用户名: 密码: 验证码:
模糊支持向量机及其在场景图像处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于工作在复杂环境中的机器人,有效的场景图像处理能够使机器人获得良好的场景感知和理解能力,是其实现自主导航并自主探索环境的前提条件。由于场景图像的随机性、多样性、复杂性等特点,同时机器人可得到的视觉先验知识不稳定,且对复杂环境中多类物体的识别技术仍不成熟,因此如何设计有效的场景图像处理方法成为机器视觉领域具有挑战性的研究热点。
     支持向量机算法建立在严格的理论基础之上,在解决小样本、非线性和高维模式识别问题中表现出了许多特有的优势。近年来,支持向量机已被成功地应用于系统辨识、机器人控制、遥感图像处理、经济管理等研究领域。然而,现有的支持向量机应用研究忽视了一个重要问题,那就是如何将专家逻辑经验与支持向量机方法有效结合起来。在实际的工程应用中,我们通常对某些待分析的数据信号拥有一定的先验知识,对待处理的信息有着部分定性经验判断。因此,将专家经验知识与支持向量机方法有机结合起来,研究合适的模糊支持向量机模型,是支持向量机算法面向工程技术领域的一个亟待解决的重要问题。
     本文结合场景图像处理应用,研究了模糊支持向量机算法的一些相关问题。论文主要的工作及研究成果如下:
     1)提出了三论域的模糊支持向量回归模型,提高了传统SVR算法处理带不确定信息问题的能力。模型采用全新的第三论域用于引入有用的先验知识,将传统核函数和模糊隶属度函数融合到三论域模糊核中,利用三论域的模糊核函数实现对输入、输出和不确定信息的统一分析。三论域模糊目标函数的定义及其优化过程则为三论域模糊支持向量回归模型提供了完善的理论支持。实验结果表明:三论域模糊支持向量回归模型在处理场景图像去噪问题上具有较好的应用效果。
     2)研究了样本分布的不确定性对最小二乘支持向量回归算法的影响,同时考虑样本的局部相似性,提出了基于样本分布密度加权的模糊密度权最小二乘支持向量回归(Fuzzy Density Weighted Least Squares Support Vector Regression, FDW-LSSVR)场景图像去噪算法。该算法基于模糊逻辑系统对样本的模糊密度权进行了有效设计。根据输入样本、输出样本的分布密度模糊矩阵及模糊规则,对模糊密度权进行模糊推理,以得到给定样本的模糊密度权。实验结果表明:FDW-LSSVR场景图像去噪算法在客观评价和实时性方面都有较好的表现。
     3)在核函数中采用Type-2模糊集的设计准则,提出了系统化的区间Type-2模糊核支持向量机(Interval Type-2Fuzzy Kernel based Support Vector Machine, IT2FK-SVM)场景图像分类算法。首先,在场景图像中提取灰度特征图、边缘特征图和方向特征图,构建场景图像的分类特征向量。然后,基于概率模糊核的主成分分析方法对第一阶段所建立的较高维分类特征向量进行有效降维。最后通过区间Type-2模糊核的设计,提高模糊核的SVM分类算法的鲁棒性。实验结果表明:IT2FK-SVM场景图像分类算法在样本受噪声污染、不同视觉角度、不同光照条件等不确定条件下,可达到较高的分类精度。
     4)针对多源特征输入分类问题,提出了分组特征嵌套核支持向量机(Grouping Feature and Nesting Kernel based Support Vector Machine, GFNK-SVM)场景图像分割算法。该算法首先提取场景图像像素点的灰度特征,梯度特征和C1标准模型特征(Standard Model Feature, SMF),构成像素样本集。再基于聚类有效性的区间Type-2模糊C-means (Cluster Validity based Interval Type-2Fuzzy C-Means, CV-IT2FCM)聚类算法实现样本选择,利用Type-2模糊度量准则得到模糊的聚类边界,提高了聚类结果的鲁棒性和可靠性。最后基于嵌套核的SVM分类算法对像素点进行有效分类,实现对场景图像的分割。BSDS数据库和机器人场景图像数据库的实验结果表明:GFNK-SVM场景图像分割算法能够获得较好的分割结果。
Scene perception and understanding are indispensable abilities for mobile robot to navigate and explore complex environment automatically, which is dependent on the results of scene images processing algorithms. However, the nature of scene images is always random, diversified and complex. Furthermore, the prior vision information of scene images is quite often poor and the technology of object recognition in scene images is still immature. It is interesting to study how we can design efficient processing algorithms of scene images for humanoid robot.
     Support Vector Machine (SVM) build on the strict theoretical basis, which has been proved to prossess the remarkable characteristics of good generalization performance, the small sample, nonlinear, and high dimension. Recently, it has been successfully used to the system recognition, robot control, remote sensing image processing and economy management fields, etc. However, the problem of integrating SVM and experiential knowledge from experts is unfortunately ignored in the previous works. In many engineering applications, it is possible to obtain prior information and qualitative analysis from unseen data. Thus, it is interesting to study fuzzy theory with SVM methods, which combine the experiential logic of experts into SVM model.
