用户名: 密码: 验证码:
特提斯喜马拉雅带中段晚古生代以来的火山岩及其意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于青藏高原南部高喜马拉雅和北部印度河-雅鲁藏布缝合带之间的特提斯喜马拉雅带是研究冈瓦纳大陆北缘拉张破裂、板块漂移和大陆拼合以及洋盆形成、演化和消亡等重要地质过程的理想场所,长期以来倍受国内外地学界的关注。前期研究主要是从沉积学、古生物学、构造地质学等方面对冈瓦纳大陆北缘的拉张破裂和特提斯的构造演化进行讨论,对赋存于特提斯喜马拉雅带的大量火山岩所开展的研究工作非常有限,主要原因,一是以往地质调查程度不够,对这些火山岩的分布情况不了解;二是从根本上对这些火山岩缺乏足够的重视,以致忽略了从火山活动记录的角度探讨特提斯构造演化的一些基本问题。火山活动作为壳-幔、岩石圈-软流圈相互作用的信息载体、岩石探针和重要地质过程的重要指示剂,在岩石学和大地构造研究领域一直占有非常重要的地位。2000年开始进行的国土资源大调查和我们开始于同期的野外调查工作,为从火山岩角度研究冈瓦纳大陆北缘的拉张破裂和特提斯的构造演化提供了机会和条件。
     本论文以特提斯喜马拉雅带中段晚古生代以来不同时代的火山岩为对象,采用区域构造演化与火山事件相结合的思路,在回顾了特提斯喜马拉雅带地质背景的基础上,重点对该带中段晚古生代以来不同时代火山岩的特点、时空演化、岩浆成因及其在冈瓦纳大陆北缘的拉张破裂和特提斯构造演化中的意义进行了详细分析和讨论,取得以下初步认识:
     (1)根据前人研究成果和最新资料,指出特提斯喜马拉雅带的构造演化与雅鲁藏布弧后洋盆的发生和发展息息相关,二者均受到由班公湖-怒江缝合带再造的特提斯大洋壳南向俯冲的约束。
     (2)特提斯喜马拉雅带中段晚古生代以来的地层系统中,从二叠纪→三叠纪→侏罗纪→白垩纪,共有11个层位含规模不等的火山岩,它们以透镜体、薄的夹层或以块状玄武岩或玄武质安山岩等形式产出于不同地层系统中,火山活动较为频繁但规模不大,并且从二叠纪→早中三叠世→晚三叠世→侏罗纪和白垩纪,火山活动具有由西向东、从南→北→南→北的迁移规律。
     (3)通过系统的地球化学分析,首次查明了不同时代火山岩的地球化学特征及其演化特点。结果表明,无论是常量元素、稀土元素、微量元素丰度及相关参数,还是Pb同位素组成,在中晚二叠世与早三叠世之间、中三叠世与晚三叠世之间,均发生了明显改变。
     常量元素特点:二叠纪玄武岩以高镁低钾为特点,具原生岩浆性质;早、中三叠世玄武岩以低镁高钾、TiO_2高含量为特征,演化程度增大,从相似于MORB转变为与OIB相似;晚三叠世玄武岩又转变为高镁低钾特点,演化程度相对较低;中侏罗世和侏罗纪末期桑秀组玄武岩具低镁特点,演化程度增高,TiO_2含量与OIB接近;早白垩世玄武岩TiO_2含量低于OIB,K_2O含量明显降低。从二叠纪到中三叠世、晚三叠世到早白垩世常量元素演化显示出两个旋回的特点。
     稀土元素特点:二叠纪玄武岩以较低的稀土元素总量和轻重稀土分异程度为特征,中晚二叠世微弱负Eu异常;早、中三叠世稀土元素总量增高,与社会群岛OIB接近,分异程度也增大,早三叠世不具Eu异常,而中三叠世显示特征的正Eu异常;晚三叠世稀土元素总量和分异程度显著降低,与P-MORB接近;中侏罗世、侏罗纪末期玄武岩稀土元素总量和分异程度明显增高,无Eu异常,与早、中三叠世一样,接近于OIB;桑秀组玄武岩的稀土元素总量和轻重稀土分异程度明显低于流纹英安岩,并且后者具明显负Eu异常(δEu平均0.56);与早期侏罗纪玄武岩相比,早白垩世玄武岩稀土元素总量和轻重稀土分异程度都有所降低。
     微量元素特点:二叠纪玄武岩以高含量的相容元素和低丰度的高场强元素为特征;而早、中三叠世相容元素丰度明显降低而高场强元素丰度显著增高,正Nb异常也越明显;晚三叠世玄武岩较高的相容元素和非常低的高场强元素,明显负Nb异常,中侏罗世和侏罗纪末期玄武岩再次转变为以低相容元素和高高场强元素丰度为特征,正Nb异常非常显著,侏罗纪末期流纹英安岩以具有较高的Nb含量而相似于早期玄武岩;早白垩世玄武岩以低丰度的Cr和高丰度的Nb相似于早期侏罗纪玄武岩,而以低丰度Zr有别于早期玄武岩。
     Pb同位素特点:早二叠世玄武岩具有较高的Pb同位素组成,早、中三叠世玄武岩的Pb同位素组成明显降低,到了晚三叠世又明显增大,中侏罗世早期玄武岩保持了晚三叠世玄武岩的特点,而晚期玄武岩与侏罗纪末期桑秀组玄武岩类似,侏罗纪末期桑秀组流纹英安岩具有非常高的Pb同位素组成。
     (4)通过采用不活动的高场强元素丰度、元素对比值及微量元素蛛网图等多元判别方法,初步查明了晚古生代以来不同时代火山岩的性质和产出的构造环境。
     二叠纪玄武岩为产于大陆板内拉张环境的亚碱性拉斑玄武岩;晚三叠世为大洋板内玄武岩;其它时代玄武岩主要为陆缘裂谷区的过渡型玄武岩,桑秀组流纹英安岩产出背景为大陆边缘伸展盆地的亚碱性酸性火山岩。
     (5)在系统的地球化学和同位素对比分析基础上,对特提斯喜马拉雅带中段晚古生代以来不同时代火山岩的岩浆源区性质、岩浆过程以及演化特点进行了详细深入研究,取得以下初步认识:
     岩浆源区由3部分组成,即岩石圈地幔、亏损软流圈、富集地幔热柱物质,不同时代火山岩的岩浆源区正是由这三种组分以不同比例混合而成,岩浆过程以部分熔融作用为主,还有少量的分离结晶作用。
     早二叠世玄武岩和中晚二叠世玄武岩具有相同或相似的岩浆源区,具大陆OIB型岩浆的特点,由来源于亏损的软流圈地幔物质和源于富集岩石圈地幔物质混合形成的混合岩浆,并可能受到了再循环物质成分的影响,以部分熔融为主,同时还经历了有限的分离结晶作用的方式,没有受到明显的地壳混染。早、中三叠世深部地幔热柱物质活动性增强,玄武岩浆源区由深部地幔热柱物质活动诱导的大陆OIB型岩浆与亏损MORB型岩浆的混合体,晚三叠世岩浆源区为EMII+MORB的混合体。
     中侏罗世玄武岩浆源区继承了晚三叠世的一些特点,但深部地幔热柱物质的贡献增大,岩浆源区主要与N-MORB+OIB组分混合有关。
     侏罗纪末期桑秀组玄武岩浆源区为岩石圈地幔与OIB型岩浆不同比例混合而成,后期地幔热柱物质贡献增大,岩浆上升过程中地壳混染不明显,主要通过部分熔融作用以及有限的分离结晶作用的方式快速喷溢形成;桑秀组流纹英安岩是在伸展减薄的大陆边缘环境,由早期同源的玄武岩浆分异演化而来的,岩浆上升过程中遭受了浅部地壳物质的同化混染。
     早白垩世,岩石圈地幔对玄武岩浆源区贡献增强,深部地幔热柱物质贡献减弱甚至消失。
     (6)在综合分析岩石学和地球化学特征的基础上,重点对二叠纪火山岩和侏罗纪末期桑秀组火山岩的岩石成因进行了详细研究:
     根据二叠纪玄武岩的地球化学特征并结合野外产状,初步认为这些火山岩是由于色龙地区深大断裂的存在和岩石圈拉张减薄的程度不同,使源于亏损软流圈的地幔物质与岩石圈地幔物质发生混合并快速上升,在滨浅海环境形成一系列小规模的、断续的、具有大陆OIB型特征的、缺乏明显地壳混染的岩浆喷溢事件。
