位素分析得到证明,仅有极少量的深源物质混入。
     川西高原的康定、泸定等地构造位置特殊,是被地质学家称为“中国地质百慕大”的区域。此地亦无第四纪火山的存在,但因为鲜水河断裂带(XSH)与龙门山断裂带(LMS)在此交汇,且属于切穿岩石圈断层,所以碳、氦同位素都显示有深源物质的加入。温泉水化学也存在异常区域,比如硼。
     中国西南地区CO_2脱气点除会释放大量的CO_2气体以外,还会释放比如N_2、CH_4、He等气体,释放出来的He同位素随所形成的构造部位不同而有不均匀的分布,且与不同的大地构造成因关系密切。自西向东由藏西到藏南至滇西到滇中,R/Ra值呈现由低到高再降低的平面分布规律。氦同位素在空间的分布规律也反映了深源CO_2释放强度的差异。
     讨论了关于青藏高原腹地地热系统的热源问题“热机效应”,认为是壳内部分熔融层提供热源,并为地下热水加入了大量的热液化学元素。而对于其它区域,比如滇西腾冲地块则由已经存在第四纪火山的浅层岩浆房提供热源。川西则是由变质作用及构造动力摩擦生热提供能量。
     最后在把握深大断裂出露温泉水文地球化学特征及深源CO_2释放的规律的基础上,运用化学反应速率理论,构建了温泉水热深源CO_2释放模型,并分别计算了已经实地考察的数十个典型温泉的CO_2释放量。利用这些典型温泉以点推广到面,构建了温泉深源CO_2释放强度评价指标体系,对典型温泉作出了释放强度评价。结合大地构造特征——新生代构造单元的划分及中国西南地区主要深大断裂分布,初步估算出中国西南地区CO_2释放量约为15.5万吨/年。
     在水化学及同位素分析数据的基础上,提出了中国西南地区CO_2释放的三个概念模型。
It is of significance to study the CO_2 degasification on the discordogenic fault. It is indispensable to calculating the earth's carbon content. It is also indispensable to making clear the geochemical circulation of carbon, the karst dynamic system of the carbon and the reasons of CO_2 content growth in atmosphere and recent intercurrent disasters. Besides, it is an important way of making clear deep characteristic of mantle and other geological processes.
     Samples of the typical hot springs of water, gas, tufa and rock were collected and analyzed systematically. Meanwhile, some items were examined both in the field and in the laboratory. Through the analyses of condition, the geologic background and the hydrochemistry and the isotope of the carbon and helium of the typical hot springs in the southwest of China, the general rules of the CO_2 degasification points in the southwest of china are explored and the CO_2 degasification is calculated on the whole.
     According to the results of water chemistry analysis of the typical hot springs in the southwest of China, combined with the nature of fault near hot springs and the characteristic of the earth conformation and small conformation, the condition of hot springs formation and the hydrogeochemistry characteristics are analyzed.
     The alkalinity of Tibet spring water is alkaline that is similar to that of other geothermal areas in the world. However, the spring water is acidic (pH<4) on the Tengchong plot in the west of Yunnan.
     The analysis of various kinds of geochemical indicator, for example B, Cs, Li, F and TDS, explains the close relation between the places of hot springs and the geologic structures. The results also indicate that the "fractional melting layers" of the depth crust exists in the backland of Qinghai-Tibet Plateau while volcanic magma chamber of Quaternary lies in the west of Yunnan. The converging spot of a great number of large and deep fault layers accompanied by intense metamorphism in the west of Sichuan decide the release of CO_2.
     The range of temperature of the hot springs is wide. The temperature reflects the degree of the active belt fault to a great extent. The temperature is in agreement with large and deep fault.
     The supply of the hot spring water mainly comes from atmospheric precipitation at the same time including water of the diagenesis or syngenesis.
     The Tengchong plot of the west of Yunnan is located on the India Plate and Eurasian Plate. The conformation activity and the geothermal activity are fierce. It has a great deal of CO_2 degasification points. The supply diversification of the hot springs to water on the Rehai geothermal area causes the major difference in water chemistry here. Some come from diagensis of magma and exogenous water. The isotope ratio of helium is high. Some come from mantle.
     Quaternary volcano is not found in the Gangdese and Himalayas of the Tibet. Strong hydrothermal activities exist in the plateau, especially from the middle to the south of the Tibet. The research shows the "fractional melting layers" in the depth of the crust is responsible for the hydrothermal activities. The analysis of the isotope ratio of helium proves the tiny amount of deep source substance.