     Some problems, which related to support vector machine, have been studied in the paper, and the proposed algorithms have been applied to process scene image. The main contributions of this paper are as follows:
     1) A novel Three-Domain Fuzzy Support Vector Regression (3DFSVR) is proposed, which will enhance the potentials of Two-Domain Support Vector Regression (2DSVR) to handle uncertainties. When compared with traditional two-domain SVR, the major advantage of3DFSVR is able to use the prior knowledge via the novel fuzzy domain to analyze uncertain data and signals. The Three-Domain Fuzzy Kernel Function (3DFKF) provides a solution to process uncertainties and input-output data information simultaneously, which also integrate the kernel and fuzzy membership function into a three-domain function. Definition and solution of Fuzzy Convex Optimization problem (FCOP) are presented to construct the whole theoretical framework. Experiments and simulation results show the effectiveness of3DFSVR for the uncertain image denoising.
     2) It is interesting to study how we can design denoising algorithm which not only can deal with the uncertainty of sample density but also take account of local similarity in images. A new Fuzzy Density Weight based Least Squares Support Vector Regression (FDW-LSSVR) denoising algorithm for humanoid robot which assigns fuzzy membership values for feature vector in order to reduce the effect of uncertainty of sample density on LSSVR is proposed. It also present a new method for the design of fuzzy membership, which is designed via fuzzy theory based on the sample density. Extensive experimental results demonstrate that our method can obtain better performances in terms of both subjective and objective evaluations than those state-of-the-art denoising techniques.
     3) By integrating the kernel design with Type-2fuzzy sets, a systematic design methodology of Interval Type-2Fuzzy Kernel based Support Vector Machine (IT2FK-SVM) classification for scene images is presented to improve robustness and selectivity in the humanoid robot vision. Firstly, scene images are represented as high dimensional vector extracted from intensity, edge and orientation feature maps by biological-vision feature extraction method. Furthermore, a novel Probabistic Fuzzy Kernel based Principal Component Analysis (PFK-PCA) method is proposed to select the prominent variables from the high-dimensional scene image representation. Finally, an IT2FK-SVM classifier is developed for the comprehensive learning of scene images in complex environment. IT2FK-SVM is able to deal with uncertainties when scene images are corrupted by various noises and captured by different view angles. The proposed IT2FK-SVM method yields over92%classification rates for all cases. Moreover, it even achieves98%classification rate on the newly built dataset with common light case.
     4) A framework of Grouping-Feature and Nesting-Kernel Support Vector Machine (GFNK-SVM) methodology is presented to achieve a more reliable and robust segmentation performance for humanoid robot. Firstly, the pixel wise intensity, gradient and C1SMF features are extracted via the local homogeneity model and Gabor filter, which would be used as inputs of GFNK-SVM model. Then, a new clustering method, which we called as Cluster Validity-Interval Type-2Fuzzy C-Means (CV-IT2FCM) clustering algorithm, is proposed to achieve sample selection by integrating a Type-2fuzzy criterion in the clustering optimization process to improve the robustness and reliability of clustering results by the iterative optimization. Finally, by integrating SVM with a novel nesting-kernel, a systematic GFNK-SVM framework is presented and its model is trained as classifier for scene images segmentation. Experiments on the BSDS dataset and real natural scene images demonstrate the superior performance of our proposed method.
引文
[1]蔡自兴.机器人学,第2版[M].北京:清华大学出版社,2009.
    [2]周远清,张再兴,许万雍.智能机器人系统[M].北京:清华大学出版社,1989,1-26.
    [3]Kazuo H., Masato H., and Haikawa Y. et al. The Development of Honda Humanoid Robot[J]. Proceedings of the 1998 IEEE International Conference on Robotics&Automation. 1998:1321-1326.
    [4]Mann T.A., Yunjung Park, Sungmoon Jeong, Minho Lee, Yoonsuck Choe. Autonomous and Interactive Improvement of Binocular Visual Depth Estimation through Sensorimotor Interaction [J]. IEEE Trans. on Autonomous Mental Development,2013,5(1):74-84.
    [5]Giorgio M., Giulio S., Lorenzo N., et al. Development and Robotics [J]. IEEE-RAS International Conference on Humanoid Robots,2001:33-42.
    [6]Oudeyer P. Y.. Emotional Interactions with Humanoids Using Speech[J]. IEEE-RAS International Conference on Humanoid Robots,2001:17-24.
    [7]Kato I., Ohteru S., Kobayashi H., Shirai K., Uchiyama A.. Information-Power Machine with Senses and Limbs [C]. Proc. of CISM-IFToMM Symposium 011 Theory and Practice of Robots and Manipulators, Vol. L Springer, Berlin, pp.11-24,1974.
