用户名: 密码: 验证码:
基于GGE模型的棉花品种生态区划分与试验环境评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花的生长发育受到生态环境变化的影响,存在着显著的基因型与环境交互作用,只有充分研究和应用棉花基因型与环境的互作效应,恰当地进行品种生态区划分,并选择目标种植区域内有代表性的试验环境作为育种环境,才能大幅度提高棉花遗传改良效果,并利用品种对环境的特殊适应性,充分发挥植棉区域生态环境的资源优势和品种的生产潜力。本研究利用HA-GGE双标图分析了2000~2010年27组长江流域棉花品种多环境试验中的基因型与环境互作模式,对基于皮棉产量、纤维长度、纤维比强度、马克隆值的单性选择和基于纤维品质选择指数(FSI)以及皮棉产量与纤维品质联合选择指数(ISI)的多目标性状选择条件下长江流域棉区可能存在的品种生态区进行了探索与划分,对试验环境的鉴别力、代表性和理想度进行了综合评价,同时构建了IR-GGE模型和基于GGE主成分得分的理想距离计算公式,以提高品种生态区划分和试验环境评价的准确性、可靠性与高效性。研究提出了长江流域棉区基于产量与纤维品质单性状或多目标性状联合选择的品种生态区划分方案和理想试验环境筛选结论,为以长江流域棉区和品种生态区为目标环境的广泛适应性和特殊适应性品种选择和应用提供科学依据和决策支持。
     主要研究结果如下:
     1.遗传力校正GGE模型的再校正与应用效果
     依据主成分分析的信息比(IR)有效性准则,即选取IR≥1的试验环境主成分参与GGE模型的拟合,并据此构建了IR-GGE模型对HA-GGE双标图拟合效果进行校正,以提高品种生态区划分和品种评价的准确性。基于IR-GGE模型对皮棉产量、纤维长度、纤维比强度、马克隆值、纤维品质选择指数、产量和品质联合选择指数的拟合度分别提高了8.2%、3.1%、6%、6.7%、5.4%和5.4%。
     2.基于GGE模型的棉花品种生态区鉴别与划分
     基于皮棉产量、纤维长度、纤维比强度、马克隆值、纤维品质选择指数(FSI)以及皮棉产量与纤维品质联合选择指数(ISI)选择应用GGE双标图及其校正版本对长江流域棉区可能存在的品种生态区进行了探索与划分,并用IR-GGE模型进行校正:
     (1)基于纤维品质综合选择指数(FSI)可以将目标区域划分为整个长江流域棉区划分为1个主品种生态区包括安庆、武汉、襄阳、岳阳、九江、南阳、黄冈、常德、荆州和南京等10个试验环境,2个小品种生态区包括慈溪、射洪、简阳、南通和盐城。
     (2)基于皮棉产量和纤维品质综合选择指数(ISI)可以将目标区域划分为一个综合的主品种生态区和两个小范围的特殊品种生态区。主品种生态区涵盖了长江流域棉花区试的11个试验环境所代表的大部分目标区域,具有西太平洋温带季风气候区的典型气候型和土壤类型,而两个小规模品种生态区是分别位于长江流域棉区最北边霜期较早且晚秋降温快的南襄盆地品种生态区和长江流域棉区最西边的品种熟期较早且种植密度较高的四川盆地品种生态区。
     3.基于GGE双标图的试验环境综合评价
     本研究分别基于皮棉产量、纤维长度、纤维比强度、马克隆值、纤维品质选择指数、产量与品质联合选择指数等单性状选择或多目标性状同步选择条件下对试验环境的鉴别力、代表性、理想指数、理想距离等指标进行了综合评价:
     (1)黄冈、荆州、南京和常德试验环境总体而言是长江流域棉花区域试验的理想试验环境,也是针对全流域广适性品种选择最有效的育种环境,而南襄盆地的襄阳和南阳试验环境对产量选择和产量与品质综合选择不理想、江浙沿海棉区的南通、盐城和慈溪试验环境对纤维品质选择不理想、四川盆地棉区的射洪和简阳试验环境对产量和纤维品质的单性状或多目标性状选择均不理想。
     (2)基于产量和品质综合选择指数排名较差的试验环境对产量和纤维品质的综合选择效果效率最低,这可能同样与试验环境所处的地理位置及特殊的气候特征有关。除了与基于纤维品质综合选择指数分析的结果同样的四川盆地棉区“射洪和简阳”外,位于长江流域棉区北缘的“南襄盆地”棉区的南阳和襄阳试验环境也是较差的试验环境,其原因可能与该区域霜期早和晚秋降温快有关。
The formation and development of cotton lint yield and fiber quality traits is strongly affected by multiple ecological environment factors, thus leading to the universal existence of significant genotype by environment interaction. Insight exploration to genotype by environment interaction effect is the basis of megaenvironment investigation and sufficient test environment evaluation and selection for representative test environment as a breeding environment within the target planting region, and thus to greatly improve the cotton genetic improvement and new cultivar selection efficiency. To select and recommend particular varieties to its special adaptive subregions will give rise to full play of the positive interactive effects of ecological resources and varieties'production potential. In this study, the heritability adjusted GGE biplot was adopted to intensively explore the genotype by environment interaction patterns in the datasets of27independent cotton multi-environment cultivar trials in the Yangtze River Valley during2000-2010. The possible existence of megaenvironment in the Yangtze River Valley was investigated based on the selection for single breeding traits (lint yield, fiber length, fiber strength, micronaire), and for multi-traits simultaneous selection index of the fiber quality selection index (FSI) and lint yield plus fiber quality integrated selection index (ISI). In the same time the desirability of test environments was comprehensively evaluated in terms of the discriminating ability, representativeness of the target region and also the desirability index for ideal test environment selection and recommendation. On the basis of the construction of information ratio adjusted GGE model and the responding goodness-of-fit test method, and the establishment of the mathematical formula for ideal distance calculation based on GGE principal component scores, the goodness of fit of GGE model was tested and the test environment evaluation result was revised, and hence after the desirability index was adjusted with the Euclidean distance to the ideal environment to enhance the accuracy, reliability and efficiency of the megaenvironment investigation and test environment evaluation. The conclusion of the ideal test environment selection and megaenvironment investigation scheme in the Yangtze River Valley was proposed out based on single trait or multiple yield and fiber quality trait integrated selection index, in order to provide the theoretical implications and decision-making support for broad adaptive and specific adaptive cultivar selection and application targeting at the whole cotton planting region in the Yangtze River Valley and the megaenvironment within the region as well. The main findings were listed as follows.
     1. The readjustment and application effect of the HA-GGE model
     In accordance with the effective information ratio judgment criteria of principal component analysis, the principal component scores with IR≥1were entered the GGE model simulation procedure, and thus revised the GGE model simulation goodness of fit. Based on the selection of cotton lint yield, fiber length, fiber strength, micronaire, fiber combined selection index, lint yield plus fiber quality integrated selection index, the goodness of fit of IR-GGE model was improved8.2%,3.1%,6%,6.7%,5.4%and5.4%respectively, in this way the megaenvironment investigation and text environment evaluation efficiency were effectively enhanced.
     2. Cotton megaenvironment identification and investigation based on HA-GGE model
     Based on GGE model and its information ratio revised version, the possible existence of megaenvironments in the Yangtze River Valley was intensively investigated for the selection of cotton lint yield, fiber length, fiber strength, micronaire, fiber combined selection index(FSI) and lint yield plus fiber quality integrated selection index(ISI).
     (1) Based on the fiber quality combined selection, the cotton planting region in the Yangtze River Valley as target region were divided into three distinct megaenvironments: A major complex megaenvironment covering the majority test environments including Anqing, Wuhan, Xiangfan, Yueyang, Jiujiang, Nanyang, Huanggang, Changde, Jinzhou and Nanjing, and two minority megaenvironments covering the test environment Shehong, Yancheng, Nantong Cixi and Jianyang representing for the cotton planting region in Sichuan basin and the coastal region in Jiangsu and Zhejiang province.
