用户名: 密码: 验证码:
棉纤维相关基因时空表达与纤维品质关联分析及β-1,4-葡糖苷酶基因的转基因功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
几千个基因在棉纤维发育过程中起作用,相关基因的分离鉴定以及功能研究起步较晚,但进展很快。本试验从已经报道的纤维发育相关基因中选出10个在棉纤维发育中优势表达的基因,以14个纤维品质具有差异的棉花品种(或品系)为研究材料,利用实时荧光定量PCR技术检测10个基因在不同纤维发育时期的相对表达量,以期研究这些基因的表达水平与纤维品质各指标的相关性。综合分析各基因在不同棉花品种(或品系)中于0DPA、5DPA、10DPA、15DPA、20DPA和23DPA的表达谱发现:GhExp1基因、GhCIPK1基因、GhPL基因为纤维伸长期优势表达基因;GhRacA和GhRacB在纤维伸长的前期及次生壁加厚期高表达;GhACT1在伸长期扣次生壁加厚期优势表达;纤维素合酶基因(GhCelA1和GhCelA3)在纤维伸长的后期至次生壁加厚期优势表达;蔗糖合酶GhSus1基因在纤维伸长早期和次生壁加厚期优势表达,GhSusA1的优势表达主要集中在0-5DPA这一时期。大部分基因在低表达时其表达高低与纤维品质显著相关,而在表达量高峰期其表达高低与纤维品质没有相关性。GhRacA基因的表达是个例外,GhRacA在23DPA高表达且表达量与纤维品质显著正相关。GhExp1基因在20DPA的表达水平与纤维比强度和整齐度呈显著负相关与伸长率呈极显著正相关;GhPL基因在23DPA的表达水平与纤维长度呈显著负相关;GhRacA基因在5DPA和23DPA的表达水平都与纤维的伸长率呈极显著的正相关;GhRacB基因在10DPA的表达水平与纤维长度和整齐度呈显著负相关;GhCelA1基因在5DPA的表达水平与纤维长度呈显著正相关,与马克隆值呈显著负相关,在10DPA的表达水平与马克隆值呈显著正相关,与伸长率达到极显著正相关,与比强度呈显著负相关,与纤维长度和整齐度呈极显著负相关;GhCIPK1、GhACT1、蔗糖合酶基因(GhSus1和GhSusA1)和GhCelA3 5个基因在14个棉花品种(或品系)纤维发育的各时期与纤维品质的各指标无显著相关性。
     为了研究棉花内源β-1,4-葡糖苷酶基因(GhBG)在棉纤维发育中的可能功能,本试验构建了由纤维特异启动子E6驱动的GhBG基因植物表达载体,通过农杆菌介导法将GhBG基因转化泗棉3号,对再生植株进行标记基因和目的基因的PCR检测,来自6个克隆的56个单株是阳性植株,嫁接成活48株。部分植株的Southern杂交表明基因已导入棉花基因组中。获得6个愈伤系的17个单株的种子,对这些株系后代进行目的基因PCR检测和卡那霉素检测。目的基因的分离比例都符合孟德尔一对基因的分离比例(3:1),和卡那霉素检测结果一致;选育出了1个转GhBG基因的T_3纯合株系(504-5)。取株系504-5和对照开花当天(0DPA),开花后5 DPA、10 DPA、15 DPA、20DPA和23DPA的胚珠或纤维,提取其RNA,对GhBG基因进行荧光实时定量PCR分析,结果表明,GhBG基因在株系504-5中5DPA、10DPA和20DPA这三个时期表达量显著高于对照。对T_1和T_2纤维素含量测定结果发现,转基因植株和受体纤维素含量无差异;T_1和T_2代株系棉纤维样品进行HVI900(ICC标准)品质检测,对纯合株系的分析表明:转基因棉花纤维长度和比强度较对照相比有明显降低,而伸长率显著增加。由此推测,GhBG基因的过量表达对纤维长度和比强度有影响。
Thousands of genes play role during fiber development,though the identification and function research of these genes was initiated recently,the progress was very quick.In this paper,we selected 10 preferentially expressed genes for fiber development which had reported previously and 14 cotton varieties(or strains) with significantly different fiber quality.Using Q-PCR technique to evaluate the relative expression value of 10 tested genes in different fiber developmental stages in 14 cotton varieties(or strains),in order to study the relationship between temporal and spatial expression of these genes and fiber quality traits.The analysis of expression profile of these genes in different cotton varieties(or strains) indicate:GhExp1,GhPL and GhCIPK1 gene preferentially express during fiber elongation;GhRacA and GhRacB gene have high expression level in earlier stage of fiber elongation and the thickening period of secondary cell wall;The predominant expression periods of GhACT1 are fiber elongation and the secondary cell wall thickening period;Two cellulose synthase genes(GhCelA1 and GhCelA3) preferentially express during late stage of fiber elongation and the thickening period of secondary cell wall;GhSus1 have high expression level during thickening period of secondary cell wall and fiber elongation stage, and GhSusA1 gene preferentially express during fiber initiation