    [8]Kodaka K., Ogata T., Sugano S.. Rhythm-based Adaptive Localization in Incomplete RFID Landmark Environments [J]. IEEE International Conference on Robotics and Automation (ICRA),2012,pp:2108-2114.
    [9]Miura K., Kanehiro F., Kaneko K., Kajita S., Yokoi K.. Slip-Turn for Biped Robots [J]. IEEE Trans. on Robotics,2013,29(4):875-887.
    [10]Saab L., Ramos O.E., Keith F., Mansard N., Soueres P., Fourquet J.. Dynamic Whole-Body Motion Generation Under Rigid Contacts and Other Unilateral Constraints [J]. IEEE Trans. on Robotics,2013,29(2):346-362.
    [11]Hong S., Oh Y., Kim D., You B.J.. Real-Time Walking Pattern Generation Method for Humanoid Robots by Combining Feedback and Feedforward Controller [J]. IEEE Trans. on Industrial Electronics,2014,61(1):355-364.
    [12]Park S., Lee A., Jeong M.J., et al. A Disposable MEMS-based Micro-biopsy Catheter for the Minimally Invasive Tissue Sampling [J]. IEEE/RSJ International Conference on Intelligent Robots and Systems,2005. (IROS 2005). pp:2768-2773.
    [13]Chen S.Y.. Kalman Filter for Robot Vision:A Survey [J]. IEEE Trans, onIndustrial Electronics, 2012,59(11):4409-4420.
    [14]Fang Y., Liu X., Zhang X.. Adaptive Active Visual Servoing of Nonholonomic Mobile Robots [J]. IEEE Trans. on Industrial Electronics,2012,59(1):486-497.
    [15]Vapnik V. N.. The Nature of Statistical Learning Theory. New York:Springer-Verlag,1995.
    [16]哈明虎,王超,张植明,等.不确定统计学习理论[M].北京:科学出版社,2010.
    [17]Elattar E. E., Goulermas J.. Electric Load Forecasting based on Locally Weighted Support Vector Regression [J]. IEEE Trans on. Systems, Man, and Cybernetics:Part C,2010, 40(4):438-447.
    [18]Andreas B., Jamie A.W., Hans G., andGerhard T.. Eye Movement Analysis for Activity Recognition using Electrooculography [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence,2011,33(4):741-753.
    [19]Pasolli L., Notarnicola C.. Prediction of Axial DNBR Distribution in a Hot Fuel Rod using Support Vector Regression Models[J]. IEEE Trans.on Nuclear Science,2011, 58(4):2084-2090.
    [20]Tselios K., Zois E.N., Siores E., Nassiopoulos A., Economou G.. Grid-based Feature Distributions for Off-Line Signature Verificaiton [J].IET Biometrics,2012,1(1):72-81.
    [21]Kumawat, P., Khatri, A., Nagaria, B.. Offline Handwriting Recognition using Invariant Moments and Curve Let Transform with Combined SVM-HMM Classifier[J]. International Conference on Communication Systems and Network Technologies (CSNT),2013,144-148.
    [22]Cai D., He X.. Manifold Adaptive Experimental Design for Text Categorization [J]. IEEE Trans. on Knowledge and Data Engineering,2012,24(4):707-719.
    [23]Li D., Liu L., Zhang Z.. Research of Text Categorization on WEKA [J]. The Third International Conference on Intelligent System Design and Engineering Applications (ISDEA),2013, 1129-1131.
    [24]Fabien L. and Gerard B.. Switched and Piecewise Nonlinear Hybrid System Identification[J]. Hybrid Systems:Computation and Control,2008,4981:330-343.
    [25]Li G., Wen C.. Identification of wiener systems with clipped observations [J]. IEEE Trans. on Signal Processing,2012,60(7):3845-3852.
    [26]Samantaray S.R. A data-Mining Model for Protection of FACTS-based Transmission Line [J]. IEEE Trans. on Power Delivery,2013,28(2):612-618.
    [27]Iranmanesh S.H., Miranian A., Abdollahzade M. Signal processing using singular spectrum analysis for nonlinear system identification [J]. The 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA),2012, PP-.722-727.
    [28]De Marsico M., Nappi M., Riccio D., Wechsler H.. Robust Face Recognition for Uncontrolled Pose and Illumination Changes [J]. IEEE Trans. on Systems, Man, and Cybernetics:Systems, 2013,43(1):149-163.
    [29]Hao Z., He L., Chen B., Yang X.. A Linear Support Higher-Order Tensor Machine for Classification[J]. IEEE Trans. on Image Processing,2013,22(7):2911-2920.