     (2) Based on the cotton lint yield and fiber quality integrated selection index, the whole cotton growing region in the Yangtze River Valley were divided into two minor megaenvironments, one is located at the inland Nan-Xiang basin bordering with the Yellow River Valley in the north including two locations, the other is at the mountainous basin in west area including two locations too, and a major complex megaenvironment covering the majority eleven locations in the target region, where are of the most traditional climatotype and agrotype around the western Pacific temperate monsoon climate regions.
     3. Test environment comprehensive evaluation based on GGE model
     Based on GGE biplot and the selection of cotton lint yield, fiber length, fiber strength, micronaire, fiber combined selection index(FSI) and lint yield plus fiber quality integrated selection index(ISI), the test environment was elaborately evaluated as far as its discriminating ability, representativeness, desirability index and the distance to the ideal environment were concerned.
     (1) Globally speaking, Huanggang, Jingzhou, Nanjing and Changde were ideal test environments and the most effective breeding environments for cultivar selection targeting at the whole cotton planting region in the Yangtze River Valley, while Xiangfan and Nanyang in Nan-Xiang basin were ineffective test environment in terms of cotton lint yield and lint yield plus fiber quality integrated selection, Nantong, Yancheng and Cixi in Jiangsu and Zhejiang provincial coastal cotton region were less effective for fiber quality selection, Shehong and Jiangyan in Sichuan basin were poor test environments for cotton cultivar selection in neither of lint yield nor fiber quality traits.
     (2) Based on the selection of yield plus fiber quality integrated selection index (ISI), the ranking by desirability index of the test environments was relevant to the cultivar comprehensive selection efficiency implementing in the locations, which might be linked to the special geographical position and the climate characteristics. Shehong and Jianyang were located at the mountainous basin in the west area which might implicated its lower efficiency in cultivar selection, while Nanyang and Xiangfan test environment representing for the Nan-Xiang basin region were located in the northern border of the Yangtze River Valley, where frost descents earlier and temperature declines fast in the later autumn might be the reason explaining its poor representativeness to the whole region and less efficiency of cotton lint yield selection.
引文
[1]Romagosa I, Fox R N. Genotype x environment interaction and adaptation, In:Hayward, M.D., Bosemark, N.O. and Romagosa, I. (eds) Plant Breeding:Principles and ProspectsfM]. London:Chapman&Hall,1993,373-390.
    [2]Cooper M, Woodruff D R, Eisemann R L, et al. A selection strategy to accommodate genotype-by-environment interaction for grain yield of wheat:managed-environments for selection among genotypes[J]. Theoretical and Applied Genetics.1995,90(3):492-502.
    [3]Abay F, Bjornstad A. Specific adaptation of barley varieties in different locations in Ethiopia[J]. Euphytica.2009,167:181-195.
    [4]Abou-Fi-Fittouh H A, Rawlings J O, Miller P A. Classification of environments to control genotype by environment interactions with an application to cotton[J]. Crop Science.1969,9: 135-140.
    [5]Allard R W, Bradshaw A D. Implications of genotype-environmental interactions in applied plant breeding[J]. Crop Science.1964,4:503-508.
    [6]Annicchiarico P. Genotype by environment interaction:challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Paper 174[C]. Rome: Food and Agriculture Organization of the United Nations,2002.
    [7]As M J, Mestre P, Garc J E, et al. Genotype x environment interaction in QTL analysis of an intervarietal almond cross by means of genetic markers[J]. Theoretical and Applied Genetics.1994, 89(2):358-364.
    [8]Atlin G N, Mcrae K B, Lu X. Genotype x region interaction for two-row barley yield in CanadafJ]. Crop Science.2000,40(1):1-6.
    [9]Baker R J. Analysis of genotype-environmental interactions in crops. ISI Atlas of Science: Animal and Plant Science[J]. ISI Atlas of Science:Animal and Plant Science.1988,1(1):1-4.
    [10]Basford K E, Cooper M. Genotype x environment interactions and some considerations of their implications for wheat breeding in Australia [J]. Australia Journal of Agriculture Research.1998, 49:153-174.
    [11]Berger J D, Ali M, Basu P S, et al. Genotype by environment studies demonstrate the critical role of phenology in adaptation of chickpea (cicer arietinum 1.) to high and low yielding environments of India[J]. Field crops research.2006,98(2-3):230-244.
    [12]Berger J D, Robertson L D, Cocks P S. Genotype x environment interaction for yield and other plant attributes among undomesticated Mediterranean[J]. Euphytica.2002,126:421-435.
    [13]Botwright Acuna T L, Lafitte H R, Wade L J. Genotype x environment interactions for grain yield of upland rice backcross lines in diverse hydrological environments[J]. Field Crops Research. 2008(108):117-125.
    [14]Brancourt-Hulmel M, Lecomte C. Effect of environmental variates on genotype x environment interaction of winter wheat:a comparison of additive factorial regression to ammi[J]. Crop science. 2003,43(2):608-617.
    [15]Cameron N D. Methodologies for estimation of genotype with environment interaction[J]. Livestock production science.1993,35(3-4):237-249.
    [16]Campbell B T, Jones M A. Assessment of genotype× environment interactions for yield and fiber quality in cotton performance trials[J]. Euphytica.2005,144:69-78.
    [17]Cooper M, Delacy I H, Eisemann R L. Recent advances in the study of genotype x environment interactions and their application to plant breeding. In:hnrie, B.C. and Hacker, J.B. (eds) focused plant improvement:towards responsible and sustainable agriculture, proceedings tenth Australian plant breeding conference[C]. Canberra, Australia:Organizing Committee, Australian Convention and Travel Service,1993.
    [18]Cooper M, Woodruff D R, Phillips I G, et al. Genotype-by-management interactions for grain yield and grain protein concentration of wheat[J]. Field crops research.2001,69(1):47-67.
    [19]Cornelius P L, Crossa J, Seyedsadr M. statistical tests and estimators for multiplicative models for genotype-by-environment interaction[M]. Genotype-by-environment interaction, Kang M S, Gauch H G, Bca Raton,FL.:CRC Press,1996.
    [20]Crossa J, Vargas M, Van E F, et al. Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables[J]. Euphytica.1999,99(3): 611-625.
    [21]Crossa J, Burgueno J, Cornelius P L, et al. Modeling genotype x environment interaction using additive genetic covariances of relatives for predicting breeding values of wheat genotypes[J]. Crop Science.2006,46(4):1722-1733.
    [22]De La Vega A J, Chapman S C. Genotype by environment interaction and indirect selection for yield in sunflower ⅱ. Three-mode principal component analysis of oil and biomass yield across environments in Argentina[J]. Field crops research.2001,72:39-50.
    [23]De La Vega A J, Chapman S C, Hall A J. Genotype by environment interaction and indirect selection for yield in sunflower Ⅰ.Two-mode pattern analysis of oil and biomass yield across environments in Argentina[J]. Field crops research.2001,72:17-38.
    [24]Delacy I H. Cluster analysis for the interpretation of genotype by environment interaction. In:Byth, D.E. and Mungomery, VE. (eds) Interpretation of Plant Response and Adaptation to Agricultural Environments[M]. Brisbane:Queensland Branch, Australian Institute of Agricultural Science,1981, 277-292.
    [25]Delacy I H, Cooper M. Pattern analysis for the analysis of regional variety trials. In:Kong, M.S.(ed.) Genotype-by-Environment Interaction and Plant Breeding[M]. Baton Rouge, Louisiana: Louisiana State University,1990,301-334.
    [26]Yates F, Cochran W G. The analysis of groups of experiments[J]. Journal of Agricultural Science. 1938,28:556-580.
    [27]Crossa J, Fox P N, Pfeiffer W H, et al. AMMI adjustment for statistical analysis of an international wheat yield trial[J]. Theoretical and Applied Genetics.1991,81:27-31.