     Due to their special geological structure, Nuding and Kangding etc. in the west of Sichuan plateau is called "Bermude of geology in China". There is not quaternary volcano. But because there is a junction of the Xianshui Rive fracture zone and Longmen Mountain fracture zone and meanwhile the fault cuts through the earth' crust here, the analysis of the Carbon and Helium isotope shows the existence of deep source substance. The hydrochemistry of the hot-spring water in the Kangding county and Luding county has abnormal area, such as B.
     Meanwhile the CO_2 degasification point releases various gases including N_2, CO_2, H_2S, CH_4, He, and so on. He gas is an inertia chemical element that cannot react with chemical action but physical process. So Helium and its isotope is a sensitive geochemistry tracer reagent that can distinguish the mantle-derived gases. There are different mother earth constitution will formative uneven distributing Helium isotopes. So the helium isotope shows mantle-derived on the west to this crust fault and less mantle-derived helium on the east. The distribution law of the helium isotope in space can also reflect the difference of the CO_2 degasification.
     The analysis of the "heat bump" show that it is probably the fractional melting layers which behave as low-velocity and high-conductivity lying in the geophysical exploration in the crust. The fractional melting layers are likely silicate fused mass, other than liquid with main component of water. The melting layers are not only providing heat energy for shallow hydrothermal system, but also supplying liquid and metallogenetic elements to them. The results of research suggest that the upper fractional melting layer has driven ampliate area's hydrothermal activities in the south Tibet, whereas the near surface upwelling makes melting masses from the lower crust promote the presenting of some high temperature geothermal fields. And thus, the distribution of fractional melting layers can be lined out according to the range of surface hydrothermal systems.
     As for the other places, the Tengchong plot lying in the west of Yunnan has the volcanic magma chamber of Quaternary as the heat supply. The West of Sichuan plateau is supplied thermal by intense metamorphism process and tectogenesis.
     Based on the hydrology geochemistry characteristics of deep fault hot-springs and the law of deep source CO_2 release, the model of deep source CO_2 release is set up in the paper with the theory of the chemistry reaction speed. According to the compartmentalization of Cenozoic conformation cell and the distribution of deep faults in the southwest of china, the quantity release gross of CO_2 is estimated at about 155 thousand ton carbon per year.
     This paper brings up three conceptional models of hydrothermal systems of CO_2 release in the southwest of China, based on hydrochemistry and isotope geochemistry data.
引文
Alan L Mayo, Muller A B. Low temperature diagenetic-metamorphic and magmatic contributions of external CO_2gas to a shallow groundwater system. Journal of Hydrology. 1997, 194: 286~304.
    Allard P, Jean-Baptiste P D, Alessandro W, et al. Mantle-derived helium and carbon in groundwater and gases of Mount Etna, Italy. Earth Planet Sci Lett. 1997, 148(3~4): 501~516.
    Andrews J N. The isotopic composition of radiogenic helium and its use to study groundwater movement in confined aquifers. Chemical Geology. 1985, 49: 339~351.
    Bencini A, Ducki V. Martini, M. Geochemistry of thermal springs of Tuscany (Italy). Chemical Geology. 1977, 19(3): 229~252.
    Brown L D, Zhao W J, Nelson K D, et al. Bright spots, structure, and magmatism in southern Tibet from INDEPTH seismic reflection profiling. Science. 1996, 274: 1688~1690.
    Caldeira K, Authur M A, Berner R A, et al. Cenozoic cooling. Nature. 1993, 361: 123.
    Craig H. The geochemistry of the stable carbon isotopes. Geochimical et Cosmochimica Acta. 1953, 3: 53~92.
    Deines P, Langmuir D, Harmon R S. Stable carbon isotope ratios and the exixtence of a gas phase in the evolution of carbonate waters. Geochimical et Cosmochimica Acta. 1974, 38: 1147~1164.
    Denies P, Langmuir D, Harmon R S. Stable carbon istopic ratios and the extence of a gas phase in the evolution of carbonate waters. Goochimica et Cosmochimica Acta. 1974, 38: 1147~1164.
    Denies P. Mantlecarbon: Concentration, mole of occurrence and isotopic composition. In: Early Organic Evolution: Implication Mineraland Energy Resources. Berlin: springer-Verlag. 1992, 133~146.