    [30]Valstar M.F., Pantic M.. Fully Automatic Recognition of the Temporal Phases of Facial Actions [J]. IEEE Trans. on Systems, Man, and Cybernetics, Part B:Cybernetics,2012,42(1):28-43:
    [31]Ng R.W.M., Lee T., Leung C.C., Ma B., Li H. Spoken Language Recognition With Prosodic Features[J]. IEEE Trans. on Audio, Speech, and Language Processing,2013,21(9):1841-1853.
    [32]Lee H.Y., Lee L.S.. Enhanced Spoken Term Detection Using Support Vector Machines and Weighted Pseudo Examples [J]. IEEE Trans. on Audio, Speech, and Language Processing, 2013,21(6):1272-1284.
    [33]Ferreira J. P., Crisostomo M. M.. SVR versus Neural-Fuzzy Network Controllers for the Sagittal Balance of a Biped Robot [J]. IEEE Trans. on Neural Networks,2009,20(12):1885-1897.
    [34]Ferreira J. P., Crisostomo M. M.. Control of a Biped Robot with Support Vector Regression in Sagittal Plane [J]. IEEE Trans. on Instrumentation and Measurement,2009,58(9):3167-3176.
    [35]Wang L., Liu Z., Chen, C.L.P., Zhang Y., Lee S., Chen X.. Energy-Efficient SVM Learning Control System for Biped Walking Robots [J]. IEEE Trans. on Neural Networks and Learning Systems,2013,24(5):831-837.
    [36]Lee J., Shin S., Lee S., Yun Y., Kim S.J., Kim C.J.. SVM-based System for Point-to-Point Hand Movement[J]. IEEE/SICE International Symposium on System Integration (SII),2012, pp:254-259.
    [37]Moustakidis S., Mallinis G., Koutsias N., Theocharis J.B.. Petridis V. SVM-Based Fuzzy Decision Trees for Classification of High Spatial Resolution Remote Sensing Images [J]. IEEE Trans. on Geoscience and Remote Sensing,2012,50(1):149-169.
    [38]Izquierdo-Verdiguier E., Laparra V., Gomez-Chova L., Camps-Valls G. Encoding Invariances in Remote Sensing Image Classification With SVM[J]. IEEE Trans. on Geoscience and Remote Sensing Letters,2013,10(5):981-985.
    [39]de Morsier F., Tuia D., Borgeaud M., Gass V., Thiran J.-P. Semi-Supervised Novelty Detection Using SVM Entire Solution Path [J]. IEEE Trans. on Geoscience and Remote Sensing,2013, 51(4):1939-1950.
    [40]Gurram P., Heesung Kwon. Contextual SVM Using Hilbert Space Embedding for Hyperspectral Classification [J]. IEEE Trans. on Geoscience and Remote Sensing Letters,2013, 10(5):1031-1035.
    [41]Parsaei H., Stashuk D.W. SVM-Based Validation of Motor Unit Potential Trains Extracted by EMG Signal Decomposition [J]. IEEE Trans. on Biomedical Engineering,2012, 59(1):1531-1538.
    [42]Sela Y., Freiman M., Dery E., Edrei Y., Safadi R., Pappo O., Joskowicz L., Abramovitch R. fMRI-Based Hierarchical SVM Model for the Classification and Grading of Liver Fibrosis[J]. IEEE Trans. on Biomedical Engineering,2011,58(9):2574-2581.
    [43]Chaudhuria A. and Deb K.. Fuzzy Support Vector Machine for Bankruptcy Prediction. Applied Soft Computing,2011,11(2):2472-2486.
    [44]辛治运,顾明.基于最小二乘支持向量机的复杂金融时间序列预测.清华大学学报(自然科学版).2008,48(7):1147-1149.
    [45]Lin C. F., Wang S. D.. Fuzzy Support Vector Machines[J]. IEEE Trans. on Neural Networks,2002,3(2):464-471.
    [46]Lin C. F. and Wang S. D.. Fuzzy Support Vector Machines with Automatic Membership Setting [J]. Studies in Fuzziness and Soft Computing,2005,177:233-254.
    [47]Huang H. P., Liu Y. H.. Fuzzy Support Vector Machines for Pattern Recognition and Datamining [J]. International Journal of Fuzzy Systems,2002,4(3):826-835.
    [48]张翔,肖小玲,徐光祜.模糊支持向量机中隶属度的确定与分析[J].中国图像图形学报,2006,11(8):1188-1192.
    [49]Lin C.F. andWang S.D.. Training Algorithms for Fuzzy Support Vector Machines with Noisy Data [J]. The 13th IEEE Workshop Neural Network Signal Process, France,2003, pp. 517-526.
    [50]Yang X. W., Zhang G. Q.. A kernel Fuzzy C-means Clustering-Based Fuzzy Support Vector Machine Algorithm for Classification Problems with Outliers or Noises [J]. IEEE Trans, on Fuzzy Systems,2011,19(1):105-115.