    [28]Gauch H G. Statistical analysis of regional yield trials:AMMI analysis of factorial designsfM]. Amsterdam, The Netherlands:Elsevier,1992.
    [29]Annicchiarico P. Additive main effects and multiplicative interaction (AMMI) analysis of genotype-location interaction in variety trials repeated over years[J]. Theoretical and Applied Genetics.1997,94:1072-1077.
    [30]Ebdon J S, Gauch H G. Additive main effect and multiplicative interaction analysis of national turfgrass performance trials:I. Interpretation of genotypexenvironment interaction[J]. Crop science. 2002,42(2):489-496.
    [31]Nurminiemi M, Madsen S, Rognli O A, et al. Analysis of the genotype-by-environment interaction of spring barley tested in the nordic region of Europe:Relationships among stability statistics for grain yield[J]. Euphytica.2002,127:123-132.
    [32]Moreno-Gonzalez J, Crossa J, Cornelius P L. Additive main effects and multiplicative interaction model. I. Theory on variance components for predicting cell means[J]. Crop science.2003,43(6): 1967-1975.
    [33]Fisher R A. The arrangement of field experiments[J]. Journal of Ministry of Agriculture.1926,33: 503-513.
    [34]Shorter R. Linear regression analyses of genotype x environment interactions. In:Byth, D.E. and Mungomery, V.E. (eds) Interpretation of Plant Response and Adaptation to Agricultural Environments[M]. Brisbane:Queensland Branch, Australian Institute of Agricultural Science,1981, 266-276.
    [35]Delacy I H, Cooper M, Basford K E. Relationships among analytical methods used to study genotype-by-environment interactions and evaluation of their impact on response to selection. In: Kang, M.S. and Gauch, H.G. (eds) Genotype-by-Environment Interaction:New Perspectives[M]. Boca Raton, Florida:CRC Press,1996,51-84.
    [36]Finlay K W, Wilkinson G N. The analysis of adaptation in a plant-breeding programme[J]. Australian Journal of Agricultural Research.1963,14:742-754.
    [37]Eberhart S A, Russell W A. Stability parameters for comparing varieties[J]. Crop Science.1966,6: 36-40.
    [38]Shukla G K. some statistical aspects of partitioning genotype-environmental components of variability[J] Heredity.1972,29:237-245.
    [39]Lin C S. Grouping genotypes by a cluster method directly related to genotype-environment interaction mean square[J]. Theoretical and Applied Genetics.1982,62(3):277-280.
    [40]Tai G C C. Genotypic stability analysis and its application to potato regional trials[J]. Crop Science.1971,11(2):184-190.
    [41]Malla S, Ibrahim A M H, Little R, et al. Comparison of shifted multiplicative model, rank correlation, and biplot analysis for clustering winter wheat production environments[J]. Euphytica. 2010,174:357-370.
    [42]Annicchiarico P. Joint regression vs. AMMI analysis of genotype-environment interactions for cereals in Italy[J]. Euphytica.1997,94.
    [43]Nachit M M, Nachit G, Ketata H, et al. Use of AMMI and linear regression models to analyze genotype-environment interaction in durum wheat[J]. Theoretical and Applied Genetics.1992, 83(5):597-601.
    [44]Samonte S O P , Wilson L T, Mcclung A M, et al. Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analyses[J]. Crop Science.2005,45(6): 2414-2424.
    [45]Mungomery V E, Shorter R, Byth D E. Genotype × environment interactions and environmental adaptation.1. Pattern analysis-application to Soya bean populations[J]. Australian Journal of Agricultural Research.1974,25:59-72.
    [46]Gauch H G. Model selection and validation for yield trials with interaction[J]. Biometrics.1988, 44:705-715.
    [47]Gauch H G, Zobei R W. Predictive and postdictive success of statistical analyses of yield trials[J]. Theoretical and Applied Genetics.1988,76:1-10.
    [48]Kempton R A. The use of bi-plots in interpreting variety by environment interactions[J]. Journal of Agricultural Science.1984,103:123-131.
    [49]俞世蓉.作物品种适应性和产量稳定性问题探讨[J].南京农业大学学报.1989,12(3):17-23.
    [50]Westcott B. Some methods of analyzing genotype-environment interaction[J]. Heredity.1986,56: 243-253.
    [51]Fisher R A, Mackenzie W A. Studies in crop variation.H. the manurial response of different potato varieties[J]. Journal of Agriculture Science(Cambridge).1923,23:311-320.
    [52]Delacy I H, Eisemann R L, Cooper M. The importance of genotype by environment interaction in regional variety trials. In:Kang, M.S. (eds.) Genotype-by-Environment Interaction and Plant Breeding[M]. Baton Rouge, Louisiana:Louisiana State University,1990,287-300.
    [53]Muir W, Nyquist W E, Xu S. Alternative partitioning of the genotype-by-environment interaction[J]. Theoretical and Applied Genetics.1992,84(1):193-200.
    [54]Ayers M R, Thomas D L. Alternative formulations of the mixed-model ANOVA applied to quantitative genetics[J]. Evolution.1990,44:221-226.
    [55]Shorter R, Delacy I H, Eisemann R L. Contribution of environments to differentive genotype response. In:Byth, D.E. and Mungomery, V. E. (eds) Interpretation of Plant Response and Adaptation to Agricultural Environments[C]. Brisbane:Queensland Branch, Australian Institute of Agricultural Science,1981.
    [56]Gauch H G. Multivariate analysis in community ecology[M]. Cambridge:Cambridge University Press,1982.
    [57]Perkins J M, Jinks J L. Environmental and genotype-environmental components of variability. Ⅲ Multiple lines and crosses[J]. Heredity.1968,23:339-356.
    [58]Crossa J. Statistical analyses of multilocation trials[J]. Advances in Agronomy.1991,44:55-85.
    [59]Freeman G H. Statistical methods for the analysis of genotype environment interactions[J]. Heredity.1973,31:339-354.
    [60]Gauch H G. Full and reduced models for yield trials[J]. Euphytica.1990,80(2):153-160.
    [61]许乃银,陈旭升,郭志刚,等.AMMI模型在棉花区试数据分析中的应用[J].江苏农业学报.2001,17(4):205-210.
    [62]王磊,曾列先.利用加性主效应和乘积交互作用模型对国际杂交水稻圃数据的分析[J].中国水稻科学.1997,11(4):198-204.
    [63]王磊,杨仕华,谢芙贤,等AMMI模型及其在作物区试数据分析中的应用[J].应用基础与二[程科学学报.1997,5(1):39-46.
    [64]王磊,杨仕华.作物品种区试数据分析的主效可加互作可乘模型(AMMI)图形[J].南京农业大学学报.1998,21(2):18-23.
    [65]Yau S K. Regression and AMMI analysis of genotype by environment interactions:an empirical comparison[J]. Agronomy Journal.1995,87:121-126.
    [66]Vargas M, Crossa J, van Eeuwijk F A, et al. Using partial least squares, factorial regression, and AMMI models for interpreting genotype x environment interaction[J]. Crop Science.1999,39: 955-967.
    [67]Pacheco R M, Duarte J B, Vencovsky R, et al. Use of supplementary genotypes in AMMI analysis[J]. Theoretical and Applied Genetics.2005,110(5):812-818.
    [68]Gauch H G. Statistical analysis of regional yield trials:AMMI Analysis of Factorial Designs[M]. Amsterdam, the Netherlands:Elsevier,1992.
    [69]Fu L, Xue Q. Detection and analysis of high temperature sensitivity of tgms lines in rice using AMMI model[J]. Agricultural Sciences in China.2004,3(9):671-677.
    [70]Flores F, Moreno M T, Martinez A, et al. Genotype-environment interaction in faba bean: comparison of AMMI and principal coordinate models[J]. Field crops research.1996,47(2-3): 117-127.