    Faure G. Principles of Isotope Geology. New York: John Wiley & Sons Inc. 1977, 379~402.
    Foumier R O. Chemical geothermometers and mixing models for geothermal systems: Geothermics. 1977, 5: 41~50.
    Giggenbach W F. Isotopic composition of helium and CO_2 and CH_4 contents in gases produced along the New Zealand part of a convergent plate boundary. Geochim Cosmochim Acta. 1993, 57: 3427~3455.
    Halpart M S, Ropelewsk C F. Fourth Annual Climate Assessment. 1992: Camp Spring MD, Climate Analysis Center/U.S. Department of Commerce. 1993, 90.
    Hilton D R, Gronvold K, Macpherson C G, et al. Extheme ~3He/~4He ratios in northwest Iceland constraining the common compoment in mantle plumes. Earth Planet Sci Lett. 1999, 173(1-2): 53~60.
    Hoke L, Hilton D, Lamb S, et al. ~3He evidence for a wide zone of active mantle melting beneath the Central Andes. Earth Planet. Sci. Lett. 1994, 128: 341~355.
    Hoke L, Lamb S, Hilton D, et al. Southern limit of mantle-derived geothermal heliumem issions in Tibet: implications for lithoshperic structure. Earth Planet. Sci. Lett. 2000, 180: 297~308.
    Irwin W P and Bames I. Tectonic relation of carbon dioxidedischarge sand earth quakes, J. Gcophs.Res. 1980, 85(B6) 3115~3121.
    Janoy M, Pineau F, Allegre C J. Carbon geodynamic cycle. Nature, 1982, 300: 171~173.
    Jean-Baptiste P, Charlou J L, Stievenard M, et al. Helium and methane measurements in hydrothermal fluids from the mid-Atlantic ridge: The Snake pit site at 23°N. Earth Planet Sci Lett. 1991, 106: 17~28.
    Kennedy B M, Kharaka Y K, Evans W C, et al. Mantle fluids in the San Andreas Fault System, California. Science. 1997, 278(14): 1278~1280.
    Kerrick D M, Caldeira K. Metamorphic CO, degassing and Early Cenozoic paleoclimate. GSA Today. 1994, 4(3): 61~65.
    Kharaka Y K, Gunter W D, Aggarwaol P K, et al. SOLMINEQ. 88. US Geology Survey Water Resources Investigation Report. 1988. 207.
    Liao Z J, Guo G Y, and Liu S B. Prcdcvclopment study of the Yangbajing geothermal fielding Tibet. Proceedings of the second New Zealand Geothermal Workshop. Auckland, University of Auckland. 1980, 109~115.
    Liu Z H. Necessities of measuring pH in situ in the study of karst hydrogoochemistry. Carsologica. 1990, 9(4): 310~317.
    Lovering T S, Theory of heat conduction applied to geological problems, Bull Gcol. Soc. Am. 1935, 46: 69~94.
    Lupton J E. Terrestrial inert gases: isotope tracer studies and clues to primordial components in the mantle. Ann. Rev. Earth Planet. Sci. 1983, 11: 371~414.
    Mahon W A J, Chemistry in the exploration and exploitation of hydrothermal systems: Gcotermics, Spot. Sic. 1970, 2(2): 1310~1322.
    Manyrin B A, Toistikhin L N. Helium Isotopes in Nature. Elsevier Amsterdam. 1984, 175~179.
    Marry B, Jambon A, Sano Y. Helium isotopes and CO_2 in volcanic gases of Japan. Chem. Geol. 1989, 76: 41~55.
    Marty B, Jambon A. CO_2/~3 He in volatile fluxes from the solid Earth: Implications for carbon geodynamics. Earth Planet. Sci. Lett. 1987, 83: 16~26.
    Many B, Zimmermann L. Volatiles (He, C, N, At) in mid-ocean ridge basalts: Assessment of shallow-level fractionation and characterization of source composition. Geochim Cosmochim Acta. 1999, 63(21): 3619~3633.
    Molnar P and Tapponnier P. Active tectonics of Tibet. J Geophys Res. 1978, 83: 5361~5375.
    Moore J G, Bachelder J N and Cunningham C G. CO_2-filed, vesicles in mid-ocenbasalt, J. Volcano. Geothermal Res. 1977, 2: 309~327.