stage and the earlier stage of fiber elongation.For most genes,the expression value in low expression level period has significant correlation with fiber quality,while no significant correlation is detected when the expression of these genes at the peak except GhRacA gene.The expression level of GhExp1 in 20DPA fiber has a significant negative correlation with fiber strength and uniformity and it also has a significant positive correlation with fiber elongation;the expression level of GhPL gene in 23DPA has a significant negative correlation with fiber length;the expression level of GhRacA gene in 5DPA and 23DPA both have a high significant positive correlation with elongation;the expression level of GhRacB gene in 10DPA has a significant negative correlation with length;the expression level of GhCelA1 gene in 5DPA has a significant positive correlation with length and a significant negative correlation with Mic value;the expression level of GhCelA1 gene in 10DPA has a significant negative correlation with fiber length and a significant positive correlation with micronaire value and a high significant correlation with elongation;the expression level of GhCIPK1,GhACT1,GhSus1,GhSusA1and GhCelA3 gene have no significant correlation with fiber quality traits.
     To characterize the possible function ofβ-1,4-glucosidase(GhBG) in cotton fiber,in this study,the sense coding sequence of the GhBG gene was fused with fiber-specific E6 promoter to build the constructs of sense gene,and with which to transform into Simian3 via Agrobacterium-mediated transformation.PCR amplification of the regenerated plants with primers of marker gene and target gene indicated that 56 plants from 6 clones were positive,of which 48 were survived by grafting.Southern blot analysis of the transgenic cotton plants showed that the introduction of GhBG gene into cotton genome was successful.Genetic Analysis of 17 T_1 and T_2 regenerated plants from 6 different transgenic lines by PCR analysis and Kanamycin-resistance assay indicated that the segregation ratio of GhBG gene in 6 transgenic lines were inherited in a classical Mendelian manner(3:1) and one pure line(504-5) was screened.For analyzing the expression level of this pure line, 0DPA,5DPA,10DPA,15DPA,20DPA and 23DPA ovule or fiber RNA of pure line was extracted,with Simian3 as control.The analysis of Q-PCR results showed that the expression level of GhBG gene in 5DPA,10DPA and 20DPA ovule or fiber of pure line was higher than that of control and the differences were significant.The result of mature celullose content test of T_1 and T_2 indicted that there was no significant difference between transgenic lines and control.Analysis of fiber quality traits showed that the fiber length and strength in pure line decreased and fiber elongation percentage increased.These results demonstrate that the overexpression of GhBG gene have effect to fiber length and strength.