    [71]Kang M S. Simultaneous selection for yield and stability in crop performance trials:Consequences for growers[J]. Agronomy Journal.1993,85:754-757.
    [72]Baker R J. Tests for crossover genotype-environmental interactions^]. Canadian Journal of Plant Science.1988,68:405-410.
    [73]Lin C S, Binns M R. A superiority measure of cultivar performance for cultivarxlocation data[J]. Can J Plant Sci.1988,68:193-198.
    [74]Yan W. GGEbiplot--A windows application for graphical analysis of multienvironment trial data and other types of two-way data[J]. Agronomy Journal.2001,93:1111-1118.
    [75]Cooper M, Stucker R E, Delacy I H, et al. Wheat Breeding Nurseries, Target Environments, and Indirect Selection for Grain Yield[J]. Crop Science.1997,37:1168-1176.
    [76]Yan W, Kang M S, Ma B, et al. GGE Biplot vs. AMMI analysis of genotype-by-environment data [J]. Crop Science.2007,47(2):643-653.
    [77]Gabriel K R. The biplot graphic display of matrices with application to principal component analysis[J]. Biometrika.1971,58(3):453-467.
    [78]Yan W, Tinker N A. Biplot analysis of multi-environment trial data:principles and applications[J]. Canadian Journal of Plant Science.2006,86:623-645.
    [79]Rubio J, Flores F, Moreno M T, et al. Effects of the erect-bushy habit, single-double pod and late-early flowering genes on yield and seed size and their stability in chickpea[J]. Field Crops Research.2004(90):255-262
    [80]Dehghani H, Ebadi A, Yousefi A. Biplot analysis of genotype by environment interaction for barley yield in Iran[J]. Agronomy Journal.2006,98:388-393.
    [81]Crossa J, Cornelius P L, Yan W. Biplots of linear-bilinear models for studying crossover genotype x environment interaction[J]. Crop Science.2002,42(2):619-633.
    [82]Bhan M K, Pal S, Rao B L, et al. GGE biplot analysis of oil yield in lemongrass[J]. Journal of New Seeds.2005,7:127-139.
    [83]Bertoia L, Lopez C, Burak R. Biplot analysis of forage combining ability in maize landraces[J]. Crop Science.2006,46(3):1346-1353.
    [84]Adalid A M, Rosell S, Nuez F. Evaluation and selection of tomato accessions (Solanum section Lycopersicon) for content of lycopene,β-carotene and ascorbic acid[J]. Journal of Food Composition and Analysis.2010,23(6):613-618.
    [85]Bradu D, Gabriel K R. The biplot as a diagnostic tool for models of two-way tables[J]. Technometrics.1978,20:47-68.
    [86]Zobel R W, Wright M J, Gauch H G. Statistical analysis of a yield trial[J]. Agronomy Journal. 1988,80:388-393.
    [87]严威凯.双标图分析在农作物品种多点试验中的应用[J].作物学报.2010,36(11):1805-1819.
    [88]王磊,Mcla C. G.利用双标图分析基因型和环境交互作用[J].科技通报.1997,13(5):281-286.
    [89]Yan W, Rajcan I. Biplot analysis of test sites and trait relations of soybean in Ontario[J]. Crop Science.2002,42(1):11-20.
    [90]Gauch H G. Statistical analysis of yield trials by AMMI and GGE [J]. Crop science.2006,46(4): 1488.
    [91]Gauch H G, Zobel R W. Identifying mega-environments and targeting genotypes [J]. Crop Science. 1997,37:311-326.
    [92]Giauffret C, Lothrop J, Dorvillez D, et al. Genotype x environment interactions in maize from temperate or highland tropical origin[J]. Crop Science.2000,40:1004-1012.
    [93]Glaz B, Kang M S. Location contributions determined via GGE biplot analysis of multienvironment sugarcane genotype-performance trials[J]. Crop Science.2008,48(3):941-950.
    [94]Yan W. GGE Biplot vs. AMMI graphs for genotype-by-environment data analysis[J]. Journal of the Indian Society of Agricultural Statistics.2011,65(2):1-10.
    [95]Yan W, Kang M S. GGE biplot analysis:A graphical tool for breeders, geneticists, and agronomists[M]. Boca Raton, FL.:CRC Press,2003.
    [96]许乃银,陈旭升,狄佳春,等.长江流域棉花纤维品质的区域特征研究[J].棉花学报.2003,15(4):221-226.
    [97]中华人民共和国农业部.农作物品种审定规范 棉花[S].北京,国家农作物品种审定委员会棉花专业委员会,2007.
    [98]Blanche S B, Myers G O. Identifying discriminating locations for cultivar selection in Louisiana[J]. Crop Science.2006,46(2):946-949.
    [99]Williams E J. The interpretation of interactions in factorial experiments[J]. Biometrika.1952, 39(1-2):65-81.
    [100]Pike E W, Silverberg T R. Designing mechanical computers[J]. Machine Design.1952,24: 131-137,159-163.
    [101]Yan W, Hunt L A, Sheng Q, et al. Cultivar evaluation and mega-environment investigation based on the GGE Biplot[J]. Crop Science.2000,40(3):597-605.
    [102]Delacy I H, Cooper M, Lawrence P K. Regional variety trials:relationship among sites. In: Kang,M.S. (eds.) Genotype-by-Environment Interaction and Plant BreedingfM]. Baton Rouge, Louisiana:Louisiana State University Agricultural Center,1990,189-213.
    [103]Zhang Q Y, Kong F L. Comparison of statistical models for regional crop trial analysis[J]. Agricultural Sciences in China 2002,1(6):605-611.
    [104]Yan W, Cornelius P L, Crossa J, et al. Two types of GGE biplots for analyzing multi-environment trial data [J]. Crop Science.2001,41(3):656-663.
    [105]Yan W, Pageau D, Fregeau-Reid J, et al. Oat mega-environments and test-locations in Quebec[J]. Canadian Journal of plant science.2011(91):1-7.
    [106]Baxevanos D, Goulas C, Rossi J, et al. Separation of cotton cultivar testing sites based on representativeness and discriminating ability using GGE biplots[J]. Agronomy Journal.2008, 100(5):1230-1236.
    [107]Yan W, Holland J B. A heritability-adjusted GGE biplot for test environment evaluation[J]. Euphytica.2010,171:355-369.
    [108]Cravero V, Esposito M A, Anido F L, et al. Identification of an ideal test environment for asparagus evaluation by GGE-biplot analysis[J]. Australian Journal of Crop Science.2010,4(4): 273.
    [109]常磊,柴守玺.GGE双标图在我国旱地春小麦稳产性分析中的应用[J].中国生态农业学报.2010,18(5):988-994.
    [110]严威凯,盛庆来,胡跃高,等.GGE叠图法—分析品种×环境互作模式的理想方法[J].作物学报.2001,27(1):21-28.
    [111]张志芬,付晓峰,刘俊青,等.用GGE双标图分析燕麦区域试验品系产量稳定性及试点代表性[J].作物学报.2010,36(8):1377-1385.
    [112]Gauch H G, Furnas R E. Statistical analysis of yield trials with MATMODEL[J]. Agronomy Journal.1991,83:916-920.
    [113]Ortiz R, Madsen S, Wagoire W W, et al. Additive main effect and multiplicative interaction model for a diallel-cross analysis[J]. Theoretical and Applied Genetics.2001,102:1103-1106.
    [114]Signor C E, Dousse S, Lorgeou J, et al. Interpretation of genotype×environment interaction for early maize hybrids over 12 years[J]. Crop Science.2001,41:663-669.
    [115]Gauch H G. Statistical analysis of yield trials by AMMI and GGE[J]. Crop science.2006,46(4): 1488.
    [116]Eisemann R L. Two methods of ordination and their application in analysing genotype-environmental interactions. In:Byth, D.E. and Mungomery V E. (eds) Interpretation of Plant Response and Adaptation to Agricultural Environment [M]. Brisbane:Queensland Branch, Australian Institute of Agricultural Science,1981,293-307.