     根据桑秀组流纹英安岩和玄武岩、安山质岩石之间的关系及地球化学特征,提出流纹英安岩的三阶段成因模式:第一阶段:玄武岩由起源于岩石圈地幔的岩浆与不同比例的上升的OIB型玄武质岩浆发生混合形成混合岩浆,这些混合岩浆发生低度部分熔融形成碱性玄武岩浆,在上升过程中发生一定程度的单斜辉石和斜方辉石的分离结晶,形成具有演化岩浆特征的碱性玄武岩浆的喷溢,在此次喷溢事件之后,地温梯度降低,软流圈-岩石圈界面下沉,岩石圈处于拉张峰期之后;第二阶段:紧接着岩石圈拉张峰期之后,玄武岩浆在较深部层次继续发生分离结晶作用形成安山质岩浆,同时受到中下部地壳物质的混染,但由于此时岩石圈拉张峰期刚刚过去,岩浆在中下部地壳停留时间较短,结晶分异不充分,在还没有遭受到强烈地壳混染的条件下发生小规模安山质岩浆的喷溢;第三阶段:随着时间的推移,岩石圈拉张程度相对减小(总体仍然处于拉张状态),在这种总体拉张背景下,岩浆向上运移,一方面发生强烈结晶分异,另一方面又遭受更浅部地壳(小于16.5km)物质的同化混染,最后发生明显受到上部地壳物质混染的流纹英安岩浆喷溢事件。
     (7)在详细的地球化学研究基础上,对特提斯喜马拉雅带晚古生代以来火山岩的指示意义进行了详细分析,取得的初步认识如下:
     ①通过与特提斯喜马拉雅带西段、东段二叠纪火山岩的详细对比研究,并结合最新的古地磁结果,初步认为晚古生代时冈瓦纳大陆北缘岩石圈具有不同规模的拉张程度,以特提斯喜马拉雅带西段岩石圈拉张程度最大为特征,这可能指示雅鲁藏布洋盆的开启具有西早东晚的特点。
     ②晚古生代以来,特提斯喜马拉雅带中段火山岩的岩浆源区深度表现出两个由深到浅的旋回性变化,这种现象可能指示冈瓦纳大陆北缘岩石圈发生了不同程度的拉张减薄,在这种拉张减薄背景下区内之所以没有发生大规模的岩浆喷溢活动,是因为裂谷作用持续时间长,裂谷带之下上涌的地幔物质由于对流传导作用而变冷了。
     ③根据二叠纪火山岩既不具有MORB的微量元素组成,又不具备MORB的Pb同位素组成等地球化学特征,以及火山岩产于滨浅海环境的事实,提出二叠纪火山岩只是冈瓦纳大陆北缘晚古生代末期响应岩石圈拉张减薄的一系列火山岩浆事件之一,并不能指示雅鲁藏布洋盆已经开启。
     ④根据早、中三叠世玄武岩的地球化学特征和Pb同位素具有MORB组成的特点,以及各种地球化学参数和岩石圈拉张减薄程度在二叠纪末期与早三叠世之间的突变,并结合火山岩产出的空间位置,提出雅鲁藏布洋盆的初始开启发生于二叠纪末期和早三叠世之间的某个时期,早、中三叠世时该洋盆只具初始洋盆性质,规模很小。
     ⑤根据中三叠世和晚三叠世玄武岩的地球化学特征及Pb同位素组成以及各种地球化学参数的突变,并结合火山岩产出空间位置的变化和古地磁成果,认为雅鲁藏布洋盆在中、晚三叠世之间发生了第一次快速扩张,其结果是导致该洋盆完全开启,并达到一定规模,研究区转换为成熟的被动大陆边缘。
     ⑥根据区域地质背景、玄武岩的地球化学特征及其在剖面上的演化关系,并结合古地磁成果,认为侏罗纪末期桑秀组中上部玄武岩代表了雅鲁藏布洋盆的第二次快速扩张,而桑秀组上部流纹英安岩则指示喜马拉雅地块运动方向发生了由南向北的转换,雅鲁藏布洋盆达到最大宽度,随后进入慢速扩张甚至萎缩阶段。强调桑秀组火山岩记录了雅鲁藏布洋盆发生第二次快速扩张的全过程,在研究该洋盆的构造演化方面具有重要的“指示剂”作用。
     (8)在分析了几种主要裂谷作用特点的基础上,结合研究区晚古生代以来火山活动的岩浆源区的性质和演化特征,对引起这些火山活动的动力学机制进行了探讨。
     初步认为与这些火山活动有关的火山岩浆事件的动力学机制是受到地幔热柱物质上涌而强化了的被动裂谷作用,其动力源自地幔对流,提出由于班公湖-怒江洋壳岩石圈晚古生代以来的南向俯冲消减诱发和强化了雅鲁藏布弧后洋盆下面的地幔物质的对流和深部地幔热柱物质的活动,进而引起区内发生岩浆喷溢事件。
     (9)在综合地质背景和火山活动基本特征的基础上,对区内晚古生代以来所发生的一系列火山裂陷事件进行了总结。
     初步认为区内晚古生代以来不同规模的火山岩浆活动和长期裂陷的特点表明,与传统意义上的被动大陆边缘还有差异,更可能是一种相对活动的火山裂陷型被动大陆边缘,在晚三叠世到早白垩世时间跨度长达100Ma的地质历史时期内,研究区位于陆壳和洋壳过渡区,处于一种裂而不谷的状态,属于被动大陆边缘发展演化的裂陷阶段。
Studies of Tethyan Himalayas offer the opportunity to reveal the important geologicalprocesses that are related to the continental breakup of northern margin of Gondwana, platedrifting, continent converging and the formation, development, closure of Tethyan ocean basin.More attentions have been focused on this area for a long time. However, the previous studies aremainly focused on the sedimentology, paleontology and tectonics/structural geology to infer theimportant geological processes that mentioned above. There is the fact that a poorly known for thevolcanic rocks in the Tethyan Himalayas, these would be ascribed to the inadequate geologicalinvestigation and the neglect of importance of the volcanic rocks in Tethyan Himalayas. As acarder of information for the interaction of crust-mantle, lithosphere-asthenosphere, petroprobeand indicator for most important geological processes, volcanic activity has been playing animportant role in the study of petrology and tectonics. Fortunately, here is a possibility to study thecontinental breakup of northern margin of Gondwana and the tectonic evolution of Tethys inferredfrom the volcanic rocks, which have been found in the process of our fieldworks and othergeological investigations.