    [51]Batuwita R. and Palade V.. FSVM-CIL:Fuzzy Support Vector Machines for Class Imbalance Learning [J]. IEEE Trans, on Fuzzy Systems,2010,18(3):558-571.
    [52]李苗苗,向凤红,刘新旺.一种新颖隶属度函数的模糊支持向量机[J].计算机工程与科学,2009,31(9):92-94.
    [53]孙名松,高庆国,王宣丹.基于双隶属度模糊支持向量机的邮件过滤[J].计算机工程与应用,2010,46(2):93-95.
    [54]哈明虎,彭桂兵,赵秋焕等.一种新的模糊支持向量机.计算机工程与应用,2009,45(25):151-153.
    [55]哈明虎,黄澍,王超等.直觉模糊支持向量机.河北大学学报(自然科学版),2011,3(31):225-229.
    [56]吴青,刘三阳,杜喆.基于边界向量提取的模糊支持向量机方法[J].模式识别与人工智能,2008,21(3):332-337.
    [57]Yan W. Y., He Q.. Multi-Class Fuzzy Support Vector Machine based on Dismissing
    Margin [C]//Proceedings of the Eighth International Conference on Machine Learning and Cybernetics. Baoding, China.2009:1139-1144.
    [58]施其权,李小明,肖辞源.一类新型快速模糊支持向量机[J].计算机技术与发展,2010,20(2):103-105.
    [59]Wu Q.. Fuzzy Support Vector Regression Machine with Penalizing Gaussian Noises on Triangular Fuzzy Number Space [J]. Expert Systems with Application,2010,37:7788-7795.
    [60]Wu Q., Regression Application based on Fuzzy v-Support Vector Machine in Symmetric Triangular fuzzy space[J]. Expert Systems with Application,2010,37:2808-2814.
    [61]Ji A. B., Pang J. H. and Qiu H. J.. Support Vector Machine for Classification based on Fuzzy Training Data. Expert Systems with Application,2010,37 (4):3495-3498.
    [62]Hao P. Y. and Chiang J. H.. A Fuzzy Model of Support Vector Machine Regression [J]. IEEE International Conference on Fuzzy Systems,2003, pp.738-742.
    [63]Hao P. Y. and Chiang J. H.. Fuzzy Regression Analysis by Support Vector Learning Approach [J]. IEEE Trans. on Fuzzy Systems,2008,16(2):428-441.
    [64]Tovias G. and Christian I., Maximum Likelihood Model Selection for 1-Norm Soft Margin SVMs with Multiple Parameters [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2010,32(8):1522-1528.
    [65]Jayadeva, Khemchandani R., and Chandra S.. Twin Support Vector Machines for Pattern Classification [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence,2007, 29(5):905-910.
    [66]Kuncheva L. I., Rodriguez J. J., Plumpton C. O., Linden D. E. J., andJohnston S. J.. Random Subspace Ensembles for fMRI Classification [J]. IEEE Trans. on Medical Imaging,2010, 29(2):531-542.
    [67]Kodovsky J., Fridrich J., and Holub V.. Ensemble Classifiers for Steganalysis of Digital Media [J]. IEEE Trans. on Information Forensics and Security,2012,7(2):432-444.
    [68]Biedennan I. Recognition-by-Components:A Theory of Human Image Understanding [J]. Psychological Review,1987,94(2):115-147.
    [69]Swain M.J. and Ballard D.H.. Color indexing [J]. International Journal of Computer Vision, 1991,7(1):11-32.
    [70]Itti L., Koch C. and Niebur E.. A Model of Saliency-based Visual Attention for Rapid Scene Analysis [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence,1998, 20(11):1254-1259.
    [71]Lowe D.G.. Distinctive Image Features from Scale-Invariant Keypoints [J]. International Journal of Computer Vision,2004,60(2):91-110.
    [72]Bay H., Ess A., Tuytelaars T., et al. Speeded-Up Robust Features (SURF) [J]. Computer Vision and Image Understanding,2008,110(3):346-359.
    [73]Gagaudakis G. and Rosin P. L.. Incorporating Shape into Histograms for CBIR [J]. Pattern Recognition,2002,35(1):81-91.
    [74]Murase H. and Nayar S.K.. Visual Learning and Recognition of 3-D Objects from Appearance [J]. International Journal of Computer Vision,1995,14:5-24.
    [75]Oliva A. and Torralba A.. The Role of Context in Object Recognition [J]. Trends in cognitive sciences,2007,11(12):520-527.
    [76]Kelly A., Stentz A., Amidi O., et al. Toward Reliable Off Road Autonomous Vehicles Operating in Challenging Environments [J]. The International Journal of Robotics Research,2006, 25(5-6):449-483.
    [77]Shi J., Reichenbach S.E.. Image Interpolation by Two-Dimensional Parametric Cubic Convolution [J]. IEEE Trans. on Image Processing,2006,15(7):1857-1870.