引文
1. Andrawis A, Solomon M, Delmer D P. Cotton fiber annexins: a potential role in the regulation of callose synthase [J]. Plant J, 1997, 3: 763-772
    2. Basra A S, Malik C P. Development of the cotton fiber. Int Rev Cytol,1984,89:65-113
    3. Bayley C, Trolinder N, Ray C, et al. Engineering 2,4-D resistance into cotton [J]. Theor Appl Genet, 1992, 83: 645-649
    4. Beasley C A, Birnbaum E H, Dugger W M, et al. A quantitative procedure for estimating cotton fiber growth. Stain Technol,1974,49(2):85-92
    5. Beasley C A, Ting I P. The effect of plant growth substances on in vitro fiber development from fertilized cotton ovules. Am J Bot,1973,60(2):130-139
    6. Beasley C A. In vitro culture of fertilized cotton ovules [J]. Bioscience, 1971, 21: 906-907
    7. Bustin, S A. Absolute quantification of mRNA using real2time reverse transcription polymerase chain reaction assays [J]. Journal of Mol. Endocrinology, 2000,25: 169-193
    8. Cedroni M L, Cronn R C, Adams K L, et al. Evolution and expression of MYB genes in diploid and polyploid cotton[J]. Plant Mol Biol, 2003,51(3):313-325
    9. Cui X, Shin H, Song C, et al. A putative plant homolog of the yeast beta-1, 3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers. Planta, 2001,213(2): 223-230
    10. DeLanghe E A. Towards an international strategy for genetic improvement in the genus Musa [J]. In: Banana and Plantain Breeding Strategies. Persley, G S and De Langhe, E A. (Eds.), pp. 19-21. Proceedings of an international workshop, 13-17 October 1986, Cairns, Australia, ACIAR PRIC. No 21
    11. Delmer D P. Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Bid. 1999, 50:245-276
    12. Delmer D P, Pear J R, Andrawis A. Genes encoding small GTP-binding proteins analogous to mammalian rac are preferentially expressed in developing cotton fibers [J]. Mol. Gen. Genet., 1995, 248:43-51
    13. Delmer D P, Haigier C H. The regulation of metabolic flux to cellulose: a major sink for carbon in plants, 2001, Metab Eng 4, 22-28
    14. Dixon D C, Seagull R W, Triplett B A. Changes in the accumulation of α- and β-tubulin isotypes during cotton fiber development [J]. Plant Physiol., 1994, 105: 1347-1353
    15. Feng J X, Ji S J, Shi Y H, et al. Analysis of five differentially expressed gene families in fast elongating cotton fiber [J]. Acta Biochim Biophys Sin (Shanghai). 2004, 36(1):51-56
    16.Ferguson D L,Turley R B,Kloth R H.Identification of a delta-TIP cDNA clone and determination of related A and D genome subfamilies in Gossypium species[J].Plant Mol.Biol.,1997,34:111-118
    17.Finer J J,McMullen M D.Tansformation of cotton(Gossypium hirsuturn L.) via particle bombardment[J].Plant Cell Rep,1990,8:586-589
    18.Firoozabady E,DeBoer D L,Merlo D J et al.Transformation of cotton(Gossypiurn hirsutum L.) by Agrobaterium tumefacies and regeneration of transgenic plants[J].Plant Mol.Biol,1987,10:105-114
    19.Gao P,Zhao P-M,Wang J et al.Identification of genes preferentially expressed in cotton fibers:A possible role of calcium signaling in cotton fiber elongation.2007,Plant Sci.173(1),61-69
    20.Gou J Y,Wang L J,Chen S P S,et al.Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis[J].Cell Res,2007,17:422-434