     As viewed from the main idea of regional tectonic evolution-volcanic activity event, theprimary purposes of the present thesis are to study the features, spatial-temporal evolution,petrogenesis of the volcanic rocks in Tethyan Himalayas since the Late Paleozoic, and to probeinto their implications in the process of continental breakup of northern margin of Gondwana andthe tectonic evolution of Tethys. Some preliminary results have been inferred from these volcanicrocks by the present thesis as following.
     (1)Based on the re-appraisement of the studies by previous workers and recent researchers,the present thesis points out that the tectonic evolution of Tethyan Himalayas is related toformation and development of the Yarlung Zangbo back-arc basin which is constrained by thesubduction southward of Tethyan oceanic crust that is reconstituted by Bangong Co-Nujiangsuture zone.
     (2)11 volcanic rocks horizons-bearing, which are characterized by lens, thinned interlayersand massive basalts, have been found in the central belt of Tethyan Himalayas from Permian toCretaceous, the fact indicates that there are frequent volcanic activities with limited scales sincethe Late Paleozoic. From the Permian→the Early/Middle Triassic→the Late Triassic→the Jurassicto the Cretaceous, the volcanic activities move from west to east, and from south to north, to southand to north again.
     (3)The geochemical and evolutional characteristics of these volcanic rocks have been firstreported in the present thesis. According to the detailed results of geochemical studies, whether thecontent of major elements, REE, trace elements and related parameters, or Pb isotopiccompositions have been changed between the Middle-Late Permian and the Early Triassic, andalso between the Middle Triassic and the Late Triassic, some particular tectonic implications could be inferred from these two considerable distinctions.
     (4)The nature and the tectonic settings of volcanic rocks since the Late Paleozoic have beenwell known by using the abundances and the ratios of high field strength elements, and the spiderdiagrams in the present thesis.
     The Permian continental tholeiites are formed in the continental extensional zone or initialrift in the within-plate, the Late Triassic tholeiite plots in the normal mid-ocean-ridge basalt field,the rhyodacites in Sangxiu Formation are formed in the stretched basin of continental margin.Apart from mentioned above, the Early Triassic basalts, the Middle Triassic basalts, and theMiddle Jurassic basalts, as well as the Late Jurassic basalts (Sangxiu Formation) and the EarlyCretaceous basalts are all characterized by transitional alkalic-tholeiitic characteristics, which plotin the rift field of continental margin.
     (5)The nature of magmatic source, the processes of magma and the evolutional characteristicsof volcanic rocks in the central belt of Tethyan Himalayas since the Late Paleozoic have beenrevealed preliminarily by systematically comparative analysis of geochemistry and Pb isotopiccomposition. The results show that three types of magmatic sources, which consist of lithosphericmantle, depleted asthenospheric mantle and enriched mantle plume, have been identified by thepresent study of geochemistry in detail. The sources of magma of volcanic rocks in different agesare the mixture of these three types of magma in different ratios, which mainly underwent partialmelting, as well as limited evolution by fractional crystallization.
     (6)Based on the analysis of petrology and geochemistry, petrogenesis of the volcanic rocks inSelong and Sangxiu Mountain has been studied in detail by the present thesis.
     Based on the study of geochemistry and field attitude of the Permian basalts, the presentthesis proposes that the magma that derived from the depleted asthenospheric mantle can tap theenriched lithospheric mantle due to the faults that cut through the stretched lithosphere, the finite,intermittent effusions of magma that has not experienced continental crustal contamination and ischaracterized by continental OIB-type could be occurred in the shore-shallow setting.
     According to the relationship and the geochemistry between rhyodacites and basalts,andesitic rocks in Sangxiu Formation, the present thesis puts forward a three-stage model ofpetrogenesis to interpret these volcanic activities: the first stage is the forming of alkaline basalticmagma, which is originated from the mixture of magma that experienced a lower degree of partialmelting in different ratios, the mixed magma derived from lithospheric mantle and from theOIB-type basaltic magma that induced by the activity of mantle plume. Subsequently, a decreasedgeothermal gradient and a subsidised interface between asthenosphere and lithosphere as aconsequence of this effusion of alkaline basaltic magma would led to the depth of magmaticsource become deeper than that of before. The second stage is the time that the forming of limitedandesitic magma, which originated from the early basaltic magma by fractional crystallization.The third stage is the time that the forming of rhyodacitic magma, which strongly differentiatedfrom the early basaltic and andesitic magma and experienced strikingly assimilation andcontamination by the upper crust in the process of ascend of magma.
     (7)Based on the detailed geochemical study of the volcanic rocks in the central belt ofTethyan Himalayas, the present thesis probes into the implications for these volcanic rocks sincethe Late Paleozoic. The main preliminarily conclusions as following:
     a. According to systematically comparative study of the Permian basalt in the western and theeastern belt of Tethyan Himalayas, as well as the newly paleomagnetic results by other researchers,the present thesis suggests that the initial opening of Yarlung Zangbo back-arc oceanic basin maybe happened early in the western and late in the eastern belt of Tethyan Himalayas.
     b. The depth of magmatic source of volcanic rocks is characterized by two cyclic changesfrom deep to low since the Late Paleozoic, this fact indicate that the lithosphere of northernmargin of Gondwana has been thinned strikingly by stretching from the Permian to the Cretaceous.The frequent, limited volcanic activities in the central belt of Tethyan Himalayas would attributeto the cooling of mantle materials beneath the stretched lithosphere by convecting.
     c. The Permian basaltic magmatic activity, which has neither trace element nor Pb isotopiccomposition relative to the MORB, is only one of the volcanic events that are response to thestretched lithosphere of northern margin of Gondwana at the end of the Late Paleozoic, the initialopening of Yarlung Zangbo back-arc oceanic basin could not inferred from this basaltic volcanicactivity.
     d. The present thesis proposes that the initial opening of Yarlung Zangbo back-arc oceanicbasin may be happened at the transition from the end of Permian to the Early Triassic, which couldbe inferred from the Pb isotopic compositions of the Early-Middle Triassic basalts are similar tothe MORB, and from the abruptly changes of geochemical parameters, and also from the stretcheddegree of lithosphere between the end of Permian and the Early Triassic. Yarlung Zangbo back-arcoceanic basin may be as a juvenile ocean at the Early-Middle Triassic deduced from the nature andthe spatial location of the Early-Middle Triassic basaltic activities.
     e. According to the distinct changes of geochemistry, Pb isotopic composition, and thegeochemical parameter, as well as the spatial location of volcanic activity, the paleomagneticresults of Himalayan block form the Middle Triassic to the Late Triassic, the present thesisindicates that the first rapid spreading of Yarlung Zangbo back-arc oceanic basin has beenoccurred at the transition of the Middle Triassic and the Late Triassic, and as a consequence of therapid spreading event, this oceanic basin opened completely and up to a certain scale, the studiedarea turns into a matured passive continental margin.
     f. The present thesis, which based on the regional geological setting, the geochemistry, therelationship in field section of the volcanic rocks, as well as the paleomagnetic results ofHimalayan block, points out that the middle-upper basalt in Sangxiu Formation may be as an"indicator" to indicates the second rapid spreading of Yarlung Zangbo back-arc oceanic basin,whereas the rhyodacites in the upper parts of Sangxiu Formation would indicate that the kineticdirection of Himalayan block has been transformed from south to north, and the Yarlung Zangboback-arc oceanic basin reaches to its greatest width and subsequently enters into slowly spreadingand closing stage. It is emphasizes that the volcanic rocks in Sangxiu Formation have recorded theprocess of the second rapid spreading of Yarlung Zangbo back-arc oceanic basin, and these rocksmay be as the indicators to reveal the information of tectonic evolution for this oceanic basin.