    [117]Gauch H G, Wentworth T R. Canonical correlation analysis as an ordination technique[J]. Theoretical and Applied Genetics.1976,33(1):17-22.
    [118]Fan X, Kang M S, Chen H, et al. Yield Stability of Maize Hybrids Evaluated in Multi-Environment Trials in Yunnan, China[J]. Agronomy Journal.2007,99:220-228.
    [119]Badu-Apraku B, Akinwale R O. Cultivar evaluation and trait analysis of tropical early maturing maize under Striga-infested and Striga-free environments[J]. Field Crops Research.2011,121(1): 186-194.
    [120]Navabi A, Yang R, Helm J, et al. Can spring wheat-growing megaenvironments in the northern great plains be dissected for representative locations or niche-adapted genotypes?[J]. Crop science. 2006,46(3):1107.
    [1]Atlin G N, Mcrae K B, Lu X. Genotype×region interaction for two-row barley yield in Canada[J]. Crop Science.2000,40(1):1-6.
    [2]Baenziger P S, Clements R L, Mcintosh M S, et al. Effects of cultivar, environment and their interaction and stability analyses on milling and baking quality of soft red winter wheat[J]. Crop Science.1985,22:5-8.
    [3]Baker R J. Genotype-environment interactions in yield of wheat[J]. Canadian Journal of Plant Science.1969,49:743-751.
    [4]Baker R J. Tests for crossover genotype-environmental interactions[J]. Canadian Journal of Plant Science.1988,68:405-410.
    [5]Basford K E, Cooper M. Genotype x environment interactions and some considerations of their implications for wheat breeding in Australia[J]. Australia Journal of Agriculture Research.1998,49: 153-174.
    [6]Berger J D, Robertson L D, Cocks P S. Genotype×environment interaction for yield and other plant attributes among undomesticated Mediterranean[J]. Euphytica.2002,126:421-435.
    [7]Botwright Acuna T L, Lafitte H R, Wade L J. Genotype x environment interactions for grain yield of upland rice backcross lines in diverse hydrological environments[J]. Field Crops Research. 2008(108):117-125.
    [8]Brancourt-Hulmel M, Lecomte C. Effect of environmental variates on genotype x environment interaction of winter wheat:a comparison of biadditive factorial regression to ammi[J]. Crop science.2003,43(2):608-617.
    [9]Freeman G H. Statistical methods for the analysis of genotype environment interactions[J]. Heredity. 1973,31:339-354.
    [10]Freeman G H. The analysis and interpretation of interactions[J]. Journal of Applied Statistics.1985, 12:3-10.
    [11]Crossa J. Statistical analyses of multilocation trials[J]. Advances in Agronomy.1991,44:55-85.
    [12]王磊,杨仕华,谢芙贤,等.AMMI模型及其在作物区试数据分析中的应用[J].应用基础与工程科学学报.1997,5(1):39-46.
    [13]Yan W. GGEbiplot--A windows application for graphical analysis of multienvironment trial data and other types of two-way data[J]. Agronomy Journal.2001,93:1111-1118.
    [14]Yan W, Holland J B. A heritability-adjusted GGE biplot for test environment evaluation[J]. Euphytica.2010,171:355-369.
    [15]Yan W, Tinker N A. Biplot analysis of multi-environment trial data:principles and applications[J]. Canadian Journal of Plant Science.2006,86:623-645.
    [16]严威凯.双标图分析在农作物品种多点试验中的应用[J].作物学报.2010,36(11):1805-1819.
    [17]Cravero V, Esposito M A, Anido F L, et al. Identification of an ideal test environment for asparagus evaluation by GGE-biplot analysis[J]. Australian Journal of Crop Science.2010,4(4):273.
    [18]Blanche S B, Myers G O. Identifying discriminating locations for cultivar selection in Louisiana[J]. Crop Science.2006,46(2):946-949.
    [19]Baxevanos D, Goulas C, Rossi J, et al. Separation of cotton cultivar testing sites based on representativeness and discriminating ability using GGE biplots[J]. Agronomy Journal.2008, 100(5):1230-1236.
    [20]Xu N, Fok M, Bai L, et al. Effectiveness and chemical pest control of Bt-cotton in the Yangtze River Valley, China[J]. Crop Protection.2008,27(9):1269-1276.
    [21]SAS-Institute. SAS user's guide:Statistics.v.9.0[M]. Cary, NC:SAS Inst,2002.
    [22]Cody R P, Smith J K. Applied statistics and the SAS programming language[M].4th ed. New Jersey,USA:Prentice Hall,1997.
    [23]Annicchiarico P. Genotype by environment interaction:Challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Paper 174[C]. Rome: Food and Agriculture Organization of the United Nations,2002.
    [24]Anothai J, Patanothai A, Pannangpetch K, et al. Multi-environment evaluation of peanut lines by model simulation with the cultivar coefficients derived from a reduced set of observed field data[J]. Field Crops Research.2009(110):111-122.
    [25]Guillen-Portal F R, Russell W K, Eskridge K M, et al. Selection environments for maize in the U.S.Western High Plains[J]. Crop Science.2004:1519-1526.
    [26]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2003.
    [27]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验[J].中国农业科学.2006,39(3):487493.
    [28]Michele R, Nicola L, Zina F. Evaluation and application of the OILCROP-SUN model for sunflower in southern Italy[J]. Agricultural Systems.2003,78:17-30.
    [29]Yan W, Kang M S, Ma B, et al. GGE biplot vs. AMMI analysis of genotype-by-environment data[J]. Crop Science.2007,47(2):643-653.
    [30]Yan W, Hunt L A, Sheng Q, et al. Cultivar evaluation and mega-environment investigation based on the GGE Biplot[J]. Crop Science.2000,40(3):597-605.
    [31]Johnson R A, Wichern D W. Applied multivariate statistical analysis[M].5th ed. Upper Saddle River, NJ07458,USA:Prentice-Hall, Inc.,2002.
    [32]Gauch H G, Zobel R W. Identifying mega-environments and targeting genotypes[J]. Crop Science. 1997,37:311-326.
    [33]Yan W, Kang M S. GGE biplot analysis:A graphical tool for breeders, geneticists, and agronomists[M]. Boca Raton, FL.:CRC Press,2003.
    [34]Yan W, Glover K D, Kang M S. Comment on "Biplot analysis of genotype×environment Interaction:proceed with caution"[J]. Crop Science.2010,50:1121-1123.
    [35]Mohammadi R, Mohammadi M, Karimizadeh R, et al. Analysis of genotype-by-environment interaction for grain yield of rainfed durum wheat genotypes in warm winter areas of Iran[J]. J. Crop Sci. Biotech.2010,13(4):267-274.
    [36]Rodriguez M, Rau D, Papa R. Genotype by environment interactions in barley (Hordeum vulgare L.). different responses of landraces, recombinant inbred lines and varieties to Mediterranean environment[J]. Euphytica.2008,163:231-247.
    [37]Dominik S, Kinghorn B P. Neglecting genotype x environment interaction results in biased predictions from selection index calculations[J]. Livestock science.2008,114(2-3):233-240.
    [38]Annicchiarico P, Iannucci A. Adaptation strategy, germplasm type and adaptive traits for field pea improvement in Italy based on variety responses across climatically contrasting environments[J]. Field Crops Research.2008(108):133-142.
    [39]中华人民共和国农业部.农作物品种审定规范棉花[S].北京,国家农作物品种审定委员会棉花专业委员会,2007.
    [1]Egesi C N, Ilona P, Ogbe F O, et al. Genetic variation and genotype×environment interaction for yield and other agronomic traits in cassava in Nigeria[J]. Agronomy Journal.2007,99:1137-1142.
    [2]Flores F, Moreno M T, Martinez A, et al. Genotype-environment interaction in faba bean: comparison of AMMI and principal coordinate models [J]. Field crops research.1996,47(2-3): 117-127.