    21.Graves D A,Stewart J M.Analysis of the protein constituency of development of cotton fibers[J].J.Exp.Bot,1988,39:59-69
    22.Haigler C H,Singh B,Zhang D S,et al.Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions[J].Plant Mol Biol,2007,63:815-832
    23.Harmer S E,Orford S J,Timmis J N.Characterisation of six α-expansin genes in Gossypium hirsutum(upland cotton)[J].Mol.Genet.Genomics,2002,268:1-9
    24.Hasenfratz M P,Tsou C L,Wilkins T A.Expression of two related vacuolar H~+-ATPase 16-kilodation proteolipid genes is differentially regulated in a tissue-specific manner[J].Plant Physiol.,1995,108:1395-1404
    25.Hee J K,John C,Barbara A T.Characterization of two cDNAs encoding small gtp-binding proteins (Accession Nos.AF165095 and AF165096) from immature cotton(Gossypium hirsumm L) locules.Plant Physiol,1999,(121):685
    26.Holland N,Halland D,Helentjaris T,et al.A comparative analysis of the plant cellulose synthase (CesA) gene family[J].Plant Physiol,2000,123:1313-1324
    27.Humphries J A,Walker A R,Timmis J N,et al.Two WD-repeat genes from cotton are functional homologues of the Arobidopsis thaliana Plant Mol Biol,2005(57),67-81
    28.Ji S J,Lu Y C,Li J.A-beta-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast.Biochem Biophys Res Commun,2002,296:1245-1250
    29.John E M,Crow L J.Gene expression in cotton(Gossypium hirsutum L.) fiber:Cloning of the mRNAs[J].Proc Natl Acad Sci USA,1992,89:5769-5773
    30. Jones M A, Shen J J, Fu Y et al. The Arabidopsis Rop GTPase is a positive regulator of both root hair initiation and tip Growth. Plant Cell, 2002,14: 763-776
    31. John M E, Keller G Characterization of mRNA for a praline-rich protein of cotton fiber. Plant Physiol 1995,108: 669-676
    32. Jordan R H, Turley R B, DeFauw S L, et al. Characterization of a cDNA encoding metallothionein 3 from cotton (Gossypium hirsutum L.) [J]. DNA Seq, 2005,16:96-102
    33. Kawai M, Aotsuka S, Uchimiya H. Isolation of a cotton CAP gene: a homologue of adenylyl cyalase-associated protein highly expressed during fiber elongation [J]. Plant Cell Physiol., 1998, 39: 1380-1383
    34. Keller G, Spatola L, McCable D et al. Transgenic cotton resistant to herbicide bialaphos [J]. Transgen Res, 1997, 6: 385-392
    35. Kim M Y, Ha B K, Jun T H et al. Single nucleotide polymorphism discovery and linkage mapping of lipoxygenase-2 gene (Lx2) in soybean[J]. Euphytica, 2004,135:169-177
    36. Laosinchai W, Cui X, Brown R M et al. A full cDNA of cotton cellulose synthase has high homology with the Arabidopsis RSW1 gene and cotton CelA1 (Accession No. AF 200453) (PGR 00-002) [J]. Plant Physiol, 2000,122-291
    37. Liu H C, Creech R G, Jenkins J N, et al. Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3(1). Biochim Biophys Acta, 2000,1487(1): 106-111
    38. Livak KJ, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2~(ΔΔCt) Method. Methods, 2001,25(4): 402-408
    39. Li X B, Cai L, Cheng N H et al. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiol, 2002,130:666-674
    40. Li X B, Fan X P, Wang X L et al. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 2005a, 17 (3), 859-875
    41. Li XB, Sun J, Xia GX. Cloning and characterization of a gne for an LRR receptor-like protein kinase associated with cotton fiber development. Mol Genet Genomics, 2005b, 273,217-224