     (8)Based on the studies of the nature and the evolutional characteristics of magmatic sources,the dynamic mechanism of the volcanic activities in the central belt of Tethyan Himalayas sincethe Late Paleozoic has been discussed by the present thesis. It is suggests that the dynamicmechanism of these volcanic activities is induced by the passive rifting that may be enhanced dueto the upwelling of a deep mantle plume from a major thermal boundary layer within the deep mantle (660km discontinuity), the force source of passive rifting is from the mantle convection,which induced by the subduction southward of Bangong Co-Nujiang oceanic crust.
     (9)At the end of the present thesis, the author points out that the studied area may berepresents a relatively active volcanic rifted-type passive continental margin, which is differ fromthe traditionally stable passive continental margin. The studied area, which locates in thetransitional region between continental crust and oceanic crust, is in a rifted stage in the process ofevolution of the passive continental margin that is characterized by rifting, rift valley has not beenformed from the Late Triassic to the Early Cretaceous.
引文
1. Arndt N T, Goldstein U, The roles of lithospheric mantle in continental flood volcanism: thermal and geochemical constraints. Journal of Geophysical Research, 1992, 97, pp. 10967~10981
    2. Austin, J. A., and seven others, Crustal structure of the Southeast Georgia embayment-Carolina trough: preliminary results of a composite seismic image of a continental suture (?) and a volcanic passive margin. Geology, 1990, vol. 18, pp. 1023-1027
    3. Baksi, A. K., Barman, T.R., Paul, D.K. & Farrar, E., Widespread early Cretaceous flood basalt volcanism in eastern India: Geochemical data from the Rajmahal-Bengal-Sylhet traps. Chemical Geology, 1987, 63 pp.133-141.
    4. Bhat M., Abor Volcanics: further evidence for the birth of the Tethys Ocean in the Himalayan segment. Journal of the Geological Society, 1984, vol. 141, no.4, pp. 763-775
    5. Bhat M.I, and Ahmad T., Petrogenesis and the mantle source characteristics of the Abor volcanic rocks, eastern Himalayas. Journal Geological Society of India, vol.36, 1990, pp. 227-246
    6. Bhat M.I., Zainuddin S.M. and Rais A., Panjal Trap chemistry and the birth of Tethys. Geological Magazine, 1981, vol. 118, no.4, pp.367-375
    7. Bi Xianmei, Mo Xuanxue, Liao Zhongli et al., Characteristics of very low-grade metamorphism in Tethyan Himalaya and Yalung Zangbo suture, southern Tibet and implication for Tethyan tectonics. In: 18hkt Workshop, Ascona, Switzerland, Abstract volume of the 18th Himalaya-Karakoram-Tibet conference, 2003, pp.26
    8. Brandon A.D., Walker R.J., Morgan J.W. et al., Coupled Os-186 and Os-187 evidence for core-mantle interaction. Science, 1998, 280, pp.1570-1573
    9. Brookfield M.E., The himalayan passive margin from Precambrian to Cretaceous times. Sedimentary Geology, 1993, 84, pp. 1-35
    10. Caironi V., Garzanti E., Sciunnach D., Typology of detrital zircons as a key to unravelling provenance in rift siliciclastic sequences (Permo-Carboniferous of Spiti, N India). Geodin. Acta 1996, 9, pp.101-113
    11. Cleverly R.W., Betton P.J. and Bristow J.W., Geochemistry and petrogensis of the Lebombo rhyolites. Spec. Publ. Geol. Soc. S. Afr., 1984, 13, pp.171-194
    12. Coish R.A., Hickey R., Frey F.A., Rare earth element geochemistry of the Betts Cove ophiolite, Newfoundland: complexities in ophiolite formation. Geochim Cosmochim Acta, 1982, 46, pp.2117-2134
    13. Condie K C., Geochemistry and tectonic setting of early Proterozoic supercrustal rocks in the southwestern United States. Journal of Geology, 1986, 94, pp.845-861
    14. Cox K.G., The Karoo volcanic cycle. J. Geol. Soc. Long., 1972, 128, pp.311-336
    15. Curray, J.R. and Moore, D.G., Sedimentary and tectonic process in the Bengal deep sea fan and geosyncline. In C.A. Burke and C.L. Drake (eds.), The Geology of the Continental Margins: New York, Springer-Verlag, 1974, pp. 617-628.
    16. Dezes P., Tectonic and Metamorphic Evolution of the Central Himalayan Domain in Southeast Zanskar (Kashmir, India). In: Jean Guex (eds.), Institut de Geologie et Paleontologie, Universite de Lausanne, Memoires de Geologie (Lausanne). Institut de Geologie, rubrique, No.32, 1999, pp. 32-34
    17. Dupuis C., Hebert R., Huot F. et al., Petrology and geochemistry of Tethysian Jurassic and Triassic provinces related to the Yarlung Zangbo suture zone (YZSZ), Tibet. In: 18hkt Workshop, Ascona, Switzerland, Abstract volume of the 18th Himalaya-Karakoram-Tibet conference, 2003, pp.38-39
    18. Durr S.B., Gibling M.R., Early Cretaceous volcaniclastic and quartzose sandstones from north central Nepal: composition, sedimentology and geotectonic significance. Geol. Rundsch, 1994, 83, pp.62-75
    19. Eldholm O., Thiede J., Taylor E. et al., Summary and preliminary conclusions, ODP Leg 104, Proc. Init. Repts. (Pt.A), 104, ODP, Austin, 1987, pp. 751-771
    20. Fahrig W.F., The tectonic setting of continental mafic dyke swarms: failed arm and early passive margin. Mafic Dyke Swarms, 1987. 许碧燕译,大陆镁铁质岩墙群的构造环境:天折支和早 期被动边缘。国外地质科技,1989,8:69-84
    21. Feigenson M.D., Patino L.C. and Carr M.J., Constraints on partial melting imposed by rare earth element variations in Mauna Kea basalts. Jour. Geophys. Res., 1996, 101, pp.11815-11829
    22. Floyd P.A. and Winchester J.A., Magma-type and tectonic setting discrimination using immobile elements. Earth and Planet Science Letter, 1975, 27, pp.211-218
    23. Fodor, R.V., and S.K. Vetter, Rift-zone magmatism: petrology of basaltic rocks transitional from CFB to MORB, southeastern Brazil margin, Contributions to Mineralogy and Petrology, 1984, 88, pp.307-321
    24. Fratta M, Shaw D M. Residence contamination of K, Rb, Li and Ti in diabase dike. Canadian Journal of Earth Science, 1974, 11, pp.422-429
    25. Frey, F. A., Green, D. H. & Roy, S. D., Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. Journal of Petrology, 1977, 19, pp. 463-513.