    Ni J, York J. Late Cenozoic tectonics of the Tibetan plateau. J Geophys Res. 1978, 83: 5377~5384.
    Nur A, Ron H, Scotti O. Kinematies and mechanics of tectonic block rotations Geophysical. Monograph: 49/IUGG Series 4, 1989, 31~46.
    Ozawa T, Kamada M, Yoshida M, et al. Genesis of hot spring, part Ⅰ. Genesis of acid hot spring; 1973, 10(2): 31~40.
    Pineau F, Mathez E A. Carbon isotopes in xenoliths from the Hualalai Volcano, Hawaii, and the generation of isotopic variability. Geochem. Acta. 1990, 54: 21~27.
    Pineau P, Javoy M. Bottingay ~(13)C/~(12)C ratios of rocks and inclusions in popping rocks of the Mid-Atlantic Ridge and their bearing on the problem of isotopic compositions of deep seated carbon, Earth Planet. Sci. Lett. 1976, 29: 413~412.
    Pinti D L, Marty, B. Noble gas in crude oils from the Paris Basin, France: Implications for the origin of fluids and constraints on oil-water-gas interactions. Geochim Cosmochim Acta. 1995, 59: 3389~3404.
    Poreda R J, Jeffrey A W, Kaplan I R, et al. Magmatic helium in subduction-zone natural gases. Chem Geol. 1988, 71: 199~210.
    Ren J G, Wang X B and Yang Z Y. Mantle-derived CO_2 in Hot Springs of the Rehai Geothermal Field, Tengchong, China. Acta Geologica Sinica. 2005, 79(3): 426~431.
    Sano Y, Gamo T, Notsu K, et al. Secular variations of Helium and carbon isotopes at active volcano, Abstracts 3(3): 29th International Geological Congress. Kyoto, Japan, 609.
    Sano Y, Wakita H. Geographical distribution of ~3He/~4He ratios in Japan: Implications for are tectonics and incipient magmatism. J. Geophys. Res., 1985, 90: 8729~8741.
    Shen X J and Wang Z R. Thermal reservoir model analysis of the Yangbajing geothermal field, Tibet Autonomous Region. Science in China, 1984. 27(12): 1316~1329.
    Sigvaldason, G. E. Geochemical methods in geothermal exploration, Geothermal Energy, UNESCO, 1973. (见,地热能,1978,科学出版社,41~53).
    Sugisaki Retal. Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity, Jour. Geol. 1983, 91: 239~258.
    Sundquist E T. The Global Carbon Dioxide Budget. Science. 1993, 259: 934~941.
    Tappormier P and Molnar P. Active faulting and tectonics of China. J. Geophys. Res. 1977, 82: 2905~2930.
    Tapponnier P, Xu Z Q, Roger F, et al. Oblique Stepwise Rise and Growth of the Tibet Plateau. Science. 2001, 294: 1671~1677.
    The International Geosphere-Biosphere Program: A Study of Global Change: The initial Core Projects, Global Change (IGBP) Report, No: 12, 1990, Stockholm, Sweden.
    Tilmann F, Ni J, INDEPTH Ⅲ Seismic Team, Seismic Imaging of the Downwelling Indian Lithosphere Beneath Central Tibet. Science. 2003, 300: 1424~1427.
    Uzumasa, Y. Chemical invertigations of hot spring in Japan. 1968.
    Walter M R. A hot spring analog for the depositional environment of Precambrian iron formations of the lake superior region. Econ. Geol. 1972, 67: 965~972.
    Wang J. Geothermics in China. Beijing: Seismological Press. 1996, 218~232.
    White D E, Brannock W W. Silica in hot-spring Waters. Geochimica et Cosmochimica Acta. 1956, 10: 27~59.
    Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. J. Ann. Rev. Earth Planet. Sci. 2000, 28: 211~280.
    Yokoyama T, Nakai S and Wakita H. Helium and carbon isotopic compositions of hot spring gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research. 1999, 88: 99~107.
    Zhang Jiagui. Model of earth quake-pregnancy controlled by deep thrusting under contineotal rift. Abstracts of 30th IGC, 1996, 3(3): 179.
    Zhao P, Di J, Liang T L, et al. Characteristics of gas geochemistry in Yangbajing geothermal field, Tibet. Chinese Science Bulletin. 1998, 43(21): 1770~1777.
    Zhao W J, Zhao X, Shi D N, et al. Progress in tbe Study of Deep Profiles of Tibet and the Himalayas (INDEPTH). Acta Geologica Sinica. 2004, 78: 931~939.