    42. Loguercio L L, Zhang J Q, Wllkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Mol Gen Genet, 1999,261:660-671
    43. Ma D P, Tan H, Si Y, et al. Differential expression of a lipid transfer protein gene in cotton fiber [J]. Biochim. Biophys Acta, 1995, 1257: 81-84
    44. Meinert M C, Delmer D P. Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol, 1977, 59(6): 1088-1097
    45. Ma D P, Liu H C, Tan H, et al. Cloning and characterization of a cotton lipid transfer protein specifically expressed in fiber cells. Biochim Biophy Acta. 1997,1344: 111—114
    46. McCabe D E, Martinell B J. Transformation of elite cotton cultivars via particle bombardment of meristems. Bio/Technology, 1993,11:596-598
    47. Niesters H GM. Quantitation of viral load using real-time amplification techniques. Methods, 2001, 25:419-429
    48. Orford S J, Timmis J N. Abundant mRNAs specific to the developing cotton fiber [J]. Theor. Appl. Genet, 1997,94: 909-918
    49. Orford S J, Timmis J N. Specific expression of an expansin gene during elongation of cotton fibers. Biochin Biophy Acta, 1998,1398: 342-346
    50. Panteghini M. Present issues in the determination of troponins and other markers of cardiac damage. Clin Biochem, 2000,33 (3): 161-166
    51. Pear J R, Kawagoe Y, Schreckengost W E et al. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase, 1996 Proc Natl Acad Sci U S A. 93 (22), 12637-12642
    52. Perlak F J, Deaton R W, Armstrong T A, et al. Insect resistant cotton plants. Biotechnology. 1990, 8: 939-943
    53. Rajasekaran K, Grula J W, Hudepeth R L et al. Herbicide-resistant Acala and coker cottons transformation with a native gene encoding mutant forms of acetohydroxyacid synthase [J]. Mol. Breed, 1996,2: 307-319
    54. Rajasekaran K, Hudspeth R L, Cary J W et al. High-frequency stable transformation of cotton (Gossypium hirsufum L.) by particle bombardment of embryogenic cell suspension cultures [J]. Plant Cell Rep, 2000,19: 539-545
    55. Ramsey J C, Berlin J D. Ultrastructure of Early Stages of Cotton Fiber Differentiation. Botanical Gazette, 1976,137(1):11-19
    56. Rinehart J A, Etersen M W, John M E. Tissue-specific and developmental regulation of cotton gene Fbl2A. Demonstration of promoter activity in transgenic plants. Plant Physiol 1996,112, 1331-1341
    57. Ruan Y L, Chourey P S, Delmer D P, et al. The differential expression of sucrose synthase in relation to diverse patterns of carbon portioning in developing cotton seed. Plant Physiol, 1997, 115: 375-385
    58. Ruan Y L, Chourey P S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol, 1998,118, 399-406
    59. Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation,elongation,and seed development[J].Plant Cell,2003,15:952-964
    60.Ruan Y L,Llewellyn D J,Furbank R T.The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+transporters and expansin.Plant Cell,2001,13:47-63
    61.Ruan Y L,Xu S M,White R,et al.Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover.Plant Physiol,2004,136,4104-4113
    62.Ruan Y L,Llewellyn D J,Furbank R T et al.The delayed initiation and slow elongation of sucrose synthase expression and plasmodesmata gating in a linfless mutant of cotton.J Exp Bot,2005,56,977-984