    26. Fumes H., Neumann E.R., Sundvoll B., Petrology and geochemistry of jurassic basalt dykes from vestfjella, Dronning Maud Land, Antarctica. Lithos, 1982,15, pp.295-304
    27. Gaetani M., Garzanti E., Multicyclic history of the northern India continental margin (northwestern Himalaya). In: The American Association of Petroleum Geologists Bulletin. 1991, vol.75,no.91,pp.l427-1446
    28. Gansser A., Geology of the Himalayas: Interscience Publication John Wiley and Sons. New York, 1964
    29. Garland F., Hawkesworth C.J., Mantovani M.S.M., Description and petrogensis of the Parana rhyolites, southern Brazil. Journal of Petrology, 1995, 36, pp.193-1227
    30. Garzanti E., Himalayan ironstones, "superplumes", and the breakup of Gondwana. Geology, 1993, 21,pp.105-108
    31. Garzanti E., Le Fort P., Sciunnach D., First report of Lower Permian basalts in South Tibet: tholeiitic magmatism during break-up and incipient opening of Neotethys. Journal of Asian Earth Sciences, 1999, 17, pp.533-546
    32. Garzanti E., Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. Journal of Asian Earth Sciences, 1999, vol. 17, no. 5, pp. 805-827
    33. Garzanti E., Tintori A., Permo-Carboniferous stratigraphy in SE Zanskar and NW Lahul (NW Himalaya, India). Eclogae Geologicae Helvetiae, 1990, 83, pp.143-161
    34. Garzanti E., Van Haver T., The Indus clastics: forearc basin sedimentation in the Ladakh Himalaya (India): Sedimentary Geology, 1988, vol.59, pp. 237-249
    35. Gibling M.R., Gradstein F.M., Kristiansen I.L. et al., Early Cretaceous strata of the Nepal Himalayas: conjugate margins and rift volcanism during Gondwana breakup. Journal of Geological Society, London, 1994, 151, pp.269-290
    36. Gurriet P., A thermal model for the origin of post-erosional alkalic lava, Hawaii. Earth Planet Science Letter, 1987, 82, pp. 153-158
    37. Hauri e.H., Whitehead J.A. and Hart S.R., Fluid dynamic and geochemical aspects of entrainment in mantle plumes. Jour. Geophys. Res., 1994, 99, pp.24275-24300
    38. Hebert R., Dubois-Cote V., Guilmette C. et al., Petrology and geochemistry of Yarlung Zangbo suture zone (YZSZ) ophiolites and related rocks: a geo-team progress report. In: 18hkt Workshop, Ascona, Switzerland, Abstract volume of the 18th Himalaya-Karakoram-Tibet conference, 2003, pp.59
    39. Hill R.I., Starting plumes and continental break-up. Earth Planet. Sci. Lett. 1991, 104, pp.398-416
    40. Hodges K.V., Tectonics of the Himalaya and southern Tibet from two perspectives.Geological Society of America Bulletin, 2000, vol. 112, no.3, pp:324-350
    41. Hofmann A.W. and Jochum K.P., Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project. Jour. Geophy. Res., 1996,101, pp.11831-11839
    42. Hofmann A.W., Jochum K.P., Seufert M., et al., Nb and Pb in oceanic basalts: new constrains on mantle evolution. Earth Planet Science Letters, 1986, 79, pp.33-45
    43. Holm P. E., The geochemical fingerprints of different tectonomagmatic environments using hygromagmatophile element abundances of tholeiitic basalts and basaltic andesites. Chemical Geology, 1985,51, pp.303-323.
    44. Honegger, K., Dietrich, V., Frank, W., Gansser, A., Thoni", M., Trommsdorff, V., Magmatism and metamorphism in the Ladakh Himalayas (the Indus-Tsangpo suture zone). Earth Plan. Sci. Lett., 1982, 60, pp.253-292
    45. Honegger, K., Le Fort, P., Mascle, G., and Zimmermann, J.-L., The blueschists along the Indus Suture Zone in Ladakh, NW Himalaya. Journal of Metamorphic Geology, 1989,vol.7, pp.57-72.
    46. Hopper J. R. and Buck W. R., Rift propagation through continental lithosphere, Trans. Amer. Geophys. Union, EOS, 1992, vol.73, no.14, pp.306
    47. Hsu, K. J., Pan Geitang and Sengor A.M.C. et al., Tectonic evolution of the Tibetan Plateau: A working hypothesis based on the Archipelago model of orogenesis, International Geological Review, 1995, vol.37, pp.473-508
    48. Jadoul E, Berra F. and Garzanti E., The Tethys himalayan passive margin from late Triassic to early Cretaceous (South Tibet). Journal of Asian Earth Sciences, 1998,vol.16, no.2-3, pp: 173-194
    49. Jochum K.P., Arndt N.T., Hoffman A.W., Nb-Th-Ta in komatiites and baslts: constraints on komatiite petrogensis and mantle evolution. Earth Planet Science Letter, 1991,107, pp.272-289
    50. Kamber B.S., Collerson K.D., Zr/Nb systematics of ocean island basalts reassessed — the case for binary mixing. Journal of Petrology, 2000, vol.41, no.7, pp.1007-1021
    51. Kazmin V. G., Collision and rifting in the Tethys Ocean: geodynamic implications. Tectonophysics, 1991, 196, pp.371-384,
    52. Kent R., Lithospheric uplift in eastern Gondwana: evidence for a long-lived mantle plume system? Geology, 1991, vol.19, pp.19-23
    53. Kent R.W., Storey M. and Saunders A.D., Large igneous provinces: sites of plume impact or plume incubation? Geology, 1992,20, pp.891-894
    54. Kushiro, I., Compositions of magmas formed by partial zone melting of the earth's upper mantle. Jour. Geophys. Res., 1968, 73, pp.619-634.
    55. Larson R.L., Geological consequences of superplumes. Geology, 1991, 19, pp.963-966
    56. Levi B.G., New measurements constrain models of mantle upwelling along a midocean ridge. Physics Today, 1998, vol.151, no.7, pp. 17-19
    57. Lightfoor P.C., Hawkesworth C.J., Sethna S.F., Petrogenesis of rhyolites and trachytes from the Deccan Trap: Sr, Nd and Pb isotope and trace element evidence. Contributions to Mineral Petrology, 1987, 95, pp.44-54
    58. Liu Guanghua, Permian to Eocene sediments and India passive margin evolution in the Tibetan himalayas. Tuebinger Geowissenschaft liche Arbeiten. Reihe A. Nummer 13, 1992
    59. Liu M. and Chase C.G., Evolution of Hawaiian basalts: a hot-spot melting model. Earth Planet. Sci. Lett., 1991, 104, pp.151-165
    60. Lydekker R., Notes on the geology of Kashmir, Kishtwar and Pangi: Rec., Geological Survey of India, 1878, vol. XI, no.1, pp.30-64
    61. Mahoney, J.J., Macdougall, J.D., Lugmair, G.W., and Gopalan, K., Kerguelen hot spot source for Rajmahal Traps and Ninetyeast Ridge? Nature, 1983, 303, pp.385-389.
    62. Marlina A.E., John F., Geochemical response to varying tectonic settings: Anexample from southern Sulawexi (Indonesia). Geochimica et. Cosmochimica. Acta, 1999, vol.63,no.7/8, pp.1155-1172
    63. Martin A., Menzies, The lower lithosphere as a major source for continental flood basalts: a re-appraisal. In: Storey B.C., Alabaster T., Pankhurst R.J., (eds.), Magmatism and the Causes of Continental Break-up, Geological Society Special Publication, 1992, no.68, pp.31-39
    64. Marty B., Pik R. and Gezahegn Y., Helium isotopic variations in Ethiopian plume lavas: Nature of magmatic sources and limit on lower mantle contribution. Earth Planet. Sci. Lett., 1996, 144, pp.223-237
    65. McDonough W.F., Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett., 1990, 101, pp.1-18
    66. Mckenzie D P, Bickle M J, The volume and composition of melt generated by extension of the lithospher. Journal of Petrology, 1988, 29, pp.625-679
    67. Meschede M. A method of discriminating between different type of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 1986, 56, pp.207-218.