    [3]Foucteau V, El D M, Baril C. Interpretation of genotype by environment interaction in two sunflower experimental networks [J]. Theoretical and Applied Genetics.2001,102(2):327-334.
    [4]Giauffret C, Lothrop J, Dorvillez D, et al. Genotype×environment interactions in maize from temperate or highland tropical origin[J]. Crop Science.2000,40:1004-1012.
    [5]Haussmann B I, Hess D E, Reddy B V, et al. Pattern analysis of genotype x environment interaction for striga resistance and grain yield in African sorghum trials [J]. Genetic resources and crop evolution.2001,122(2):297-308.
    [6]Jackson P A, Byth D E, Fischer K S, et al. Genotype x environment interactions in progeny from barley cross 1. Patterns of response among progeny lines for grain yield and time to anthesis [J]. Australian Journal of Experimental Agriculture.1993,33:619-627.
    [7]Killi F, Harem E. Genotype x environment interaction and stability analysis of cotton yield in Aegean region of turkey. [J]. J Environ Biol.2006,27(2 Suppl):427-430.
    [8]Romagosa I, Fox R N. Genotype x environment interaction and adaptation, In:Hayward, M.D., Bosemark, N.O. and Romagosa, I. (eds) Plant Breeding:Principles and Prospects [M]. London: Chapman&Hall,1993,373-390.
    [9]Gauch H G, Zobel R W. Identifying mega-environments and targeting genotypes [J]. Crop Science. 1997:311-326.
    [10]Navabi A, Yang R, Helm J, et al. Can spring wheat-growing megaenvironments in the northern great plains be dissected for representative locations or niche-adapted genotypes? [J]. Crop science. 2006,46(3):1107.
    [11]Yan W, Rajcan I. Biplot analysis of test sites and trait relations of soybean in Ontario [J]. Crop Science.2002,42(1):11-20.
    [12]Cooper M, Woodruff D R, Eisemann R L, et al. A selection strategy to accommodate genotype-by-environment interaction for grain yield of wheat:managed-environments for selection among genotypes [J]. Theoretical and Applied Genetics.1995,90(3):492-502.
    [13]Finlay K W, Wilkinson G N. The analysis of adaptation in a plant-breeding programme [J]. Australian Journal of Agricultural Research.1963,14:742-754.
    [14]Eberhart S A, Russell W A. Stability parameters for comparing varieties [J]. Crop Science.1966,6: 36-40.
    [15]Baker R J. Tests for crossover genotype-environmental interactions [J]. Canadian Journal of Plant Science.1988,68:405-410.
    [16]Lin C S, Binns M R. A superiority measure of cultivar performance for cultivar×location data [J]. Can J Plant Sci.1988,68:193-198.
    [17]Kang M S. Simultaneous selection for yield and stability in crop performance trials:Consequences for growers [J]. Agronomy Journal.1993,85:754-757.
    [18]Yan W. GGEbiplot--A windows application for graphical analysis of multienvironment trial data and other types of two-way data [J]. Agronomy Journal.2001,93:1111-1118.
    [19]Atlin G N, Mcrae K B, Lu X. Genotype x region interaction for two-row barley yield in Canada [J]. Crop Science.2000,40(1):1-6.
    [20]Trethowan R M, van Ginkel M, Ammar K, et al. Associations among twenty years of international bread wheat yield evaluation environments[J]. Crop Science.2003,43:1698-1711.
    [21]Yang R, Blade S F, Crossa J, et al. identifying isoyield environments for field pea production[J]. Crop Science.2005,45:106-113.
    [22]Yan W, Kang M S. GGE biplot analysis:A graphical tool for breeders, geneticists, and agronomists [M]. Boca Raton, FL.:CRC Press,2003.
    [23]Yan W, Holland J B. A heritability-adjusted GGE biplot for test environment evaluation [J]. Euphytica.2010,171:355-369.
    [24]严威凯.双标图分析在农作物品种多点试验中的应用[J].作物学报.2010,36(11):1805-1819.
    [25]Badu-Apraku B, Akinwale R O. Cultivar evaluation and trait analysis of tropical early maturing maize under Striga-infested and Striga-free environments [J]. Field Crops Research.2011,121(1): 186-194.
    [26]Kang M S, Aggarwal V D, Chirwa R M. Adaptability and stability of bean cultivars as determined via yield-stability statistic and GGE biplot analysis [J]. Journal of Crop Improvement.2006,15: 97-120.
    [27]Yan W. Methodology of cultivar evaluation based on yield trial data-with special reference to winter wheat in OntariofD]. ON, Canada:University of Guelph,1999.
    [28]柴守玺,常磊,杨蕊菊,等.小黑麦基因型与环境互作效应及产量稳定性分析[J].核农学报.2011,25(1):155-161.
    [29]张勇,何中虎.应用GGE双标图分析我国春小麦的淀粉峰值粘度[J].作物学报.2003,29(2):245-251.
    [30]张志芬,付晓峰,刘俊青,等.用GGE双标图分析燕麦区域试验品系产量稳定性及试点代表 性[J].作物学报.2010,36(8):1377-1385.
    [31]Yan W, Tinker N A. Biplot analysis of multi-environment trial data:principles and applications [J]. Canadian Journal of Plant Science.2006,86:623-645.
    [32]Collaku A, Harrison S A, Finney P L, et al. Clustering of environments of southern soft red winter wheat region for milling and baking quality attributes [J]. Crop Science.2002,42:58-63.
    [33]Delacy I H. Cluster analysis for the interpretation of genotype by environment interaction. In:Byth, D.E. and Mungomery, VE. (eds) Interpretation of plant response and adaptation to agricultural environments [M]. Brisbane:Queensland Branch, Australian Institute of Agricultural Science,1981, 277-292.
    [34]Lefkovitch L. Multi-criteria clustering in genotype-environment interaction problems [J]. Theoretical and Applied Genetics.1985,70(6):585-589.
    [1]张丽娟,熊宗伟,周治国,等.基于棉纤维品质指标单纱强力模型的构建[J].纺织学报.2006,27(7):56-58.
    [2]王芙蓉,张军,刘勤红.棉花种质资源纤维品质分析及评论[J].山东农业科学.2002(2):29-31.
    [3]Campbell B T, Jones M A. Assessment of genotype × environment interactions for yield and fiber quality in cotton performance trials[J]. Euphytica.2005,144:69-78.
    [4]Braden C A, Smith C W. Fiber length development in near-long staple upland cotton[J]. Crop science.2004,44(5):1553-1559.
    [5]Braden C A, Smith C W. Phenology measurements and fiber associations of near-long staple upland cotton[J]. Crop science.2004,44(6):2032-2037.
    [6]Kloth R H. Analysis of commonality for traits of cotton fiber[J]. Journal of cotton science.1998, 2(1):17-22.
    [7]Reddy K R, Davidonis G H, Johnson A S, et al. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties[J]. Agronomy Journal.1999,91:851-858.
    [8]Reddy K R, Koti S, Davidonis G H, et al. Interactive effects of carbon dioxide and nitrogen nutrition on cotton growth, development, yield and fiber quality [J]. Agronomy journal.2004,96(4): 1148-1157.
    [9]Wang Y, Feng Y, Xu N, et al. Response of the enzymes to nitrogen applications in cotton fiber (Gossypium hirsutum L.) and their relationships with fiber strength[J]. Science in China Series C: Life Sciences.2009,52(11):1065-1072.
    [10]陈源.高品质棉品种棉铃发育与纤维品质形成的基本特征及其调节[D].扬州:扬州大学,2006.
    [11]马富裕.棉铃发育及纤维品质形成的生态效应与模拟研究[D].南京农业大学,2004.
    [12]王学德,俞碧霞,夏如冰.浙江棉区棉花纤维品质生态分布特征[J].浙江农业科学.1994(1):3-7.