    白登海,廖志杰,赵国泽,等.从MT探测结果推论腾冲热海热田的岩浆热源.科学通报.1994,39(4):344~347.
    蔡祖煌,石慧謦,穆松林,等.念青唐古拉山山前断裂羊八井段现今活动深度的同位素研究.科学通报.1985,24:1891~1893.
    储雪蕾.地幔的碳同位素.地球科学进展.1996,11(5):446~451.
    娥金星,戴春森,宋岩.中国一些地区温泉中天然气的地球化学特征及碳、氮同位素组成.中国科学,B辑.1994,24:426~433.
    丁建博,方丽萍.云南地热资源及开发利用.云南地质.1996,15(3):299~307.
    杜乐天,贾跃明,肖庆辉,等.天然气开发新方向.北京:中国地质矿产信息研究院,1993:21~26.
    段建中,谭筱虹.滇西三江地区新生代主要走滑断裂性质及特征.云南地质.2000,19(1):8~23.
    樊祺诚,刘若新,林卓然,等.中国东部地幔CO_2流体包裹体的碳同位素初步研究.地球化学.1996,25(3):264~269.
    方丽萍,丁建博.云南地热资源的成因分析及开发利用.水文地质工程地质.1997,(4):45~48.
    高恩源,徐忠信,王香经,等.喜马拉雅山北麓—雅鲁藏布江地区人工爆炸地震测深地壳结构.见:中国地质科学院.西藏地球物理文集,北京:地质出版社,1990,1~15.
    高志友,尹观,范晓,等.四川稻城地热资源的分布特点及温泉水的同位素地球化学特征.矿物岩石地球化学通报.2004,3(2):135~139.
    国家地震局地质研究所,云南省地震局.滇西北地区活动断裂.北京:地震出版社,1990.
    国家技术监督局.GB/T 8538-1995饮用天然矿泉水检验方法.北京:中国标准出版社,1996,8~53.
    韩同林,P.达包尼叶,R.阿尔米饶.试论藏南活动构造与地热的关系.见:中法合作喜马拉雅地质考察1981年成果,北京:地质出版社,1984,45~58.
    韩同林,李廷栋,周济.试论藏南活动构造系.见:中法喜马拉雅考察成果1980,北京:地质出版社,1984,381~399.
    郝吉明,马广大 主编.大气污染控制工程(第二版).北京:高等教育出版社,2002,84~94.
    侯增谦,李振清.印度大陆俯冲前缘的可能位置:来自藏南和藏东活动热泉气体He同位素约束.地质学报.2004,78(4):482~493.
    胡克定.重庆市北温泉危岩带特征与防治对策.中国地质灾害与防治学报.1995,6(3):57-62.
    胡圣标,何丽娟,汪集旸.中国大陆地区大地热流数据汇编(第三版),地球物理学报.2001,44(5):611~626.
    江思宏,聂凤军,张义.等.浅成低温热液型金矿床研究最新进展:地学前缘.2004,11(2):401~411
    江苏师范学院,河北师范大学等编.物理化学.北京:人民教育出版社,1980,247.
    姜大庸,陈文彬,石雅留.海原活动断裂的地壳脱气作用.西北地震学报.2000,22(4):448~464.
    康文华,李得禄.西藏羊八井地热田的概念模型.见:任湘,刘时彬等主编,中国西藏高温地热开发和利用国际研讨会论文集.北京:地质出版社,1993,79~83.
    李坪 主编.鲜水河—小江断裂带.北京:地震出版社,1993,1~21.
    李四光.地质力学概论.北京:科学出版社,1979,139.
    李振清,侯增谦,聂凤军,等.藏南上地壳低速高导层的性质与分布:来自热水流体活动的证据.地质学报.2005,79(1):69~77.
    李振清.青藏高原碰撞造山过程中的现代热水活动.[博士学位论文].北京:中国地质科学院,2002.
    廖志杰,吴方之.羊八井地热田的构造模式.见:刘殿功主编,羊八井地热电站研究.重庆:科学技术文献出版社重庆分社,1985,136~147.
    林元武,翟盛华.断层气CO_2快速侧定法及其在地展研究中的应用.地震.1993,65~67.
    刘再华,游省易,李强,等.云南白水台钙华景区的水化学和碳氧同位素特征及其在古环境重建研究中的意义.第四纪研究.2002,22(5):460~467.