    68. Mizusaki A.M.P., Petrini R., Bellieni G. et al., Basalt magmatism along the passive continental margin of SE Brazil (Campos basin). Contributions to Mineralogy and Petrology, 1992, 111, pp. 143-160
    69. Mohr P., Ethiopian flood basalt province. Nature, 1983, 303, pp.577-584
    70. Myers R.E. et al., Basalt geochemistry and tectonic settings: A new approach to relate tectonic and magmatic process. Lithos, 1989, 23, pp.53-62
    71. Nakazawa K., Kapoor H.M., Spilitic Pillow Lava in Panjal Trap of Kashmir, India. Memoirs of the Faculty of Science, Kyoto University, Series of Geology and Mineralogy, 1973, 39, pp.83-98
    72. Norman M D. et al., Geochemical evolution of Cenozoic Cretaceous magmatism and its relation to tectonic setting, Southwestern Idaho, USA. Earth Planet Sci. Lett., 1989,94, pp.78-86
    73. Ogg J. G., Gradstein F.M., Dumoulin J.A. et al., Sedimentary history of the Tethyan margins of Eastern Gondwana during the Mesozoic. In: Synthesis of results from scientific drilling in the Indian Ocean. Geophysical Monograph, 1992, 70, pp.203-224
    74. Papritz K., Rey R., Evidence for the occurrence of Perimian Panjal Trap basalts in the Lesser and Higher Himalayas of Western Syntaxis Area, NE Pakistan. Eclogae Geologicae Helvetiae, 1989, 82, pp.603-627
    75. Pearce, J.A, Role of the sub-continental lithosphere in magma gensis at active continental margins. In: Hawkesworth C.J. and Norry M.J. (eds.), Continental basalts and mantle xenoliths. Shiva, Nantwich,1984, pp. 230-249
    76. Pearce, J.A. and Cann, J.R., Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planetary Sci. Letters, 1973, 19, pp.290-300
    77. Pearce, J.A. and Norry, M.J., Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contr. Mineral. Pet., 1979, 69, pp.33-47
    78. Pearce, J.A., Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe R.S.(eds.), Andesits. Chichester: Wiley, 1982, pp. 525-548
    79. Pengwu Li., Rui Gao., Ye Guan., Xueliang Wang., Paleomagnetic constraint of the opening time of the Neotethys. In: 18hkt Workshop, Ascona, Switzerland, Abstract volume of the 18th Himalaya-Karakoram-Tibet conference, 2003, pp.74-75
    80. Pin C and Marini F., Early Ordovician continental breakup in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodal igneous associations of the southern Massif Central France. Lithos, 1993,29,pp. 177-196
    81. Pogue, K.R., DiPietro, J.A., Rahim, S., Hughes, S.S., Dilles, J.A., and Lawrence, R.D., Late Paleozoic rifting in northern Pakistan. Tectonics, 1992, vol. 11, pp. 871-883
    82. Rabu D., Le Metour J., Bechennec F., Beurrier M., Villey M. And Bourdillon-Jeudy de Grissac C., Sedimentary aspects of the Eo-Alpine cycle on the northeast edge of the Arabian Platfrom (Oman Mountain). In: Robertson, A.H.F., Searle M.P. and Ries A.C. (Eds.), The Geology and Tectonic of the Oman Region. Geological Society, Londom, Special Publications, 1990,49, pp.49-68
    83. Rao V.D., Basic igneous episodes in the Himalaya and their tectonic significance. In: Gupta H.K., Delany F.M.(Eds.) Zagros-HinduKush-Himalaya geodynamic evolution. Geodynamic Series, 1981,3,pp.205-214
    84. Roberts, D.G., Backman, D., Morton, A.C., Murray, J.W. & Keene, J.B.,Evolution of Volcanic Rifted Margins: Synthesis of Leg 81 Results on the west Margin of Rockall Plateau. Init. Repts. DSDP, 81: Washington (U.S. Govt. Printing Office), 1984, pp. 883-911.
    85. Robertson A.H.F. and Searle M.P., The northern Oman Tethyan continental margin: stratigraphy, structure, concepts and controversies. In: Robertson, A.H.F., Searle M.P. and Ries A.C. (Eds.) , The Geology and Tectonic of the Oman Region. Geological Society, Londom, Special Publications, 1990,49, pp.3-25
    86. Rollison H.R., Using geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientifif and Technical Limited, 1993
    87. Royden L., The Evolution of Retreating Subduction Boundaries formed during Continental Collision. Tectonics, 1993, vol. 12, pp.629-638
    88. Rudnick R. and Fountain D.M., Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys., 1995, 33, pp.267-309
    89. Ruppel., C., Extensional processes in continental lithosphere. Journal of Geophysical Research, 1995, vol.100, B12, pp. 24187-24215
    90. Sakai H., Geology of the Tansen Group of the Lesser Himalaya in Nepal: Memoir of the Faculty of Science, Kyushu University, Series D5, 1983, pp.27-74
    91. Sarti M., Gradstein F.M., Gibling M.R. et al., Eastern Tethys: evidence for Gondwana drift from ocean drilling results and Himalaya's studies. Memorie della Societa Geologica Italiana, 1991,44, pp. 107-118
    92. Saunders A.D., Storey M., Kent R.W. and Norry M.J., Consequences of plume - lithosphere interactions. In: Magmatism and the causes of continental breakup. Storey B.C., Alabaster T. and Pankhurst R.J. (eds.), Geological Society Special Publication, 1992, 68, pp.41-60
    93. Sciunnach D & Garzanti E., Detrital chromian spinels record tectono-magmatic evolution from Carboniferous rifting to Permian spreading in Neotethys (India, Nepal and Tibet). In: From rifting to drifting in present-day and fossil ocean basins (Messiga B. & Tribuzio R. Eds.), 1997, Ofioliti, v.22/1, pp.101-110, Firenze.
    94. Scotese, C. R., L. M. Gahagan, and R. L. Larson, Plate tectonic reconstructions of the Cretaceous and Cenozoic ocean basins, Tectonophysics, 1988, 155, pp.27-48
    95. Sengor A.M.C., A new model for the late Palaeozoic-Mesozoic tectonic evolution of Iran and implication for Oman. In: Robertson, A.H.F., Searle M.P. and Ries A.C. (Eds.), The Geology and Tectonic of the Oman Region. Geological Society, Londom, Special Publications, 1990, 49, pp.797-831
    96. Sengor A.M.C., Cin A., Rowley D.B. and Nie S.Y., Space time patterns of magmatism along the Tethysides: a preliminary study. Journal of Geology, 1993, 101, pp.51-84
    97. Sengor AMC and K. Burke., Relative timing of rifting and volcanism on Earth and its tectonic implications. Geophys . Res. Lett. 1978, vol.5, pp.419-421.