    [78]Wojek C.and Schiele B.. A Dynamic Conditional Random Field Model for Joint Labeling of Object and Scene Classes [J]. Computer Vision ECCV 2008,5305:733-747.
    [79]Yang L., Zheng N., Chen M.. Categorization of Multiple Objects in a Scene using a Biased Sampling Strategy [J]. International Journal of Computer Vision,2013,105(1):1-18.
    [80]Zhang T., Liu S., Xu C., Lu H.. M4L:Maximum Margin Multi-Instance Multi-Cluster Learning for Scene Modeling [J]. Pattern Recognition,2013,46(10):2711-2723.
    [81]Banerji S., Sinha A., Liu C.. New Image Descriptors based on Color, Texture, Shape, and Wavelets for Object and Scene Image Classification [J]. Neurocomputing,2013,117:173-185.
    [82]Stefan H., Matthias S., Gerhard R.. Temporal Coherence in Image-based Visual Hull Rendering [J]. IEEE Trans. on Visualization and Computer Graphics,2013,19(10):1758-1767.
    [83]Wan P.F., Feng Y.L., Cheung G., Bajic I.V., andAu O.C..3-D Motion Estimation for Visual Saliency Modeling [J]. IEEE Signal Processing Letters,2013,20(10):972-975.
    [84]Cheng H., Yu Q.Z., Tian J.W., Jian L.. Image Denoising Using Wavelet and Support Vector Regression [J]. IEEE First Symposium on Multi-Agent Security and Survivability,2004, pp: 43-46.
    [85]Han Liu, Yong Guo, Gang Zheng. Image Denoising Based on Least Squares Support Vector Machines [J]. The Sixth World Congress on Intelligent Control and Automation, WCICA 2006, pp:4180-4184.
    [86]Laparra V., Gutierrez J., Camps-Valls G., Malo J..Recovering Wavelet Relations Using SVM for Image Denoising [J]. The 15th IEEE International Conference on Image Processing, ICIP 2008, pp:541-544.
    [87]Zhang S.M., Chen Y.. Image Denoising Based on Wavelet Support Vector Machine [J]. International Conference on Computational Intelligence and Security,2006, (2):1809-1812.
    [88]黄玉飞.基于支持向量机的图像去噪和图像质量评价的研究[D].中北大学,2013.
    [89]Tu X.G., Chen J.. Efficient Image Denoising Method Based on Support Vector Machine[J]. The Third International Symposium on Intelligent Information Technology Application Workshops, IITAW 09, pp:269-272.
    [90]Jing W.. An Improved Support Vector Machine Method for Image Denoising[J]. International Asia Symposium on Intelligent Interaction and Affective Computing, ASIA 09, pp:145-148.
    [91]Shen H., Li S.M., Mao J.G., Li F.P., Lu W.Y.. Image Denoising Using Information Measure and Support Vector Machines [J]. International Conference on Computational Intelligence and Software Engineering, CiSE 2009, pp:1-5.
    [92]Li D., M R., Mersereau S.. Simske. Blind Image Deconvolution through Support Vector Regression [J]. IEEE Trans. on Neural Networks,2007,18(3):931-935.
    [93]Li D.. Support Vector Regression based Image Denoising [J]. Image and Vision Computing, 2009, 1(27):623-627.
    [94]Deng X. andLuo Y.. Least Squares Support Vector Regression Filter [J]. in Proc..3rd International Conference on Image and Signal Processing (CISP),2010, pp.730-733.
    [95]Chapelle O., Haffner P., Vapnik V.N.. Support Vector Machines for Histogram-based Image Classification [J]. IEEE Trans. on Neural Networks,1999,10(5):1055-1064.
    [96]B. Gu, Gunn S.R., Damper R.I., Nelson J.D.B.. Customizing Kernel Functions for SVM-Based Hyperspectral Image Classification [J]. IEEE Trans. on Image Processing,2008,17(4): 622-629.
    [97]Dong L. and Izquierdo E. A Biologically Inspired System for Classification of Natural Images. IEEE Trans. on Circuits and Systems for Video Technology,2007,17(5):590-603.
    [98]Siagian C. and Itti L. Rapid Biologically-Inspired Scene Classification Using Features Shared with Visual Attention. IEEE Trans. on Pattern Analysis and Machine Intelligence,2007,29(2): 300-312.
    [99]Song D. and Tao D.. Biologically Inspired Feature Manifold for Scene Classification [J]. IEEE Trans. on Image Processing,2010,19(1):174-184.
    [100]Huang K., Tao D., Yuan Y., Li X., Tan T.. Biologically inspired features for scene classification in video surveillance. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics,2011,41(1):307-313.
    [101]Tuia D., Camps-Valls G., Matasci G., Kanevski M.. Learning Relevant Image Features with Multiple-Kernel Classification [J]. IEEE Trans. on Geoscience and Remote Sensing,2010, 48(10):3780-3791.