    刘再华,袁道先,何师意,等.地热CO_2—水—碳酸盐岩系统的地球化学特征及其CO_2来源——以四川黄龙沟、康定和云南中旬下给为例.中国科学,D辑,2000,30(2):209~214.
    刘再华,袁道先,何师意.不同岩溶动力系统的碳稳定同位素和地球化学特征及其意义——以我国几个典型岩溶地区为例.地质学报.1997,71(3):281~288.
    刘再华.桂林岩溶水文地质试验场岩溶水文地球化学的研究.中国岩溶.1992,11(3):209~217.
    卢德源,黄立言,陈纪平,等.青藏高原北部沱沱河—格尔木地区地壳和上地幔的结构模型和速度分布特征.见:西藏地球物理文集,北京:地质出版社,1990,51~62.
    罗祥康.重庆市地下热水开发利用条件的初步研究.四川地质学报.1987,7(1).
    罗云菊.重庆南温泉背斜地下热水可持续开发研究.[硕士学位论文].成都:成都理工学院,2000,1~83.
    罗志立,姚军辉,孙玮,等.试解“中国地质百慕大”之谜.新疆石油地质.2006,27(1):1~4.
    孟今顺,高锐,周富祥,等.利用重力异常研究亚东—格尔木地壳构造.中国地质科学院院报,1990,21:149~161.
    聂凤军,胡朋,李振清,等.藏南地区金和锑矿床(点)类型及其时空分布特征.地质学报.2004,78(4).
    潘裕生,孔祥儒,钟大责,等.高原岩石圈结构、演化和动力学.见:孙鸿烈、郑度主编.青藏高原形成演化与发展广州:广东科技出版社,1998,1~65.
    钱学溥.重庆附近嘉陵江石灰岩喀斯特水文地质及温泉成因的探讨.水文地质工程地质论文集.北京:地质出版社,1958,12~83.
    上官志冠,白春华,孙明良.腾冲热海地区现代幔源岩浆气体释放特征.中国科学,D辑,2000,30(4):407~414.
    上官志冠,白山天池火山地热区逸出气体的物质来源.中国科学(D辑).1997,27(4):319~324.
    上官志冠,都吉夔,臧伟,等.郯庐断裂及胶辽断块区现代地热流体地球化学.中国科学(D辑).1998,28(2):239.
    上官志冠,高清武,赵慈平.腾冲热海地NNW向断裂活动性的地球化学证据.地震地质.2004,26(1):46~ 51.
    上官志冠,霍卫国.腾冲热海地热区逸出H_2的δD值及其成因.科学通报,2001,46(15):1316~1320.
    上官志冠,孔令昌,孙凤民,等.长白山天池火山区深部流体成分及其稳定同位素组成.地质科学,1996,31(1):54~64.
    上官志冠,刘桂芬,高松升.川滇块体边界断裂的CO_2释放及其来源.中国地震.1993,9(2):146~153.
    上官志冠,孙明良,李恒忠.云南腾冲地区现代地热流体活动类型.地震地质.1999,21(4):436~442.
    上官志冠,孙明良.长白山天池火山区幔源稀有气体释放特征.科学通报,D辑.1996,41(17):1695~1698.
    上官志冠.张培仁.演西北地区活动断裂.北京:地震出版社,1990.
    上官志冠,赵慈平,李恒忠,等.腾冲热海火山地热区近期水热爆炸的阶段性演化特征.矿物岩石地球化学通报,2004,23(2):124~128.
    上官志冠,郑雅琴,董继川.长白山天池火山地热区逸出气体的物质来源.中国科学(D辑).1997,27(4):318~324.
    上官志冠.断层气体二氧化碳的物质来源及其在地震前后大的异常释放.见:断层气测量在地震科学中的应用.北京:地震出版社,1991,31~38.
    上官志冠.深源二氧化碳预报地震研究.地震地质.1995,17(3):214~217.
    上官志冠.腾冲热海地热田热储结构与岩浆热源的温度.岩石学报.2000,16(01):83~90.
    上官志冠,白春华,等.腾冲热海地区现代幔源岩浆气体释放特征.中国科学(D辑).2000,30(4):1~2.
    沈显杰,张文仁,杨淑贞,等.青藏热流与地体构造热演化.北京:地质出版杜,1990,1~90.