    98. Sengupta S.; Acharyya S.K., De Smeth J.B., Geochemical characteristics of the Abor volcanic rocks, NE Himalaya, India: nature and early Eocene magmatism. Journal of the Geological Society, 1996, vol. 153, no.5, pp.695-704
    99. Sheridan R.E., Phenomena of pulsation tectonics related to the breakup of the eastern North American continental margin. Tectonophysics, 1983, vol.94, pp. 169-185
    100. Spath A.; Le Roex A.P.; Opiyo-Akech N, Plume-Lithosphere Interaction and the Origin of Continental Rift-related Alkaline Volcanism—the Chyulu Hills Volcanic Province, Southern Kenya. Journal of Petrology, 2001, vol.42, no.4, pp.765-787
    101. Stewart k and Rogers N., Mantle plume and lithosphere contributions to basalts from southern Ethiopia. Earth Planet Science Letter, 1996, 139, pp.195-211
    102. Storey M., Alabaster T. and Pankhurst R.J. (eds.), Magmatism and the Causes of Continental Breakup. Geological Society, London, Special Publication, 1992, 68
    103. Storey M., Mahoney J., Saunders A.D. et al., Timing of hot-spot related volcanism and the breakup of Madagascar and India. Science, 1995, 267, pp.852-855
    104. Sun.S.S and McDough W.F., Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes. Saunders, A.D. (eds.), Magmatism in ocean Basins. Geological Society Publication, 1989,42, pp.313-345
    105. Sung Hyo Yun, Joon Dong Lee, Sang Won Lee, et al., Petrology of the volcanic rocks in Geoje Island, Korea. Jour. Petro. Soc. Korea, 1997, vol.6, no.1, pp.1-18
    106. Taylor S.R. and McClennan S., The Continental Crust: Composition and Evolution. Blackwell Scientific Publication, 1985,54, pp.209-230
    107. Vallier, T.L., Volcanogenic sediments and their relation to landmass volcanism and sea floor-continent movements, western India Ocean, Leg 25, in Vallier T.L., White S.M. (Eds.), Initial Reports of the Deep Sea Drilling Project, 1974, vol.25, pp.515-542
    108. Vannay J.-C. & Spring L. Geochemistry of the continental basalts within the Tethyan Himalaya of Lahul-Spiti and SE Zanskar (NW India). In: Treloar, P.J. & Searle, M.P. (eds.): Himalayan tectonics. Geological Society Special Publication (London), 1993, 74, pp.237-249.
    109. Veevers, J. J., R. C. Tewari, Permian-Carboniferous and Permian-Triassic magmatism in the rift zone bordering the Tethyan margin of southern Pangea. Geology, 1995, vol.23, no.5, pp. 467-470.
    110. Vidal P., Deniel C., Vellutini P.J. et al., Changes of mantle sources in the course of a rift evolution: the Afar case. Geophys. Res. Lett., 1991, 18, pp.1913-1916
    111. von Rad, U.J., Thurow, B.U., Haq F., et al., Triassic to Cenozoic evolution of the NW Australian continental margin and the birth of the India Ocean (preliminary results of ODP Legs 122 and 123): Geologische Rundschau, 1989, vol.78, no.3, pp.1189-1210
    112. Wakhaloo S.M., Hercynian volcanicity in Kashmir. Revue of the University of Jammu,1972, 1972, 3, pp.44-50
    113. Weaver B. L., The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth and Planetary Science Letters, 1991,104, pp.381-397
    114. White R. and Mckenzie D., Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 1989,94, pp.7685-7729
    115. White R. and Mckenzie D., Mantle plumes and flood basalts. Journal of Geophysical Research, 1995, 100, pp. 17543-17585
    116. White R.S., Magmatism during and after continental break-up. In: Storey B.C., Alabaster T., Pankhurst R.J., (eds.), Magmatism and the Causes of Continental Break-up, Geological Society Special Publication, 1992, no.68, pp.1-16
    117. Wilson M, Downes H, Tertiary-Quaternary extension-related alkali magmatism in western and central Europe. Journal of Petrology, 1991, 32, pp.811~849
    118. Wilson M. and Guiraud R., Petroleum Geology of North Africa. In: Macgregor D.D., Moody R.T.J and Clark-Lowes D.D. (Eds.), Geological Society, London, Special Publication. 1998, no. 132, pp.231-263
    119. Wilson M., Igneous Petrogenesis. London, Unwin Hyman, Boston, Sydney, Wellington, 1989
    120. Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements [J]. Chem. Geol., 1977, 20, pp.325-343.
    121. Wood D.A., Joron J.L., and Treuil M., A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet Sci. Lett., 1979, 45, pp. 326-336
    122. Wood D.A., The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth Planet. Sci. Lett., 1980, 50, pp. 11-30
    123. Wopfner H., Gondwana origin of the Baoshan and Tengchong terranes of west Yunnan. Hall R., Blundell D.,(eds.), Tectonic evolution of Southeast Asia. Geo. Soc. London, Spec. Publ., 1996, vol.106, pp.539-547