    [13]唐淑荣,杨付新,周关印.黄河流域棉纤维品质区域分布特征[J].中国棉花.1997,24(6):11-12.
    [14]余隆新,唐仕芳,王少华.湖北省棉纤维品质生态区划及研究[J].棉花学报.1993,5(2):15-20.
    [15]Allard R W, Bradshaw A D. Implications of genotype-environmental interactions in applied plant breeding[J]. Crop Science.1964,4:503-508.
    [16]Freeman G H. Statistical methods for the analysis of genotype environment interactions[J]. Heredity. 1973,31:339-354.
    [17]Mungomery V E, Shorter R, Byth D E. Genotype x environment interactions and environmental adaptation.1. Pattern analysis-application to Soya bean populations[J]. Australian Journal of Agricultural Research.1974,25:59-72.
    [18]Saeed M, Francis C A. Association of weather variable with genotype×environment interactions in grain sorghum[J]. Crop Science.1984,24:13-16.
    [19]Yamada Y, Itoh Y, Sugimoto I. Parametric relationships between genotype x environment interaction and genetic correlation when two environments are involved[J]. Euphytica.1988,76(6): 850-854.
    [20]Giauffret C, Lothrop J, Dorvillez D, et al. Genotype x environment interactions in maize from temperate or highland tropical origin[J]. Crop Science.2000,40:1004-1012.
    [21]Li H, Lascano R J, Booker J, et al. Cotton lint yield variability in a heterogeneous soil at a landscape scale[J]. Soil & tillage research.2001,58:245-258.
    [22]Ibanez M A, DI Renzo M A, Samame S S, et al. Genotype-environment interaction of lovegrass forage yield in the semi-arid region of Argentina[J]. The journal of agricultural science.2001, 137(3):329.
    [23]Motzo R, Giunta F, Deidda M. Factors affecting the genotype × environment interaction in spring triticale grown in a Mediterranean environment[J]. Theoretical and Applied Genetics.2001,121(3): 317-324.
    [24]Yan W, Hunt L A. Genetic and environment causes of genotype by environment interaction for winter wheat yield in Ontario[J]. Crop Science.2001,41:19-25.
    [25]Abay F, Bj(?)rnstad A. Specific adaptation of barley varieties in different locations in Ethiopia[J]. Euphytica.2009,167:181-195.
    [26]柴守玺,常磊,杨蕊菊,等.小黑麦基因型与环境互作效应及产量稳定性分析[J].核农学报.2011,25(1):155-161.
    [27]Navabi A, Yang R, Helm J, et al. Can spring wheat-growing megaenvironments in the northern great plains be dissected for representative locations or niche-adapted genotypes?[J]. Crop science. 2006,46(3):1107.
    [28]Gauch H G, Zobel R W. Identifying mega-environments and targeting genotypes[J]. Crop Science. 1997,37:311-326.
    [29]Egesi C N, Ilona P, Ogbe F O, et al. Genetic variation and genotype x environment interaction for yield and other agronomic traits in cassava in Nigeria[J]. Agronomy Journal.2007,99:1137-1142.
    [30]Glaz B, Kang M S. Location contributions determined via GGE biplot analysis of multienvironment sugarcane genotype-performance trials[J]. Crop Science.2008,48(3):941-950.
    [31]Yan W, Holland J B. A heritability-adjusted GGE biplot for test environment evaluation[J]. Euphytica.2010,171:355-369.
    [32]严威凯.双标图分析在农作物品种多点试验中的应用[J].作物学报.2010,36(11):1805-1819.
    [33]Badu-Apraku B, Akinwale R O. Cultivar evaluation and trait analysis of tropical early maturing maize under Striga-infested and Striga-free environments[J]. Field Crops Research.2011,121(1): 186-194.
    [34]Yan W. GGE Biplot vs. AMMI graphs for genotype-by-environment data analysis[J]. Journal of the Indian Society of Agricultural Statistics.2011,65(2):1-10.
    [35]Cooper M, Woodruff D R, Eisemann R L, et al. A selection strategy to accommodate genotype-by-environment interaction for grain yield of wheat:managed-environments for selection among genotypes[J]. Theoretical and Applied Genetics.1995,90(3):492-502.
    [36]Yan W, Hunt L A, Sheng Q, et al. Cultivar evaluation and mega-environment investigation based on the GGE biplot[J]. Crop Science.2000,40(3):597-605.
    [37]Yan W, Pageau D, Fregeau-Reid J, et al. Oat mega-environments and test-locations in Quebec[J]. Canadian Journal of plant science.2011(91):1-7.
    [38]Yan W, Rajcan I. Biplot analysis of test sites and trait relations of soybean in Ontario[J]. Crop Science.2002,42(1):11-20.
    [39]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2003.
    [1]黄慈康.中国棉花品种及其系谱[M].北京:中国农业出版社,1996.
    [2]王学德,俞碧霞,夏如冰.浙江棉区棉花纤维品质生态分布特征[J].浙江农业科学.1994(1):3-7.
    [3]唐淑荣,杨付新,周关印.黄河流域棉纤维品质区域分布特征[J].中国棉花.1997,24(6):11-12.
    [4]余隆新,唐仕芳,王少华.湖北省棉纤维品质生态区划及研究[J].棉花学报.1993,5(2):15-20.
    [5]Jacksen R C, Van Ooijen J W, Stam P, et al. Genotype by environment interaction in genetic mapping of multiple quantitative trait loci[J]. Theoretical and Applied genetics.1995,91:33-37.
    [6]Patterson A H, Damon S, Hewitt J D, et al. Mendelian factors underlying quantitative traits in tomato:comparison across species, generations and environments[J]. Genetics.1991,127:181-197.
    [7]杨伟华,熊宗伟,唐淑荣,等.从不同领域棉花品质差异谈实行区划种植的必要性[J].中国棉花.2002,29(4):2-6.
    [8]Bhan M K, Pal S, Rao B L, et al. GGE biplot analysis of oil yield in lemongrass[J]. Journal of New Seeds.2005,7:127-139.
    [9]Yan W, Kang M S. GGE biplot analysis:A graphical tool for breeders, geneticists, and agronomists[M]. Boca Raton, FL.:CRC Press,2003.
    [10]Yan W, Kang M S, Ma B, et al. GGE Biplot vs. AMMI analysis of genotype-by-environment data[J]. Crop Science.2007,47(2):643-653.
    [11]Yan W. GGE Biplot vs. AMMI graphs for genotype-by-environment data analysisfJ]. Journal of the Indian Society of Agricultural Statistics.2011,65(2):1-10.
    [12]常磊,柴守玺.GGE双标图在我国旱地春小麦稳产性分析中的应用[J].中国生态农业学报.2010,18(5):988-994.
    [13]Glaz B, Kang M S. Location contributions determined via GGE biplot analysis of multienvironment sugarcane genotype-performance trials[J]. Crop Science.2008,48(3):941-950.
    [14]Yan W. Methodology of cultivar evaluation based on yield trial data-with special reference to winter wheat in Ontario[D]. ON, Canada:University of Guelph,1999.
    [15]Samonte S O P, Wilson L T, Mcclung A M, et al. Targeting cultivars onto rice growing environments using AMMI and SREG GGE biplot analyses[J]. Crop Science.2005,45(6): 2414-2424.
    [16]张勇,何中虎.应用GGE双标图分析我国春小麦的淀粉峰值粘度[J].作物学报.2003,29(2): 245-251.
    [17]张志芬,付晓峰,刘俊青,等.用GGE双标图分析燕麦区域试验品系产量稳定性及试点代表性[J].作物学报.2010,36(8):1377-1385.
    [18]Baxevanos D, Goulas C, Rossi J, et al. Separation of cotton cultivar testing sites based on representativeness and discriminating ability using GGE biplots[J]. Agronomy Journal.2008, 100(5):1230-1236.
    [19]Blanche S B, Myers G O. Identifying discriminating locations for cultivar selection in Louisiana[J]. Crop Science.2006,46(2):946-949.