    [102]王晓云.基于支持向量机的优化在图像分类中的应用研究[D].上海交通大学,2013.
    [103]王晓东.纹理图像分类系统及其关键技术研究[D].南京邮电大学,2013.
    [104]Li S., Kwok J.T.Y., Tsang I.W., Wang Y.. Fusing Images with Different Focuses Using Support Vector Machines [J]. IEEE Trans. on Neural Networks,2004,15(6):1555-1561.
    [105]Wang X., Wang T., Juan B.. Color Image Segmentation Using Pixel Wise Support Vector Machine Classification [J]. Pattern Recognition,2011,44:777-787.
    [106]Bovolo F., Bruzzone L., Carlin L.. A Novel Technique for Subpixel Image Classification Based on Support Vector Machine[J]. IEEE Trans. on Image Processing,2010, 19(11):2983-2999.
    [107]Florian S., Antonio C., and Andrew Z.. Harvesting Image Databases from the Web [J]. IEEE Trans.on Pattern Analysis and Machine Intelligence,2011,33(4):754-766.
    [108]Lin Z. and Larry S. D.. Shape-Based Human Detection and Segmentation via Hierarchical Part-Template Matching [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence,2010, 32(4):604-618.
    [109]Zhang K. and Kwok J.T.. Simplifying Mixture Models Through Function Approximation [J]. IEEE Trans. on Neural Networks,2010,21(4):644-658.
    [110]Nanthagopal A.P. and Sukanesh R... Wavelet Statistical Texture Features-based Segmentation and Classification of Brain Computed Tomography Images [J]. IET Image Processing,2013, 7(1):25-32.
    [111]Ghosh S., Stepinski T.F., Vilalta R.. Automatic Annotation of Planetary Surfaces with Geomorphic Labels [J]. IEEE Trans. on Geoscience and Remote Sensing,2010,48(1): 175-185.
    [112]Felhi M., Bonnier N., Tabbone S.. A Skeleton based Descriptor for Detecting Text in Real Scene Images [J]. The 21st International Conference on Pattern Recognition (ICPR),2012, pp: 282-285.
    [113]刘路.基于改进支持向量机和纹理图像分析的旋转机械故障诊断[D].天津大学,2011.
    [114]Xing C., Li D., Ma S., Fei Z.. Robust Transceiver Design for MIMO-OFDM Systems Based on Cluster Water-Filling [J]. IEEE Trans. on Communication Letters,2013,17(7):1451-1454.
    [115]徐红,彭力,陈容.基于优化支持向量机的人脸表情分类[J].计算机应用研究,2013,30(8):2541-2544.
    [116]Zadeh L.A.. Fuzzy sets, Fuzzy Logic, and Fuzzy Systems [M]. Word Scientific,1996.
    [117]Zadeh L.A.. Fuzzy Logic and Approximate Reasoning [J]. Synthese,1975,30(3-4):407-428.
    [118]Mendel J.M., John R.I., Liu F.. Interval Type-2 Fuzzy Logic Systems Made Simple [J]. IEEE Trans. on Fuzzy Systems,2009,14(6):808-821.
    [119]Wu H.J., Su Y.L., Lee S.J.. A Fast Method of Computing the Centroid of a Type-2 Fuzzy Set [J]. IEEE Trans. on Systems, Man, and Cybernetics, Part B:Cybernetics,2012,42(3):764-777.
    [120]Wu H.J., Su Y.L., Lee S.J.. An Enhanced Type-Reduction Algorithm for Type-2 Fuzzy Sets [J]. IEEE Trans. on Fuzzy Systems,2011,19(2):227-240.
    [121]Cheng K.H. Hybrid Learning-based Neuro-Fuzzy Inference System:A New Approach for System Modeling [J]. International Journal of Systems Science,2008,39(6):583-600.
    [122]Fazel Zarandi M.H., Gamasaee R.. Type-2 Fuzzy Hybrid Expert System for Prediction of Tardiness in Scheduling of Steel Continuous Casting Process [J]. Soft Computing,2012,16(2): 1-16.
    [123]Yan Y.J., Mauris G., Trouve E., Pinel V.. Fuzzy Uncertainty Representations of Coseismic Displacement Mmeasurements Issued from SAR Imagery [J]. IEEE Trans. on Instrumentation and Measurement,2012,61(5):1278-1286.
    [124]Martinez R., Castillo O., Aguilar L.T.. Optimization of Interval Type-2 Fuzzy Logic Controllers for A Perturbed Autonomous Wheeled Mobile Robot Using Genetic Agorithms. Information Sciences,2009,179:2158-2174.
    [125]Castillo O.. Optimization of an Interval Type-2 Fuzzy Controller for an Autonomous Mobile Robot Using the Particle Swarm Optimization Algorithm. Studies in Fuzziness and Soft Computing,2012,27(2):173-180.