    四川省地质矿产局成都水文地质工程地质队.四川省热水分布图说明书(1:100万).1986,216~218.
    陶明信,徐永昌,陈发源.窑街煤田CO_2气浓度与δ~(13)值空间变化的构造地球化学特征.科学通报,1995,36(12):921~923.
    陶明信,徐永昌,沈平,等.中国东部幔源气藏聚集带的大地构造与地球化学特征及成藏条件.中国科学,D辑,1996.26(6):531~536.
    陶明信,徐永昌,史宝光,等.中国不同类型断裂带的地幔脱气与深部地质构造特征.中国科学,D辑.2005,35(5):441~451.
    腾吉文,尹周勋,熊绍柏.西藏高原北部地区色林错—蓬错—那曲—索县地带地壳结构与速度分布.地球物理学报,1985,28(增刊):28~41.
    腾吉文,曾融生,闫雅芬,等.东亚大陆及周边海域Moho界面深度分布和基本构造格局.中国科学,D辑.2002,32(2):89~100.
    田中正之,石广玉,李昌明 译.地球在变暖.气象出版社,1992,1~132.
    佟伟,廖志杰,刘时彬,等.西藏温泉志.北京:科学出版社,2000.
    佟伟,张铭陶,张知非,等.西藏地热.北京:科学出版社,1981.
    佟伟,章铭陶 编.腾冲地热.北京:科学出版社,1989.
    汪缉安,徐青,张文仁.云南大地热流及地热地质问题.地震地质.1990,12(4):367~377.
    汪集旸,黄少鹏,陈墨香.大地热流图.见:袁学诚主编,中国地球物理图集.北京:地质出版社,1996,188.
    汪集旸,黄少鹏.中国大陆地区热流数据汇编(第二版),地震地质.1990,12(4):351~366.
    汪集旸,黄少鹏.中国大陆地区热流数据汇编.地质科学.1988,(2):196~204.
    王恒纯.同位素水文地质学概论.北京:地质出版社,1991,1~191.
    王钧,黄尚瑶,等.中国地温分布的基本特征.北京:地震出版社,1990.
    王先彬 编著.稀有气体同位素地球化学和宇宙化学.北京:科学出版社,1989,153~220.
    王先彬,陈践发,徐胜,等.地震区温泉气体的地球化学特征.中国科学,B辑.1992,(8):849~854.
    王先彬,等.地幔流体的稳定同位素地球化学综述.地质地球化学.2000,28(3):69~74.
    王先彬,徐胜,陈践发,等.腾冲火山区温泉气体组分和同位素组成特征.科学通报.1993,38(9):814~817.
    王致勇 编.无机化学原理.北京:清华大学出版杜,1983,130~133.
    魏菊英,王关玉.同位素地球化学.北京:地质出版社,1988,144.
    翁金桃.碳酸盐岩在全球碳循环过程中的作用.地球科学进展.1995,10(2):154~158.
    吴茂炳,叶先仁,刘春燕,等.雅鲁藏布江蛇绿岩中地幔柱型岩浆作用——来自氮、氩同位素的证据.地质通报.2003,22(9):670~674.
    吴乾蕃,祖金华,谢毅真,等.云南地区地热基本特征.地震地质.1988,10(4):177~183.
    西藏自治区地质矿产局.西藏自治区区域地质志.中华人民共和国地质矿产部地质专报第31号.北京:地质出版社,1993.
    夏报本,张家诚.西藏地热活动规律初探.见:中国西藏高温地热开发利用国际研讨会论文选,北京:地质出版社,1993,1~7.
    向宏发,虢顺民,徐锡伟,等.川滇南部地区活动地块划分与现今运动特征初析.地震地质.2000,22(3):253~264.
    肖序常,李廷栋,李光岑,等.喜马拉雅岩石圈构造演化总论.北京:地质出版社,1988,1~236.
    肖序常,李廷栋,王军.青截高原大陆动力学.见:肖序常,李廷栋主编.青藏高原的构造演化与历史机制, 广州:广东科技出版社,2000,239~269.
    熊绍柏,刘宏兵.青藏高原西部的地壳结构.科学通报.1997,42(12):1309~1311.
    徐锡伟,闻学泽,郑荣章,等.川滇地区活动块体最新构造变动样式及其动力来源.中国科学(D辑).2003,33(4)增刊:152~162.