    63.Saxena I M,Brown R M.Cellulose synthase and related enzymes.Current Opinion in plant biology.2000,3:523-531
    64.Song J,Chai Y,Pang Y,et al.Isolation and characterization of an IAA-responsive gene from Gossypium barbadense L[J].DNA Seq.2004,15(1):71-76
    65.Song P,Allen R D.Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display[J].Biochim Biophy Acta,1997,1351(3):305-312
    66.Stewart J.Fiber initiation on the cotton ovule(Gossypium hirsutum).Am J Bot,1975,62:723-730.
    67.Sun Y,Allen R D.Functional analysis of the BIN2 genes of cotton[J].Mol Gen Genomics,2005,.274:51-59
    68.Sun Y,Fokar M,Asami T,et al.Characterization of the brassinosteroid insensitive 1 genes of cotton [J].Plant Mol Biol,2004;54(2):221-232
    69.Suo J,Liang X,Pu L,et al.Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton(Gossypium hirsutum L.)[J].Biochim Biophys Acta,2003,1630(1):25-34
    70.Tan H,Creech R G.Jenkins J N,et al.Cloning and expression analysis of two cotton(Gossypium hirsutum L.) genes encoding cell wall proline-rich proteins.DNA Seq,2001,12(5-6):367-380
    71.Umbeck P,Johnson G,Barton K.Genetically transformed cotton(Gossypium hirsudrm L.) plants [J].Biotechnology,1987,5:263-266
    72.Vu H L,Troubetzkoy S,Nguyen H H.A method for quantification of absolute amounts of nucleic acids by(RT)-PCR and a new mathematical model for data analysis.Nucleic Acids Res,2000,28(7):e18
    73.Wan CY,Wilkins TA.Isolation of multiple cDNA encoding the vacuolar H+oATPase subunit B from developing cotton(Gossypium hirsutum L.).Plant Physiol,1994,106:393-394
    74.Wang H Y,Yu Y,Chen Z L.Functional characterization of Gossypium hirsutum profiling 1 gene (GhPFN1) in tobacco suspension cells.Characterization of in vivo functions of a cotton profilin gene.Planta,2005,222,594-603
    75.Wang S,Wang J W,Yu N,et al.Control of triehome development by a cotton fiber MYB gene.Plant Cell,2004,16,2323-2324
    76.Wllkins T A.Vacuolar H+-ATPase 69-kilodalton catalytic subunit Cdna from developing cotton(Gossypium hirsutum L.) ovules.Plant Physiol,1993,102,679-680
    77.Wu Y R,Machado A C,White R G,et al.Expression profiling identifies genes expressed early during lint fiber initiation in cotton[J].Plant and Cell Physiology,2006,47(1):107-127
    78.Xu Y H,Wang J W,Wang S,et al.Characterization of GaWRKY1,a cotton transcription factor that regulates the sesquiterpene synthase gene(+)-delta-cadinene synthase-A[J].Plant Physiol,2004,135(1):507-515
    79.Zhao,G R,Liu,J Y.Isolation of a cotton RGP gene:A homolog of reversibly glycosylated polypeptide highly expressed during fiber development,Biochim.Biophys.Acta,2002,1574(3):370-374
    80.Zhang X D,Jenkins J N,Callahan F E,et al.Molecular cloning,differential expression,and functional characterization of a family of class Ⅰ ubiquitin-conjugating enzyme(E2) genes in cotton (Gossypium)[J].Biochim Biophys Acta,2003,1625(3):269-279
    81.Zuo K,Zhao J,Wang J,et al.Molecular cloning and characterization of GhlecRK,a novel kinase gene with lectin-like domain from Gossypium hirsutum[J].DNA Seq,2004,15(1):58-65
    82.Zuo K,Wang J,Wu W,et al.Identification and characterization of differentially expressed ESTs of Gossypium barbadense infected by VerticilIium dahliae with suppression subtractive hybridization [J].Mol Biol(Mosk),2005,39(2):214-223.(Written by Russian with English abstract )