    [126]Mendel J.M., John R.I., Liu F. Interval Type-2 Fuzzy Logic Systems Made Simple. IEEE Trans. on Fuzzy Systems,2009,14(6):808-821.
    [127]Castillo O., Melin P., Alanis A., Montiel O., Sepulveda R.. Optimization of Interval Type-2 Fuzzy Logic Controllers Using Evolutionary Algorithms. Soft Computing,2011,15(6): 1145-1160.
    [128]Juang C.F., Huang R.B., and Cheng W.Y.. An Interval Type-2 Fuzzy-Neural Network With Support-Vector Regression for Noisy Regression Problems [J]. IEEE Trans. on Fuzzy Systems. 2010,18(4):686-699.
    [129]Alexander S.K., Kovacic S. and Vrscay E.R.. A Model for Image Self-Similarity and the Possible Use of Mutual Information [C]. in:Proc. the 2007 European Signal Process. Conf. (EUSIPCO-2007), Poznan, Poland,2007, pp.975-979.
    [130]Sun J., Li H., Adeli H.. Concept Drift-Oriented Adaptive and Dynamic Support Vector Machine Ensemble With Time Window in Corporate Financial Risk Prediction [J]. IEEE Trans. on Systems, Man, and Cybernetics:Systems,2013,43(3):801-813.
    [131]Reddy M.J.B., Chandra B.K., Mohanta D.K.. Condition Monitoring of 11 kV Distribution System Insulators Incorporating Complex Imagery Using Combined DOST-SVM Approach [J]. IEEE Trans. on Dielectrics and Electrical Insulation,2013,20(2):664-674.
    [132]Oktay A.B., Akgul Y.S.. Simultaneous Localization of Lumbar Vertebrae and Intervertebral Discs With SVM-Based MRF [J]. IEEE Trans. on Biomedical Engineering,2013,60(9): 2375-2383.
    [133]University of Southern California-Signal & Image Processing Institute-The USC-SIPI Image Database. Available from:.
    [134]Xu S.Q., Yuan C.G.. Density Weighted Least Squares Support Vector Machine[C]. Proc. The 30th Chinese Control Conference, Yan Tai, China,2011:5310-5314.
    [135]Jolliffe I.T.. Principal Component Analysis [M]. Springer,2005.
    [136]Tuia D., Camps-Valls G., Matasci G., Kanevski M.. Learning Relevant Image Features with Multiple Kernel Classification [J]. IEEE Trans. on Geoscience and Remote Sensing,2010, 48(10):3780-3791.
    [137]Ishigaki T., Higuchi T., Watanabe K.. Fault Detection of a Vibration Mechanism by Spectrum Classification with a Divergence-based Dernel [J]. IET Signal Processing,2010,4(5):518-529.
    [138]汪洪桥,孙富春,蔡艳宁等.多核学习方法[J].自动化学报,2010:1039-1044.
    [139]Tuia D., Camps-Valls G., Matasci G., Kanevski M.. Learning Relevant Image Features with Multiple-Kernel Classification [J]. IEEE TRANS ON GEOSCIENCE AND REMOTE SENING,2010,48(10):3782-3790.
    [140]Nakajima S., Binder A., Miiller C.,etc. Multiple Kernel Learning for Object Classification[J]. Technical Report on Information-Based Induction Sciences,2009:1-8.
    [141]Qiu S., Lane T.. A Framework for Multiple Kernel Support Vector Regression and Its Applications to SiRNA Efficacy Prediction [J].IEEE/ACM Trans. on Computational Biology and Bionformatics,2009,6(2):190-199.
    [142]Yeh C.Y., Huang C.W., Lee S.J.. A Multiple-Kernel Support Vector Regression Approach for Stock Market Price Forecasting [J].Expert Systems with Applications,2011, (38):177-21896.
    [143]Vedaldi, Gulshan V., Varma M.,etc. Multiple Kernels for Object Detection [J], IEEE Proceedings of the Internatinal Conference on Computer Vision,2009, pp:1-8.
    [144]常甜甜,刘红卫,王宇等.基于分组特征多核支持向量机的微钙化簇检测[J].系统仿真学报,2010,22(5):1159-1163.
    [145]Chen Z., Li J., Li W.. A Multiple Kernel Support Vector Machine Scheme for Feature Selection and Rule Extraction from Gene Expression Data of Cancer Tissue[J].Artificial Intelligence in Medicine,2007(41):161-175.
    [146]Lee W.J., Verzakov S., Duin R.P.. Kernel Combination Versus Classifier Combination [J]. Proceedings of the 7th International Workshop on Multiple Classifier Systems,2007:22-31.
    [147]Lewis D.P., Jebara T., Noble W.S.. Nonstationary Kernel Combination [J]. Proceedings of the 23rd International Conference on Machine Learning,2006:553-560.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700