    [20]中华人民共和国农业部.农作物品种审定规范棉花[S].北京,国家农作物品种审定委员会棉花专业委员会,2007.
    [21]Yan W. GGEbiplot--A windows application for graphical analysis of multienvironment trial data and other types of two-way data[J]. Agronomy Journal.2001,93:1111-1118.
    [22]Johnson R A, Wichern D W. Applied multivariate statistical analysis[M].5th ed. ed. Upper Saddle River, NJ07458,USA:Prentice-Hall, Inc.,2002.
    [23]Yan W, Tinker N A. Biplot analysis of multi-environment trial data:principles and applications^]. Canadian Journal of Plant Science.2006,86:623-645.
    [24]严威凯.双标图分析在农作物品种多点试验中的应用[J].作物学报.2010,36(11):1805-1819.
    [25]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文山版社,2003.
    [26]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验[J].中国农业科学.2006,39(3):487-493.
    [27]Allard R W, Bradshaw A D. Implications of genotype-environmental interactions in applied plant breeding[J]. Crop Science.1964,4:503-508.
    [28]Baker R J. Genotype-environment interactions in yield of wheat[J]. Canadian Journal of Plant Science.1969,49:743-751.
    [29]Baker R J. Tests for crossover genotype-environmental interactions[J]. Canadian Journal of Plant Science.1988,68:405-410.
    [30]Ivory D A, Kaewmeechai S, Delacy I H, et al. Analysis of the environment component of genotype x environment interaction in crop adaptation evaluation[J]. Field Crops Research.1991,28:71-84.
    [31]Romagosa I, Fox R N. Genotype x environment interaction and adaptation, In:Hayward, M.D., Bosemark, N.O. and Romagosa, I. (eds) Plant Breeding:Principles and Prospects[M]. London:Chapman&Hall,1993,373-390.
    [32]Shorter R, Byth D E, Mungomery V E. Genotype x environment interactions and environmental adaptation.Ⅱ Assessment of environmental contributions[J]. Australian Journal of Agricultural Research.1977,28:223-235.
    [33]Yan W, Hunt L A. Genetic and environment causes of genotype by environment interaction for winter wheat yield in Ontario[J]. Crop Science.2001,41:19-25.
    [34]Yan W, Pageau D, Fregeau-Reid J, et al. Oat mega-environments and test-locations in Quebec[J]. Canadian Journal of plant science.2011(91):1-7.
    [1]Badu-Apraku B, Akinwale R O. Cultivar evaluation and trait analysis of tropical early maturing maize under Striga-infested and Striga-free environments[J]. Field Crops Research.2011,121(1): 186-194.
    [2]Baxevanos D, Goulas C, Rossi J, et al. Separation of cotton cultivar testing sites based on representativeness and discriminating ability using GGE biplots[J]. Agronomy Journal.2008, 100(5):1230-1236.
    [3]Bertoia L, Lopez C, Burak R. Biplot analysis of forage combining ability in maize landraces[J]. Crop Science.2006,46(3):1346-1353.
    [4]Egesi C N, Ilona P, Ogbe F O, et al. Genetic variation and genotype × environment interaction for yield and other agronomic traits in cassava in Nigeria[J]. Agronomy Journal.2007,99:1137-1142.
    [5]Gauch H G, Zobel R W. Identifying mega-environments and targeting genotypes[J]. Crop Science. 1997,37:311-326.
    [6]Yan W. GGE Biplot vs. AMMI graphs for genotype-by-environment data analysis[J]. Journal of the Indian Society of Agricultural Statistics.2011,65(2):1-10.
    [7]Yan W, Holland J B. A heritability-adjusted GGE biplot for test environment evaluation[J]. Euphytica.2010,171:355-369.
    [8]Yan W, Kang M S, Ma B, et al. GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data[J]. Crop Science.2007,47(2):643-653.
    [9]Jackson P, Mcrae T, Hogarth M. Selection of sugarcane families across variable environments ii. Patterns of response and association with environmental factors[J]. Field crops research.1995,43: 119-130.
    [10]Jing Q, Bouman B, van Keulen H, et al. Disentangling the effect of environmental factors on yield and nitrogen uptake of irrigated rice in Asia[J]. Agricultural Systems.2008(98):177-188.
    [11]Tan S L, Mak C. Genotype x environment influence on cassava performance[J]. Field crops research.1995,42:111-123.
    [12]Saeed M, Francis C A. Association of weather variable with genotype x environment interactions in grain sorghum[J]. Crop Science.1984,24:13-16.
    [13]Signor C E, Dousse S, Lorgeou J, et al. Interpretation of genotype x environment interaction for early maize hybrids over 12 years[J]. Crop Science.2001,41:663-669.
    [14]严威凯.双标图分析在农作物品种多点试验中的应用[J].作物学报.2010,36(11):1805-1819.
    [15]Blanche S B, Myers G O. Identifying discriminating locations for cultivar selection in Louisiana[J]. Crop Science.2006,46(2):946-949.
    [16]Yan W, Pageau D, Fregeau-Reid J, et al. Oat mega-environments and test-locations in Quebec[J]. Canadian Journal of plant science.2011(91):1-7.
    [17]Ministry Of Agriculture C. Standards of registration for cotton varieties [S]. Beijing,2007.
    [18]Holland J B, Bjonstad A, Frey K J, et al. Recurrent selection for broad adaptation affects stability of oat [J]. Euphytica.2002,126:265-274.
    [19]Jackson P A, Mcrae T A. Gains from selection of broadly adapted and specifically adapted sugarcane families [J]. Field crops research.1998,59(3):151-162.
    [20]Evans S, Langdon C. Effects of genotype×environment interactions on the selection of broadly adapted pacific oysters (crassostrea gigas) [J]. Aquaculture.2006,261:522-534.
    [21]Perkins J M, Jinks J L. Environmental and genotype-environmental components of variability. Ⅲ Multiple lines and crosses [J]. Heredity.1968,23:339-356.
    [22]Qiao C G, Basford K E, Delacy I H, et al. Advantage of single-trial models for response to selection in wheat breeding multi-environment trials[J]. Agroforestry systems.2004,108(7):1256-1264.
    [23]周忠军,田厚军,易杰忠,等.基于多目标关联分析的作物新品种区试综合评估方法探讨[J].中国农学通报.2008,24(10):251-255.
    [24]金文林,白琼岩.作物区试中品种产量性状评价的秩次分析法[J].作物学报.1999,25(5):632-638.
    [25]蔡民华,张金栋.小麦产量性状及其构成因素的稳定性分析[J].北京师范学院学报:自然科学版.1990,11(4):39-46.
    [26]张金发.陆地棉农艺性状稳定性的相关分析[J].华中农业大学学报.1989,8(3):223-226.
    [27]中华人民共和国农业部.农作物品种审定规范棉花[S].北京,国家农作物品种审定委员会棉花专业委员会,2007.
    [28]Yan W. GGEbiplot-A windows application for graphical analysis of multienvironment trial data and other types of two-way data [J]. Agronomy Journal.2001,93:1111-1118.
    [29]Yan W. Methodology of cultivar evaluation based on yield trial data-with special reference to winter wheat in Ontario [D]. ON, Canada:University of Guelph,1999.
    [30]Yan W, Tinker N A. Biplot analysis of multi-environment trial data:principles and applications [J]. Canadian Journal of Plant Science.2006,86:623-645.
    [31]Johnson R A, Wichern D W. Applied multivariate statistical analysis [M].5th ed. ed. Upper Saddle River, NJ07458, USA:Prentice-Hall, Inc.,2002.
    [32]曹卫星,罗卫红.作物系统模拟及智能管理[M].北京:华文出版社,2003.
    [33]陈兵林,曹卫星,周治国.棉花单铃干物质积累分配的分期动态模拟及检验[J].中国农业科学.2006,39(3):487-493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700