    124. Yoder, H.S., Jr., Generation of Basaltic Magma: Washington (Nat. Acad. Sci.), 1976, pp.12-43.
    125. Ziegler, P.A., Geodynamics processes governing development of rifted basins. In: Roure, F., Shein, V.S., Ellouze, N. and Skovortsov, L. (eds.), Geodynamic Evolution of Sedimentary Basins. Editions Technip, Paris, 1996, pp. 19-67
    126. Zindler A, Hart S R, Chemical geodynamic. Annu. Rev. Earth Planet Sci., 1986, 14, pp.493-571
    127.陈德潜、陈刚著,实用稀土元素地球化学。北京:科学出版社,1990
    128.邓晋福,大陆裂谷岩浆作用及深部过程。见:池际尚主编,中国东部新生代玄武岩及上地幔研究(附金伯利岩)。武汉:中国地质大学出版社,1988,pp.201-218
    129.邓晋福、赵海玲、莫宣学等著,中国大陆根-柱构造——大陆动力学的钥匙。北京:地质出版社,1996
    130.邓万明、孙宏娟,青藏北部板内火山岩的同位素地球化学与源区特征。地学前缘,1998,5(4):307-317
    131.邓万明、孙宏娟、张玉泉,囊谦盆地新生代钾质火山岩成因岩石学研究。地质科学,2001,36(3):304-318
    132.高长林、秦德余、吉让寿,扬子扳块北部古被动大陆边缘的地球化学特征。岩石矿物学杂志,1991,10(4):230~238
    133.高洪学、宋子季,藏泽当蛇绿混杂岩研究新进。中国区域地质,1995,4:316-322
    134.葛文春、林强、孙德有等,大兴安岭中生代两类流纹岩成因德地球化学研究。地球科学,2000,25(2):172-178
    135.霍尔斯H.C,Dyke swarms and continental rifting. Mafic Dyke Swarms,1987,p:483-492.陈富摘译,岩墙群和大陆裂谷作用。地质科技动态,1989,14:9-15
    136.胡修棉,藏南白垩系沉积地质与上白垩统海相红层——大洋富氧事件。成都理工大学博士学位论文,2002
    137.匡少平、张本仁,大别造山带北麓苏家河地区两种不同基性岩浆作用的识别。地球化学,2002,31(6):557-563
    138.赖绍聪、李三忠、张国伟,陕西西乡群火山—沉积岩系形成构造环境:火山岩地球化学约束。岩石学报,2003,19(1):141-152
    139.赖绍聪、张国伟,勉略结合带五里坝火山岩的地球化学研究及其构造意义。大地构造与成矿学,2002,26(1):43-50
    140.李昌年主编,火成岩微量元素岩石学。武汉:中国地质大学出版社,1991
    141.李光明、冯孝良,西藏冈底斯构造带中段多岛弧-盆系及其演化。沉积与特提斯地质,2000,20(4):38-46
    142.李曙光,蛇绿岩生成构造环境的Ba-Th-Nb-La判别图。岩石学报,1993,9(2):146-157
    143.李献华、周汉文、李正祥等,川西新元古代双峰式火山岩成因的微量元素和Sm-Nd同位素制约及其大地构造意义。地质科学,2002,37(3):264-276
    144.李祥辉、王成善、万晓樵等,藏南江孜县床得剖面侏罗-白垩纪地层层序及地层划分。地层学杂志,1999,23(4):303-309
    145.梁定益、聂泽同、董文彤等,藏南聂拉木地区上三叠统与侏罗系中伸展不整合以及各组地层的厘定。现代地质,2000,14(3):333-341
    146.林强、元钟宽,大兴安岭中生代两类流纹岩与玄武岩的成因联系。长春科技大学学报,2000,30(4):322-328
    147.刘和甫,沉积盆地地球动力学分类及构造样式分析。地球科学——中国地质大学学报,1993,18(6):699-724
    148.刘增乾、徐宪、潘桂棠等,青藏高原大地构造与形成演化。北京:地质出版社,1990
    149.罗建宁、王小龙、李永铁等,青藏特提斯沉积地质演化。沉积与特提斯地质,2002,22(1):7-15
    150.马冠卿,西藏区域地质基本特征。中国区域地质,1998,17(1),16-24
    151.马文璞,被动大陆边缘地质。中国区域地质,1986,3:239~248
    152.莫宣学,邓晋福,张双全,岩浆深部“探针”与地球动力学研究—以我国中、新代岩浆作用为例,见:现今地球动力学问题讨论会论文集。北京:地震出版社,1994,161-168
    153.莫宣学,中国东部新生代玄武岩岩浆的起源。见:池际尚主编,中国东部新生代玄武岩及上地幔研究(附金伯利岩)。武汉:中国地质大学出版社,1988,108-127
    154.潘桂棠,初论班公湖-怒江结合带。青藏高原地质文集(12)。北京:地质出版社,1983
    155.潘桂棠,全球洋.陆转换中的特提斯演化。见:特提斯地质。北京,地质出版社,1994,第18号,23-38
    156.潘桂棠、陈智梁、李兴振等,东特提斯多弧-盆系统演化模式。岩相古地理,1996,16(2):52-65
    157.潘桂棠、陈智梁、李兴振著,东特提斯构造形成与演化。北京:地质出版社,1997
    158.潘桂棠、李兴振、王立全等,青藏高原及邻区大地构造单元初步划分。地质通报,2002,21(11):701-707
    159.潘桂棠、王立全、李兴振等,青藏高原区域构造格局及其多岛弧盆系的空间配置。沉积与特提斯地质,2001,21(3):1-26
    160.邱家骧主编,应用岩浆岩岩石学。武汉:中国地质大学出版社,1991
    161.陕西省地矿局区调队,中华人民共和国区域地质调查报告1:20万浪卡子县幅、泽当幅,1994
    162.宋谢炎,侯增谦,曹志敏等,峨眉大火成岩省的岩石地球化学特征及时限。地质学报,2001,75(4):498-506。
    163.孙书勤、汪云亮、张成江,玄武岩类岩石大地构造环境的Th、Nb、Zr判别。地质论评,2003,9(1):40-47
    164.汪云亮、李巨初、周蓉生等,岩浆岩微量元素地球化学原理及其应用——兼论峨眉山玄武岩的成因。成都: 成都科技大学出版社,1993,114-119
    165.汪云亮、张成江、修淑芝,玄武岩形成的大地构造环境的Th/Hf-Ta/Hf图解判别。岩石学报,2001,17(3):413-421.
    166.王成善、李祥辉、万晓樵等,西藏南部江孜地区白垩系的厘定。地质学报,2000,74(2):97-107
    167.王根厚、梁定益、刘文灿等,藏南海西期以来伸展运动及伸展作用。现代地质,2000,14(2):133-139
    168.王鸿祯、史晓颖、王训练等著,中国层序地层研究。广州:广东科技出版社,2000,285-294
    169.王乃文,中国侏罗纪特提斯地层学问题。见:青藏高原地质文集编委会,青藏高原地质文集。北京:地质出版社,1983,62-66
    170.王焰、钱青、刘良等,不同构造环境中双峰式火山岩的主要特征。岩石学报,2000,16(2):169-173
    171.王义刚、孙东立、何国雄,特提斯喜马拉雅南部分区。见:中国科学院青藏高原综合考察队编,西藏地层。北京:科学出版社,1984,14-100
    172.王玉净、杨群、松冈笃等,藏南泽当雅鲁藏布缝合带中的三叠纪放射虫。微体古生物学报,2002,19(3):215-227
    173.王中刚、于学元、赵振华等著,稀土元素地球化学。北京:科学出版社,1989,175-178.
    174.西藏地质矿产局,西藏自治区地质志。北京:地质出版社,1993,449-450
    175.西藏地质矿产局,中华人民共和国区域地质调查报告1:5万然巴等4幅,1998
    176.夏斌、郑榕、洪裕荣等,西藏达机翁蛇绿岩的地球化学特征及其构造环境。地质地球化学,1997,1:46-52
    177.肖序常、高延林、李光岑,雅鲁藏布江缝合带及其邻区地质构造和动力学特征。见:中国地质科学院,喜马拉雅岩石圈构造演化总论,北京:地质出版社,1988,106-120
    178.邢光福,南太平洋社会群岛塔希提岛(Tahiti)火山岩——一种典型的大洋岛屿玄武岩。火山地质与矿产,1993,14(4):27-36
    179.徐义刚,拉张环境中的大陆玄武岩浆作用:性质及动力学过程。见:郑永飞主编,化学地球动力学。北京:科学出版社,1999:119-167
    180.许靖华、崔可锐,一种新型的大地构造相模式和弧后碰撞造山。南京大学学报:自然科学版,1994,30(3):381-389
    181.许靖华、孙枢等,中国大地构造相图。北京:科学出版社,1998
    182.杨群、松冈笃、王玉净,西藏南部放射虫微体古生物研究进展。微体古生物学报,2002,19(2):105-111
    183.杨晓松,利用原生岩浆定量反演原岩微量元素丰度的方法。岩石矿物学杂志,1994,13(1):33-41
    184.阴家润、万晓樵,侏罗纪菊石形态——特提斯喜马拉雅海的深度标志。古生物学报,1996,36(6):734-751
    185.于津生著,中国同位素地球化学研究。北京:科学出版社,1997,202-21l
    186.余光明、王成善著,西藏特提斯沉积地质。北京:地质出版社,1990,10-49
    187.喻学惠等,甘肃西秦岭新生代碱性火山岩的Sr、Nd同位素及微量元素地球化学特征。地学前缘,1998,5(4):319-328
    188.赵振华著,微量元素地球化学原理。北京:科学出版社,1997,57-60.
    189.赵政璋、李永铁、叶和飞等著,青藏高原地层。北京:科学出版社,2001,pp:58,143-176
    190.朱弟成、潘桂棠、莫宣学等,特提斯喜马拉雅二叠纪-白垩纪中基性火山岩研究进展。地质科技情报,2003,22(2)
    191.朱同兴、潘桂棠、冯心涛等,藏南喜马拉雅北坡色龙地区二叠系基性火山岩的发现及其构造意义。地质通报,2002,21(11):717-722

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700