    83.陈向东,藤尾雄策.日本根酶IF05318胞外β-葡萄糖苷酶的纯化及部分特性[J].微生物学报,1997,37(5):368-373
    84.陈志贤,Llewellyn DJ,范云六,等.利用农杆菌介导法转移tfdA基因获得可遗传的抗2,4-D棉花.中国农业科学,1994,27(2):31-37
    85.陈志贤,李淑君,Trolinder N L,等.棉花细胞悬浮培养胚胎发生和植株再生某些特性的研究[J].中国农业科学,1987,20(5):6-11
    86.杜雄明,潘家驹,汪若海.棉纤维细胞分化和发育.棉花学报,2000,12(4):212-217
    87.郭惠明.陆地棉纤维发育相关基因Ghkob的克隆及功能分析[D].中国农业科学院硕士学位论文.2005
    88.郭嫫.五个与棉纤维发育相关的基因的克隆与鉴定.南京农业大学同,2006,硕士学位论文
    89.郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆和分子育种.科学通报,2003,48(5):410-417
    90.郭三堆,崔洪志,倪万潮.双价抗虫转基因棉花研究[J].中国农业科学,1999,32(3):1-7
    91.郭三堆,倪万潮,徐琼芳.编码Bt杀虫蛋白质融合基因和表达载体及其应用[P].1995,专利号:ZL95119563.8.C12N 15-32
    92.巩万奎,吴家和,姚长兵,等.葡萄糖氧化酶基因在棉花中的高效转化一转基因再生棉株的获得[J].棉花学报,2002,14(2):76-79
    93.韩志国.棉纤维发育相关EST-SSR的特征、功能及其定位.南京农业大学,2006,博士学位论文
    94.黄国存,蓝越梅.以GFP为标记用花粉管通道途径导入外源DNA[J].科学通报1998,43(23):2531-2533
    95.黄留玉.PCR最新技术原理、方法及应用[M].北京:化学工业出版社,2005,(1):131-139
    96.蒋建雄,郭旺珍,张天真.棉花两个β-甘露糖苷酶cDNA的克隆及其特征.植物生理与分子生物学学报.2004,30(2):216-220
    97.焦改丽,李俊峰,李燕娥,等.利用新的外植体建立棉花高效转化系统的研究[J].棉花学报,2002,14(1):22-27
    98.李付广,郭三堆,双价基因抗虫棉的转化与筛选研究[J].棉花学报1999,11(2):106-112
    99.李继刚,郭三堆.棉花高质量RNA的提取及MADS2 box基因保守区段的克隆[J].棉花学报,2004,16(1):3-7
    100.李先碧,肖岳华,罗明.两个棉花Rac蛋白基因的克隆与表达分析.遗传学报,2005,32(1):72-78
    101.李学宝,黄耿青,许文亮,等.棉花细胞壁蛋白基因分离鉴定与表达分析[J].华中师范大学学报(自然科学版),2005,39:509-513
    102.李燕娥,朱祯,陈志贤,等.豇豆胰蛋白酶抑制剂转基因棉花的获得[J].棉花学报,1998,10(5):237-243
    103.李远华.β-葡萄糖苷酶的研究进展.安徽农业大学报,2002.29(4):421-425
    104.刘进元,赵广荣,李骥.棉花纤维品质改良的分子工程.植物学报,2000,42(10):991-995
    105.刘凌凤,王柯敏.一种基于分子信标荧光探针快速检测烟草花叶病毒的新方法[J].分析化学研究报告,2003,31
    106.刘娜,张锐,罗淑萍等.荧光定量PCR技术检测vgb基因在棉花中的表达.2007,03,1007-8614
    107.马国佳.棉花β-1,4-葡糖苷酶基因和内-β-1,3-1,4-葡聚糖酶基因的克隆与鉴定.南京农业大学,2005,硕士学位论文
    108.倪万潮,黄骏麒,郭三堆.转Bt杀虫蛋白幕因的抗棉铃虫棉花新种质[J].江苏农业学报,1996,12(1):1-6
    109.秦永华,乔志新,刘进元.转基因技术在棉花育种上的应用[J].棉花学报,2007,19(6):482-488
    110.任智茂,陈家全,李丽,等.一个棉花生殖器官优势表达基因的启动子功能分析[J].中国科学C辑,2005,35:22-28
    111.上官小霞,王凌健,李燕娥,等.棉花纤维发育的分子机理及品质改良研究进展.棉花学报,2008,20(1):62-69
    112.沈法富,喻树迅,韩秀兰,等.棉花半胱氨酸蛋白酶基因的克隆和表达特性分析[J].科学通报,2004,49:2318-2323
    113.孙杰,李艳军,等.棉花纤维特异表达基因GhF1的分离及鉴定[J].棉花学报,2005,17:259-263
    114.孙敬,唐灿明,袁小玲,等.Selection Technique for Transgenic Bt Cotton Using Kanarnycln as an Indirect Identification Marker.Acta Gossypii Sinica(棉花学报),2000,12(5):270-276
    115.孙淑斌,李宝珍,胡江等.水稻低丰度表达基因OsAMT1;3实时荧光定量PCR方法的建立及其应用.2006,20(1):8-12
    116.魏敏,熊建华,李阳生等.实时PCR定量分析干旱胁迫下水稻糖原合成酶激酶基因表达差异.中国水稻科学,2006,20(6):567-571
    117.王华夫,游小青.茶叶中β-葡萄糖苷酶活性的测定[J].中国茶叶.1996(3):16-17
    118.王伟,朱祯,高越峰,等.双价抗虫基因陆地棉转化植株的获得[J].植物学报,1999,41(4):384-388
    119.吴慎杰,李飞飞,陈天子等.农杆菌介导法转化泗棉3号的研究.作物学报,2007,33(4):632-638
    120.谢道听,范云六,倪万潮.苏云金芽孢杆菌(Bacillus thuringiensis)杀虫晶体蛋自幕因导入棉花获得转基因植株[J].中国科学(B)辑,1991,4:367-373
    121.于晓红,朱勇清,陈晓亚等.种子特异表达ipt转基因棉花根和纤维的改变[J].植物学报.2000,42(1):59-63
    122.余舜武,李鸿艳,罗立军.利用不同实时定量PCR方法分析相对基因表达差异.作物学报,2007,33(7):1214-1218
    123.张宝红,丰嵘.棉花生物技术研究现状[J].生物工程进展,1992,12(5):18-21
    124.张宝红.棉花组织培养名录(续)[J].植物生理学通讯,1994,30(5):386-391
    125.张恒木,刘进元.棉纤维中优势表达β-半乳糖苷酶基因的分子克隆及其特征[J].植物学报,2005,47(2):223-232
    126.张辉,汤文开,谭新等.棉纤维发育及其相关基因表达调控研究进展,植物学通报,2007,24(2):127-133
    127.张天真.棉花纤维品质分子育种的现状及展望.棉花学报,2000,12(6):321-326

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700