    许志琴,侯立玮,王大可,等.中国西南部松潘-甘孜中生代碰撞型造山带的薄壳构造及前陆逆冲系.地球学报.1990,20:126~129.
    许志琴,侯立玮,王宗秀.中国松潘—甘孜造山带的造山过程.北京:地质出版社,1992,1~190.
    许志琴,姜枚,杨经绥,等.青藏高原的地幔结构:地幔羽、地幔剪切带及岩石圈俯冲板片的拆沉.地学前缘.2004,11(4):329~343.
    许志琴,王宗秀,候立玮.松潘—甘孜造山带构造研究新进展.中国地质.1991,(12):14~16.
    许志琴,杨经绥,戚学祥,等.印度/亚洲碰撞——南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论.地质通报.2006,25(1-2):1~14.
    杨彪.瑞丽热田水化学及同位素特征研究.中国煤田地质.1999,11(1):47~50.
    尹立群.我国褐煤资源及其利用前景.煤炭科学技术,2004,32(8):12~23.
    于冰,王士俊,张井,等.云南第三纪浅色褐煤成煤物质及成因.煤田地质与勘探,1996,4:12~14.
    鱼金子,车用太,刘五洲.地壳中的CO_2及其释放与地震短临预测.国际地震动态,1998.
    俞如龙,郝子文,侯立玮.川西高原中生代碰撞造山带的大地构造演化.四川地质学报.1989,9(1):27~38.
    袁道先,刘再华,等.碳循环与岩溶地质环境.北京:科学出版社.2003,80~94.
    袁道先.“岩溶作用与碳循环”研究进展.地球科学进展.1999,14(5):425~432.
    袁道先.地球系统的碳循环和资源环境效应.第四纪研究,2001,21(3):223~232.
    袁道先等.中国岩溶动力系统.北京:地质出版社,2002.
    云南省地方志编纂委员会.中华人民共和国地方志丛书——云南省志——卷二十五温泉志.昆明:云南人民出版社,1999.
    曾融生,朱介寿,周兵,等.青藏高原及其东部邻区的三维地震波速度结构与大陆碰撞模型.地震学报,1992,14(增刊):523~530.
    张国智,杨斌.重庆市北温泉公园后坡稳定性综合评价.中国地质灾害与防治学报,1999,10(1):32~38.
    张加桂,胡海涛.深大断裂对幔源CO_2释放作用研究综述.中国岩溶,1999,18(1):96~102.
    张加桂,胡海涛.四川省鲜水河断裂带温泉的CO_2释放量的定量化研究,水文地质工程地质,2000,3:19~21.
    张奕虹.康定温泉系统深源二氧化碳研究.[硕士学位论文].成都:成都理工学院.1999,1~61.
    张知非,刘时彬,赵风山.腾冲水热流体的地球化学,《腾冲地热》第五章.北京:科学出版社,1989.
    张中杰,李英康,王光杰,等.藏北地壳东西向结构与“下凹”莫霍西——来自宽角反射剖面的启示.中国科学,D辑.2001,31(11):881~888.
    赵珂,姜光辉,杨琰,等.滇东主要断裂带温泉CO_2成因浅析.地球与环境.2005,33(2):11~15.
    赵珂.云南深大断裂温泉CO_2释放规律研究.[硕士学位论文].重庆:西南大学,2006.
    赵平,Kennedy M,多吉,等.西藏羊八井热田地热流体成因及演化的惰性气体制约.岩石学报.2001,17(3):497~503.
    赵平,多吉,梁廷立,等.西藏羊八井地热田气体地球化学特征.科学通报.1998,43(7):691~696.
    赵平,金建,张海政,等.西藏羊八井地热田热水的化学组成.地质科学.1998,33(1):61~72.
    赵平,谢鄂军,多吉,等.西藏地热气体的地球化学特征及其地质意义.岩石学报.2002,18(4):539~550.
    赵庆生.鲜水河断裂带热水水文地球化学特征及形成模式.水文地质工程地质科技情报,1988,1.
    赵文津,薛光琦,吴珍汉。等.西藏高原上地幔的精细结构与构造——地震层析成像给出的启示.地球物理学报.2004,47(3):449~455.
    周真恒,向才英,覃玉玺,等.云南深部热流研究.西北地震学报,1997,19(4):52~57.
    朱炎铭,邵震杰,任文忠,等.小江断裂带第三纪走滑断陷盆地的充填层序特征.沉积学报,2001,19(1):37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700